リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「流動層造粒における粒子成長の解析とそのモデリング」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

流動層造粒における粒子成長の解析とそのモデリング

林 健太朗 大阪府立大学 DOI:info:doi/10.24729/00016960

2020.07.07

概要

流動層造粒法は,気体の上昇流によって流動化させた粉体に液体結合剤を噴霧して造粒する方法であり,医薬品,食品,肥料,洗剤,鉱物加工,特殊化学品など幅広い産業で使用されている[1].流動層造粒法は,原料の混合,造粒,乾燥などの工程を同一の密閉容器内で行えるため,他の造粒法と比較して,工程数削減と交叉汚染防止の観点から優れている.特に医薬品製造においては,人の健康及び生命に大きな影響を与えることから,GMP(Good Manufacturing Practice)に則った,厳格な製造管理及び品質管理が要求されている[2].

医薬品とは,人又は動物の疾病の診断,治療又は予防に使用されることが目的とされている物である[3].有効成分のみでは単なる化学物質であり,適切な添加剤と配合され,適切な製造工程を経て,製剤化された後,包装されることにより,医薬品となる.平成30年の日本における剤型別の生産金額比率及び品目数比率[4]によると,生産金額及び品目数のいずれにおいても,錠剤,顆粒剤,カプセル剤などの経口固形製剤が過半数を占める.有効成分の特性や製剤の目標製品品質プロファイルに応じて,種々の製造工程を組み合わせて製剤化されるが,固形製剤の場合,剤形によらず混合,造粒,乾燥,整粒が採用されることが多い.その中でも造粒が最も重要な工程の一つであり,医薬製剤技術の中で大きな位置を占める[5].

医薬品の承認申請には,製剤組成だけでなく,原薬や製剤の製造方法,規格及び試験方法などについても規制当局の許認可が必要である.そして,承認取得済みの医薬品製造工程の変更に関しても,その変更レベルが大きい場合には改めて規制当局の承認を得る必要がある[6-8].そのため,一度承認を得た製造工程については,よほどのことがない限り,大きな変更を伴う工程改善は行わず,熟練者の勘や経験を頼りに設定された製造条件で製造し続けるという,旧態依然とした考え方が蔓延していた.しかし,近年,医薬品製剤開発において,「品質は製品になってから検証するものではなく,設計によって製品に組み込まれるべきもの」というQuality by Design (QbD)の概念が浸透してきている[9].規制当局は製薬会社に対し,QbD実現のために,これまでの経験に基づく運用だけでなく,プロセス解析工学(Process Analytical Technology; PAT)を活用した製剤工程の科学的な理解推進を期待している.アメリカ食品医薬品局(Foodand Drug Administration; FDA)からもPATに関するガイダンスが出ている[10].医薬品製造におけるリスク軽減をPAT推進の動機としているようにも受け取ることができるが,その背景には,低い工程能力,それに由来する低生産性,供給不安,過大なマンパワーなど,陳腐化した製造技術と経験に頼り科学的でない従前のGMPが根底にあると認識されているようである[11].製薬会社としても,製剤工程の科学的理解を深めて,プロセス最適化,ならびに,プロセスの変動状況を即座に把握して品質リスクを軽減することにより,安定生産・生産性向上につなげたいと考えている.しかし,単に高精度の測定機器を用いて工程をモニタリングするだけでは,製剤工程の科学的な理解を深めることは不十分であり,PATツールを活用する手法の開発が求められている.つまり,数値解析の活用がますます重要となってきている.そこで,本研究では,医薬品の製造工程で汎用される流動層造粒法に着目し,工程理解の推進及び粒子成長機構の解明を目的として,実生産スケールでの実験結果を基に数値解析及びモデリングに関する研究を行った.

この論文で使われている画像

参考文献

第一章

[1] A.D. Salman, M.J. Hounslow, J.P.K. Seville (Eds.), Granulation, Handbook of Powder Technology Vol. 11, Elsevier Science, Amsterdam 2007.

[2] 厚生労働省令第 179 号,医薬品及び医薬部外品の製造管理及び品質管理の基準に関す る省令,平成 16 年 12 月 24 日.

