リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Computational Mechanistic Study of Fused Phenol Formations from 1,6‐Heptadiyne Involving Carbyne Complexes」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Computational Mechanistic Study of Fused Phenol Formations from 1,6‐Heptadiyne Involving Carbyne Complexes

Yamamoto, Yoshihiko 名古屋大学

2021.12.07

概要

The reaction of a tungsten carbyne complex, MeC≡WBr(CO)4, with 1,6-heptadiyne was investigated using density functional theory (DFT) calculations. It was suggested that the plausible mechanism involves [2+2] cycloaddition of the carbyne with the diyne, subsequent insertion of CO and alkyne into a metallacyclobutadiene intermediate, and a final reductive elimination step from a metallacycloheptatrienone intermediate to produce a η^5-cyclohexadienyl complex. A related Ru-catalyzed reaction of 1,6-heptadiyne involving a hydroxycarbyne complex was investigated to propose a possible pathway starting from a bis(hydroxycarbyne) complex, (HOC≡)2Ru(CO)2. It was found that the biscarbyne complex undergoes carbyne-carbyne coupling to generate a stable metallacyclopropene intermediate, which reacts with 1,6-heptadiyne through two different pathways to produce the final η^6-arene complex. Moreover, a non-carbyne pathway was also investigated to propose an alternative mechanism.

参考文献

[1] P. F. Engle, M. Pfeffer, Chem. Rev. 1995, 95, 2281-2309.

[2] For selected reviews: a) W. Zhang, J. S. Moore, Adv. Synth. Catal. 2007, 349, 93-120; b) A. Fürstner, Angew. Chem. 2013, 125, 2860- 2887; Angew. Chem. Int. Ed. 2013, 52, 2794-2819; c) H. Ehrhorn, M. Tamm, Chem. Eur. J. 2019, 25, 3190-3208; d) S. Huang, Z. Lei, Y. Jin, W. Zhang, Chem. Sci. 2021, 12, 9591-9606.

[3] a) T. M. Sivavec, T. J. Katz, Tetrahedron Lett. 1985, 26, 2159-2162. Also see: b) T. M. Sivavec, T. J. Katz, M. Y. Chiang, G. X.-Q. Yang, Organometallics 1989, 8, 1620-1625.

[4] a) C. M. Crudden, Y. Maekawa, J. J. Clarke, T. Ida, Y. Fukumoto, N. Chatani, S. Murai, Org. Lett. 2020, 22, 8747-8751. Also see: b) N. Chatani, Y. Fukumoto, T. Ida, S. Murai, J. Am. Chem. Soc. 1993, 115, 11614-11615.

[5] Gaussian 16, Revision B.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.

[6] a) W. Kohn, A. D. Becke, R. G. Parr, J. Phys. Chem. 1996, 100, 12974- 12980; b) P. J. Stephen, F. J. Devlin, C. F. Chabalowski, M. Frisch, J. Phys. Chem. 1994, 98, 11623-11627; c) A. D. Becke, J. Chem. Phys. 1993, 98, 5648-5652; d) C. Lee, W. Yang, R. G. Parr, Phys. Rev. B 1988, 37, 785-789.

[7] S. Grimme, S. Ehrlich, L. Goerigk, J. Comp. Chem. 2011, 32, 1456- 1465.

[8] P. J. Hay, W. R. Wadt, J. Chem. Phys. 1985, 82, 299-310.

[9] a) W. J. Hehre, R. Ditchfield, J. A. Pople, J. Chem. Phys. 1972, 56, 2257-2261; b) P. C. Hariharan, J. A. Pople, Theor. Chim. Acta 1973, 28, 213-222; c) M. M. Fracl, W. J. Pietro, W. J. Hehre, J. S. Binkley, M. S. Gordon, D. J. DeFrees, J. A. Pople, J. Chem. Phys. 1982, 77, 3654- 3665.

[10] A. V. Marenich, C. J. Cramer, D. G. Truhlar, J. Phys. Chem. B 2009, 113, 6378-6396.

[11] a) K. Fukui, Acc. Chem. Res. 1981, 14, 363-368; b) C. Gonzalez, H. B. Schlegel, J. Chem. Phys. 1989, 90, 2154-2161; c) C. Gonzalez, H. B. Schlegel, J. Phys. Chem. 1990, 94, 5523-5527.