[3] 医薬品,医療機器等の品質,有効性及び安全性の確保等に関する法律 (昭和 35 年 8 月 10 日法律第 145 号, 改正: 平成 26 年 11 月 27 日法律第 122 号)

[4] 厚生労働省医政局, 平成 30 年薬事工業生産動態統計調査

[5] 日本粉体工業協会 編, 造粒便覧, オーム社 (1975)

[6] 薬食審査発第 0210001 号,改正薬事法に基づく医薬品等の製造販売承認申請書記載事 項に関する指針について,平成 17 年 2 月 10 日.

[7] U.S. Department of Health and Human Services, Food and Drug Administration, Guidance for industry, Changes to an Approved NDA or ANDA, 2004.

[8] EMA, European Medicines Agency post-authorisation procedural advice for users of the centralised procedure, 2019.

[9] ICH Expert Working Group, ICH Harmonized Tripartite Guideline, Pharmaceutical Development Q8, Revision 2, 2009.

[10] U.S. Department of Health and Human Services, Food and Drug Administration, Guidance for Industry, PAT – A framework for innovative pharmaceutical development, manufacturing, and quality assurance, 2004.

[11] 水田泰一, 製造リスクと PAT ガイダンスおよび PAT の手法, PDA J. GMP Val. Jpn. 7 (2005) 25–37.

[12] 日本粉体工業技術協会 編,造粒ハンドブック,オーム社 (1991).

[13] 関口勲, 粉体の凝集造粒とその操作,色材 53 (1980) 594–601.

[14] 粉体工学会 編,粉体粒子の組織制御による機能付与,粉体工学会叢書 第 5 巻,日刊 工業新聞社 (2008).

[15] 厚生労働省医薬食品局審査管理課,事務連絡,経口固形製剤の製法変更の生物学的同 等性試験に係る考え方等について,平成 25 年 4 月 19 日.

[16] S. Watano, K. Terashita, K. Miyanami, Moisture feedback control and process automation in fluidized bed granulation, Advanced Powder Technol. 3 (1992) 255–265.

[17] D.E. Wurster, Air‐suspension technique of coating drug particles. A preliminary report., J. Am. Pharm. Assoc. 48 (1959) 451–454.

[18] K. Nishii, Y. Itoh, N. Kawakami, M. Horio, Pressure swing granulation, a novel binderless granulation by cyclic fluidization and gas flow compaction, Powder Technol. 74 (1993) 1–6.

[19] H. Rumpf, The strength of granules and agglomerates, Agglomeration, Interscience Publishers, New York (1962).

[20] V. Pauli, Y. Roggo, P. Kleinebudde, M. Krumme, Real-Time Monitoring of Particle Size Distribution in a Continuous Granulation and Drying Process by Near Infrared Spectroscopy., European Journal of Pharmaceutics and Biopharmaceutics, 141 (2019), 90–99.

[21] V. Pauli, Y. Roggo, L. Pellegatti, Nhat Quang Nguyen Trung, F. Elbaz, S. Ensslin, P. Kleinebudde, M. Krumme, Process analytical technology for continuous manufacturing tableting processing: A case study., Journal of Pharmaceutical and Biomedical Analysis, 162 (2019), 101–111.

[22] N. Bostijn, W. Dhondt, C. Vervaet, T. De Beer, PAT-based batch statistical process control of a manufacturing process for a pharmaceutical ointment., European Journal of Pharmaceutical Sciences, 136 (2019), 104946.

[23] H. Nakagawa, M. Kano, S. Hasebe, T. Suzuki, N. Wakiyama, Real-time monitoring of lubrication properties of magnesium stearate using NIR spectrometer and thermal effusivity sensor, Int. J. Pharm. 441 (2013) 402–413.

[24] K. Muteki, D.O. Blackwood, B. Maranzano, Y. Zhou, Y.A. Liu, K.R. Leeman, G.L. Reid, Mixture component prediction using iterative optimization technology (calibrationfree/minimum approach), Ind. Eng. Chem. Res. 52 (2013) 12258–12268.

[25] H. Kaneko, K. Muteki, K. Funatsu, Improvement of iterative optimaization technology (for process analytical technology calibration-free/minimum approach) with dimensionality reduction and wavelength selection of spectra, Chemom. Intell. Lab. Syst. 147 (2015) 176–184.

[26] H. Leuenberger, Granulation, New techniques, Pharm. Acta Helv. 57 (1982) 72–82.

[27] P. Holm, T. Schaefer, H. G. Kristensen, Granulation in high-speed mixers Part V. Power consumption and temperature changes during granulation, Powder Technol. 43 (1985) 213–223.

[28] P. Holm, T. Schaefer, H. G. Kristensen, Granulation in high-speed mixers Part VI. Effects of process conditions on power consumption and granule growth, Powder Technol. 43 (1985) 225– 233.

[29] S. Schildcrout, Rheology of pharmaceutical granulations, J. Pharm. Pharmacol. 36 (1984) 502– 505.

[30] S. Watano, T. Morikawa, K. Miyanami, Kinetics of granule growth in fluidized bed granulation with moisture control, Chem. Pharm. Bull. 43 (1995) 1764–1771.

[31] M. Fujiwara, W. Momose, K. Kuroda, T. Inatani, K. Yamashita, K. Sako, Proportional control of moisture content of granules by adjusting inlet air temperature in fluidized bed granulation using near-infrared spectroscopy, Adv. Powder Technol. 25 (2014) 704–709.

[32] S. Watano, Direct control of wet granulation processes by image processing system, Powder Technol. 117 (2001) 163–172.

[33] A. Burggraeve, T. Van Den Kerhof, M. Hellings, J. P. Remon, C. Vervaet, T. De Beer, Evaluation of in-line spatial filter velocimetry as PAT monitoring tool for particle growth during fluid bed granulation, Eur. J. Pharm. Biopharm. 76 (2010) 138–146.

[34] C. Biggs, R. Boerefijin, M. Buscan, A. Salman, M. Holunslow, Fluidised bed granulation: modelling the growth and breakage kinetics using population balances., Proc. World Cong. Particle Technol., Sydney (2002) pp. 629–636.

[35] H. Tan, A. Salman, M. Holunslow, Kinetics of fluidised bed melt granulation V: Simultaneous modelling of aggregation and breakage, Chem. Eng. Sci. 60 (2005) 3847–3866.

[36] 粉体工学会 編, 粉体シミュレーション入門, 産業図書 (1998).

[37] S. Watano, T. Fukushima, K. Miyanami, Computer simulation of fluidized bed granulation by a two-dimensional random coalescence model., J. Chem. Eng. Jpn. 28 (1995) 8–13.

[38] S. Watano, M. Uchigami, T. Yasutomo, K. Miyanami, Modeling of agitation fluidized bed granulation by random coalescence model., Chem. Pharm. Bull. 44 (1996) 1357–1360.

[39] Y. Kawashima, T. Hanada, H. Takeuchi, T. Niwa, H. Sunada, A. Otsuka, Computer simulation of agglomeration by a two-dimensional random addition model – Agglomeration kinetics and micrometric properties of agglomerate accompanied by compaction process., Powder Technol. 57 (1989) 157–163.

[40] S. Watano, T. Morikawa, K. Miyanami, Computer simulation of agitation fluidized bed granulation by a two-dimensional random addition model., J. Chem. Eng. Jpn. 28 (1995) 171– 178.

[41] H. Sunada, A. Otsuka, Y. Yamada, K. Kawashima, H. Takeuchi, J.T. Carstensen, Agglomeration kinetics of monodisperse system – Computer simulation of agglomerates by a two-dimensional random walk model., Powder Technol. 38 (1984) 211–216.

[42] M. Hounslow, The population balance as a tool for understanding particle rate processes., KONA 16 (1998) 179–193.

[43] T.R. Malthus, An Essay on the Principle of Population. 1798.

[44] P.F. Verhulst, Notice sur la loi que la population suit dans son accroissement., Correspondance Mathématique et Physique 10 (1838) 113–121.