[12] a) D. Andrae, U. Häussermann, M. Dolg, H. Stoll, H. Preuß, Theor. Chim. Acta 1990, 77, 123-141; b) J. M. L. Martin, A. Sundermann, J. Chem. Phys. 2001, 114, 3408-3420.

[13] a) R. Krishnan, J. S. Binkley, R. Seeger, J. A. Pople, J. Chem. Phys. 1980, 72, 650-654; b) A. D. McLean, G. S. Chandler, J. Chem. Phys. 1980, 72, 5639-5648; c) M. J. Frisch, J. A. Pople, J. S. Binkley, J. Chem. Phys. 1984, 80, 3265-3269; d) T. Clark, J. Chandrasekhar, G. W. Spitznagel, P. von Ragué Schleyer, J. Comp. Chem. 1983, 4, 294-301.

[14] CYLview, 1.0b; Legault, C. Y., Université de Sherbrooke, 2009 (http://www.cylview.org).

[15] A. F. Hill, R. Y. Kong, Chem. Commun. 2017, 53, 759-762.

[16] a) J. B. Sheridan, D. B. Pourreau, G. L. Geoffroy, Organometallics 1988, 7, 289-294; b) D. C. Brower, M. Stoll, J. L. Templeton, Organometallics 1989, 12, 2786-2792.

[17] A. Mayer, K. S. Lee, B. Kahr, Angew. Chem. 1988, 100, 1798-1799; Angew. Chem. Int. Ed. 1988, 27, 1730-1731.

[18] a) Z. Chen, C. S. Wannere, C. Corminboeuf, R. Puchta, P. von Ragué Schleyer, Chem. Rev. 2005, 105, 3842-3888; b) M. Mauksch, S. B. Tsogoeva, Chem. Eur. J. 2018, 24, 10059-10063; c) D. W. Szczepanik, M. Solà, ChemistryOpen 2019, 8, 219-227.

[19] For selected reviews: a) G. Jacobs, B. H. Davis, Catalysis 2007, 20, 122-285; b) A. Ambrosi, S. E. Denmark, Angew. Chem. 2016, 128, 12348-12374; Angew. Chem. Int. Ed. 2016, 55, 12164-12189.

[20] a) P. C. Ford, Acc. Chem. Res. 1981, 14, 31-37; b) P. Yarrow, H. Cohen, C. Ungermann, D. Vandenberg, P. C. Ford, J. Mol. Catal. 1983, 22, 239-256.

[21] For the mechanism of the hydroxycarbyne formation, see: K. M. Nicholas, Organometallics 1982, 1, 1713-1715.

[22] X. Wang, L. Andrews, J. Phys. Chem. A 2000, 104, 9892-9900.

[23] a) J. N. Coalter, III, J. C. Bollinger, O. Eisenstein, K. G. Caulton, New J. Chem. 2000, 24, 925-927; b) S. R. Caskey, M. H. Stewart, Y. J. Ahn, M. J. A. Johnson, J. L. C. Rowsell, J. W. Kampf, Organometallics 2007, 26, 1912-1923.

[24] A. de Meijere, D. Faber, M. Noltemeyer, R. Boese, T. Haumann, T. Müller, M. Bendikov, E. Matzner, Y. Apeloig, J. Org. Chem. 1996, 61, 8564-8568.

[25] E. D. Jemmis, S. Roy, V. V. Burlakov, H. Jino, M. Klahn, S. Hansen, U. Rosenthal, Organometallics 2010, 29, 76-81.

[26] a) A. A. Dahy, C. H. Suresh, N. Koga, Bull. Chem. Soc. Jpn. 2005, 78, 792-803; b) Y. Yamamoto, Eur. J. Org. Chem. 2020, 7455-7465.

[27] N. E. Schore, Chem. Rev. 1988, 88, 1081-1119.

[28] a) K. Kirchner, M. J. Calhorda, R. Schmidt, L. F. Veiros, J. Am. Chem. Soc. 2003, 125, 11721-11729; b) Y. Yamamoto, T. Arakawa, R. Ogawa, K. Itoh, J. Am. Chem. Soc. 2003, 125, 12143-12160.

[29] H. W. Walker, R. G. Person, P. C. Ford, J. Am. Chem. Soc. 1983, 105, 1179-1186.

[30] G. Sundararajan, J. S. Filippo, Jr., Organometallics 1985, 4, 606-608.

参考文献をもっと見る