[45] M.V. Smoluchowski, Mathematical theory of the kinetics of the coagulation of colloidal solutions., Z. Phys. Chem. 92 (1917) 129–168.

[46] A.D. Randolph, M.A. Larson, Transient and steady state size distributions in continuous mixed suspension crystallizers, AIChE 8 (1962) 639–645.

[47] H.M. Hulburt, S. Katz, Some problems in particle technology. A statistical mechanical formulation., Chem. Eng. Sci. 19 (1964) 555–574.

[48] A.D. Randolph, M.A. Larson, Theory of particulate processes 2nd ed., Academic Press, New York, 1988.

[49] D. Ramkrishna, Population Balances, Academic Press, San Diego (2000).

[50] D. Ramkrishna, The status of population balances, Rev. Chem. Eng. 3 (1985) 49–95.

[51] D.L. Swift, S.K. Friedlander, J. Colloid Sci. 19 (1964) 621–647.

[52] R.L. Drake, Topics in Current Aerosol Research, Part 2 (G.M. Hidy and J.R. Brock, eds.), Pergamon Press, New York (1972).

[53] P.C. Kapur, D.W. Fuerstenau, A coalescence model for granulation., Ind. Eng. Chem. Process Des. Dev. 8 (1969) 56–62.

[54] K.V.S. Sastry, D.W. Fuerstenau, Size Distribution of Agglomerates in Coalescing Dispersed Phase Systems., Ind. Eng. Chem. Fundam. 9 (1970) 145–149.

[55] K.V.S. Sastry, Similarity size distribution of agglomerates during their growth by coalescence in granulation or green pelletization., Int. J. Miner. Process. 2 (1975) 187–203.

[56] P.C. Kapur, K.V.S. Sastry, D.W. Fuerstenau, Mathematical models of open-circuit balling or granulating devices., Ind. Eng. Chem. Process Des. Dev. 20 (1981) 519–524.

[57] K.V.S. Sastry, P. Gaschignard, Discretization procedure for the coalescence equation of particulate processes., Ind. Eng. Chem. Fundam. 20 (1981) 355–361.

[58] N. Ouchiyama, T. Tanaka, Mathematical Model in the Kinetics of Granulation, Ind. Eng. Chem. Process Des. Dev. 13 (1974) 383–389.

[59] P.C. Kapur, D.W. Fuerstenau, Coalescence model for granulation, Ind. Eng. Chem. Proc. Design Dev. 8 (1969) 56–62.

[60] S.M. Iveson, Limitations of one-dimensional population balance models of wet granulation processes1., Powder Technol. 124 (2002) 219–229.

[61] J.A. Gantt, I.T. Cameron, J.D. Litster, E.P. Gatzke, Determination of coalescence kernels for high-shear granulation using DEM simulations, Powder Technol. 170 (2006) 53–63.

[62] C.A. Biggs, C. Sanders, A.C. Scott, A.W. Willemse, A.C. Hoffman, T. Instone, M.J. Hounslow, Coupling granule properties and granulation rates in high-shear granulation., Powder Technol. 130 (2003) 162–168.

[63] A.M. Golovin, The solution of the coagulation equation for raindrops, taking condensation into account, Sov. Phys. Dokl. 8 (1963) 191–193.

[64] M.J. Hounslow, R.L. Ryall, V.R. Marshall, A discretized population balance for nucleation, growth, and aggregation, AIChE 34 (1988) 1821–1832.

[65] M.J. Hounslow, J.M.K. Pearson, T. Instone, Tracer studies of high-shear granulation: II. Population balance modeling, AIChE 47 (2001) 1984–1999.

[66] L. Bass, Zur Theorie der Mahalvorgange, Ziets. Angew. Math. Physik 5 (1954) 283–292.

[67] A.M. Gaudin, T.P. Meloy, Model and a comminution distribution equation for repeated fracture, Trans. SME-AIME 223 (1962) 43–50.

[68] R.P. Gardner, L.G. Austin, A chemical engineering treatment of batch grinding, in: H. Rumpf, D. Behrens (Eds.), Proceedings, 1st European Symposium Zerkleinern, Verlag- Chemie, Weinheim, 1962, pp. 217–231.

[69] V.K. Gupta, P.C. Kapur, A critical appraisal of the discrete size models of grinding kinetics, in: H. Rumf, K. Schonert (Eds.), Proceedings Fourth European Symposium Zerkleinern, Dechema Monographien 79, Nr 1576–1599, Verlag Chemie, Weinheim, 1976, pp. 447–465.

[70] D. Eyre, R.C. Everson, Q.P. Campbell. New parameterization for a discrete batch grinding equation, Powder Technol. 98 (1998) 265–272.

[71] J.A. Herbst, D.W. Fuerstenau, The zero order production of fine sizes in comminution and its implications in simulations., Trans. AIME 241 (1968) 538–548.

[72] M. Furuya, Y. Nakajima, T. Tanaka, Theoretical analysis of closed-circuit grinding system based on comminution kinetics, Ind. Eng. Chem. Process Des. Dev. 10 (1971) 449–456.

[73] P.C. Kapur, Self-preserving size spectra of comminuted particles, Chem. Eng. Sci. 27 (1972) 425–431.

[74] V.K. Gupta, An appraisal of the energy-size reduction relationships for mill scale-up design, Adv. Powder Technol. 30 (2019) 73–84.

[75] J.J. Gilvarry, Fracture of brittle solids. I. Distribution function for fragment size in single fracture (Theoretical), J. Appl. Phys. 32 (1961) 391–399.

[76] S.R. Broadbent, T.G. Callcott, Coal breakage processes: I. A new analysis of coal breakage processes., J. Inst. Fuel 29 (1956): 524–528.

[77] S.R. Broadbent, T.G. Callcott, A matrix analysis of process involving particle assemblies., Phil. Trans. R. Soc. Lond. A 249 (1956) 99–123.

[78] T. Tanaka, Scale-up formula for grinding equipment using selection function, J. Chem. Eng. Jpn. 5 (1972) 310–313.

[79] V.K. Gupta, Validation of an energy-size relationship obtained from a similarity solution to the batch grinding equation, Powder Technol. 249 (2013) 396–402.

[80] L. Austin, K. Shoji, V. Bhatia, V. Jindal, K. Savage, R. Klimpel, Some results on the description of size reduction as a rate process in various mills, Ind. Eng. Chem. Process Des. Dev. 15 (1976) 187–196.

[81] L.G. Austin, R.R. Klimpel, P.T. Luckie, The Process Engineering of Size Reduction: Ball Milling, SME-AIME, New York, 1984, pp. 40, 84–86.

[82] E. Teke, M. Yekeler, U. Ulusoy, M. Canbazoglu, Kinetics of dry grinding of industrial minerals: calcite and barite, Int. J. Miner. Process. 67 (2002) 29–42.

[83] E. Petrakis, E. Stamboliadis, K. Komnitsas, Identification of optimal mill operating parameters during grinding of quartz with the use of population balance modelling, KONA Powder Part. J. 34 (2017) 213–223.

[84] N. Ouchiyama, T. Tanaka, Estimation of the average number of contacts between randomly mixed solid particles, Ind. Eng. Chem. Fundam. 19 (1980) 338–340.

[85] N. Ouchiyama, T. Tanaka, The probability of coalescence in granulation kinetics, Ind. Eng. Chem. Process Des. Develop. 14 (1975) 286–289.

[86] N. Ouchiyama, T. Tanaka, Kinetic analysis of continuous pan granulation. Possible explanations for conflicting experiments and several indications for practice, Ind. Eng. Chem. Process Des. Develop. 20 (1981) 340–348.

[87] S. Watano, T. Morikawa, K. Miyanami, Mathematical model in the kinetics of agitation fluidized bed granulation. Effects of moisture content, damping speed and operation time on granule growth rate, Chem. Pharm. Bull. 44 (1996) 409–415.

[88] C. Biggs, R. Boerefijin, M. Buscan, A. Salman, M. Holunslow, Fluidised bed granulation: modelling the growth and breakage kinetics using population balances, Proc. World Congress on Particle Technol., Sydney (2002) 629–636.

[89] A.A. Adetayo, J.D. Litster, S.E. Pratsinis, B. J. Ennis, Population balance modelling of drum granulation of materials with wide size distribution, Powder Technol. 82 (1995) 37–49.

[90] L.X. Liu, J.D. Litster, S.M. Iveson, B.J. Ennis, Coalescence of deformable granules in wet granulation processes., AIChE J. 46 (2000) 529–539.

[91] L.X. Liu, J.D. Litster, Population balance modelling of granulation with a physically based coalescence kernel., Chem. Eng. Sci. 57 (2002) 2183–2191.

[92] H. Liu, T. O’Connor, S. Lee, S. Yoon, A process optimization strategy of a pulsed-spray fluidized bed granulation process based on predictive three-stage population balance model, Powder Technol. 327 (2018) 188–200.

[93] H. Liu, S.C. Galbraith, S.-Y. Park, B. Cha, Z. Huang, R.F. Meyer, M.H. Flamm, T. O’Connor, S. Lee, S. Yoon, Development of a three-compartmental population balance model for a continuous twin screw wet granulation process, Pharm. Dev. Technol. 7450 (2018) 1–39.

[94] D. Barrasso, A. El Hagrasy, J.D. Litster, R. Ramachandran, Multi-dimensional population balance model development and validation for a twin screw granulation process, Powder Technol. 270 (2015) 612–621.

[95] N. Metta, M. Verstraeten, M. Ghijs, A. Kumar, E. Schafer, R. Singh, T.D. Beer, I. Nopens, P. Cappuyns, I.V. Assche, M. Ierapetritou, R. Ramachandran, Model development and prediction of particle size distribution, density and friability of a comilling operation in a continuous pharmaceutical manufacturing process., Int. J. Pharmaceutics, 549 (2018) 271–282.

[96] P.A. Cundall, O.D.L. Strack, Discrete numerical model for granular assemblies, Geotechnique 29 (1979) 47–65.

[97] 日本粉体工業技術協会 編,粉体混合技術,日刊工業新聞社 (2001).

[98] H. Hertz, Über die berührung fester elastischer Körper (On the contact of rigid elastic solids). In: Miscellaneous Papers. Jones and Schott, Editors, J. reine und angewandte Mathematik 92, Macmillan, London (1896), p. 156 English translation: H. Hertz (1882).

[99] R.D. Mindlin, Compliance of elastic bodies in contact., J. Appl. Mech. 16 (1949) 259–268.

[100] R.D. Mindlin, H. Deresiewicz, Elastic spheres in contact under varying oblique forces., ASME, September (1953) 327–344.

[101] C. Pei, C.Y. Wu, D. England, S. Byard, H. Berchtold, M. Adams, Numerical analysis of contact electrification using DEM-CFD, Powder Technol. 248 (2013) 34–43.

[102] H.C. Hamaker, The London – van der Waals attraction between spherical particles., Physica A. 4 (1937) 1058–1072.

[103] K.L. Jornson, K. Kendall, A.D. Roberts, Surface energy and the contact of elastic solids., Proc. R. Soc. London A. 324 (1971) 301–313.

[104] P.Y. Liu, R.Y. Yang, A.B. Yu, Dynamics of wet particles in rotating drums: Effect of liquid surface tension., Phys. Fluids 23 (2011) 013304.

[105] Y. Muguruma, T. Tanaka, S. Kawatake, Y. Tsuji, Numerical simulation of particulate flow with liquid bridge between particles (Simulation of centrifugal tumbling granulator)., Powder Technol. 109 (2000) 49–57.

[106] D. Shi, J.J. McCarthy, Numerical simulation of liquid transfer between particles., Powder Technol. 184 (2008) 64–75.

[107] A. Anand, J.S. Curtis, C.R. Wassgren, B.C. Hancock, W.R. Ketterhagen, Predicting discharge dynamics of wet cohesive particles from a rectangular hopper using the discrete element method (DEM)., Chem. Eng. Sci. 64 (2009) 5268–5275.

[108] 藤橋大輝, 綱澤有輝, 所千晴, 酒井幹夫, 液架橋力を考慮した DEM シミュレーション によるパン型ペレタイザ内の粒子挙動の把握, 粉体工学会誌 51 (2014) 828–836.

[109] T. Mikami, H. Kamiya, M. Horio, Numerical simulation of cohesive powder behavior in a fluidized bed., Chem. Eng. Sci. 53 (1998) 1927–1940.

[110] Y.I. Rabinovich, M.S. Esayanur, B.M. Moudgil, Capillary forces between two spheres with a fixed volume liquid bridge: theory and experiment., Langmuir 21 (2005) 10992–10997.

[111] M.J. Adams, B. Edmondson, Forces between particles in continuous and discrete liquid media. In: B.J. Briscoe, M.J. Adams (eds) Tribology in particulate technology. Adam Hilger Publishers, Philadelphia, (1987) pp. 154–172.

[112] G. Lian, M.J. Adams, C. Thornton, Elastohydrodynamic collisions of solid spheres., J. Fluid Mechanics, 311 (1996) 141–152.

[113] E. Sakaguchi, E. Ozaki, T. Igarashi, Plugging of the flow of granular materials during the discharge from a silo., Int. J. Mod. Phys. B 7 (1993) 1949–1963.

[114] Y. Tsuji, T. Kawaguchi, T. Tanaka, Discrete particle simulation of two-dimensional fluidized bed, Powder Technol. 77 (1993) 79–87.

[115] Y. Li, Y. Xu, C. Thornton, A comparison of discrete element simulations and experiment for ‘Sandpiles’ composed of spherical particles., Powder Technol. 160 (2005) 219–228.

[116] M. Sakai, S. Koshizuka, Development of a coarse grain simulation methodology for discrete element method in gas-solid flows, J. Soc. Powder Technol., Jpn. 45 (2008) 12–22.

[117] M. Sakai, Y. Yamada, Y. Shigeto, Numerical simulation of cohesive particles in a fluidized bed by the DEM coarse grain model, J. Soc. Powder Technol., Jpn. 47 (2010) 522–530.

[118] M. Sakai, H. Takahashi, C.C. Pain, J-P Latham, J. Xiang, Study on a large-scale discrete element model for fine particle in a fluidized bed., Adv. Powder Technol. 23 (2012) 673–681.

[119] M. Sakai, S. Koshizuka, Large-scale discrete element modeling in pneumatic conveying., Chem. Eng. Sci. 64 (2009) 533–539.

[120] M. Yamanoi, Y. Nakata, DEM Simulation based on scaling rule, J. Soc. Powder Technol., Jpn. 55 (2018) 95–103.

[121] 鷲野公彰, 許志宏, 川口寿裕,辻裕, 流動層の DEM 計算における相似則モデル, 粉体工 学会誌, 44 (2007) 198–205.

[122] Y. Lu, J. Huang, P. Zheng, Fluid hydrodynamic characteristics in supercritical water fluidized bed: a DEM simulation study., Chem. Eng. Sci. 117 (2014) 283–292.

[123] M. Paulick, M. Morgeneyer, A. Kwade, Review on the influence of elastic particle properties on DEM simulation results., Powder Technol. 283 (2015) 66–76.

[124] K. Washino, E.L. Chan, T. Tanaka, DEM with attraction forces using reduced particle stiffness., Powder Technol. 325 (2018) 202–208.

[125] W.R. Ketterhagen, M.T.A. Ende, B.C. Hancock, Process modeling in the pharmaceutical industry using the discrete element method., J. Pharm. Sci. 98 (2009) 442–470.

[126] M. Horibe, R. Sonoda, S. Watano, Scale-up of lubricant mixing process by using V-type blender based on discrete element method., Chem. Pharm. Bull. 66 (2018) 548–553.

[127] Y. Muguruma, T. Tanaka, S. Kawatake, Y. Tsuji, Discrete particle simulation of a rotary vessel mixer with baffles., Powder Technol. 93 (1997) 261–266.

[128] T.B. Anderson, R. Jackson, Fluid mechanical description of fluidized beds. Equations of motion, Ind. Eng. Chem. Fundam. 6 (1967) 527–539.

[129] C.-Y. Wen, Y.H. Yu, Mechanics of fluidization, Chem. Eng. Prog. Symp. 62 (1966) 100–111.

[130] S. Ergun, Fluid flow through packed columns, Chem. Eng. Prog. 48 (1952) 89–94.

[131] D. Gidaspow, R. Bezburuah, J. Ding, Hydrodynamics of circulating fluidized beds, kinetic theory approach., In Fluidization VII, Proc. 7th Eng. Fund. Conf. on Fluidization, (1992) 75– 82.

[132] R.D. Felice, The voidage function for fluid-particle interaction systems., Int. J. Multiph. Flow 20 (1994) 153–159.

[133] M. Sen, D. Barrasso, R. Singh, R. Ramachandran, A multi-scale hybrid CFD-DEM-PBM description of a fluid-bed granulation process, Processes 2 (2014) 89–111.

[134] D. Barrasso, T. Eppinger, F.E. Pereira, R. Aglave, K. Debus, S.K. Bermingham, R. Ramachandran, A multi-scale, mechanistic model of a wet granulation process using a novel bidirectional PBM-DEM coupling algorithm, Chem. Eng. Sci. 123 (2015) 500–513.

[135] T. Kulju, M. Paavola, H. Spittka, R.L. Keiski, E. Juuso, K. Leiviskä, E. Muurinen, Modeling continuous high-shear wet granulation with DEM-PB, Chem. Eng. Sci. 142 (2016) 190–200.

第二章

[1] 大池敦夫, 寺下敬次郎, 宮南啓, 医薬品製造における撹拌造粒, J. Soc. Powder Technol., Jpn. 24 (1987) 535–541.

[2] H. Leuenberger, Granulation, New techniques, Pharm. Acta Helv. 57 (1982) 72–82.

[3] P. Holm, T. Schaefer, H. G. Kristensen, Granulation in high-speed mixers Part V. Power consumption and temperature changes during granulation, Powder Technol. 43 (1985) 213–223.

[4] P. Holm, T. Schaefer, H. G. Kristensen, Granulation in high-speed mixers Part VI. Effects of process conditions on power consumption and granule growth, Powder Technol. 43 (1985) 225–233.

[5] S. Schildcrout, Rheology of pharmaceutical granulations, J. Pharm. Pharmacol. 36 (1984) 502–505.

[6] S. Watano, T. Morikawa, K. Miyanami, Kinetics of granule growth in fluidized bed granulation with moisture control, Chem. Pharm. Bull. 43 (1995) 1764–1771.

[7] S. Watano, Direct control of wet granulation processes by image processing system, Powder Technol. 117 (2001) 163–172.

[8] A. Burggraeve, T. Van Den Kerhof, M. Hellings, J. P. Remon, C. Vervaet, T. De Beer, Evaluation of in-line spatial filter velocimetry as PAT monitoring tool for particle growth during fluid bed granulation, Eur. J. Pharm. Biopharm. 76 (2010) 138–146.

[9] C. Biggs, R. Boerefijin, M. Buscan, A. Salman, M. Holunslow, Fluidised bed granulation: modelling the growth and breakage kinetics using population balances., Proc. World Cong. Particle Technol., Sydney (2002) pp. 629–636.

[10] H. Tan, A. Salman, M. Holunslow, Kinetics of fluidised bed melt granulation V: Simultaneous modelling of aggregation and breakage, Chem. Eng. Sci. 60 (2005) 3847–3866.

[11] T. Tanino, Control of critical quality and performance attributes of powder in manufacturing processes of oral dosage forms and PAT application, J. Soc. Powder Technol., Jpn. 42 (2005) 638– 647.

[12] D. Geldart, Types of gas fluidization, Powder Technol. 7 (1973) 285–292.

[13] T. Uemura, S. Uramatsu, M. Morizane, H. Ichikawa, Y. Fukumori, Usefulness of mixer torque rheometer for pharmaceutical design, Pharm Tech Jpn. 28 (2012) 605–611.

[14] R. C. Rowe, G. R. Sadeghnejad, The rheology of microcrystalline cellulose powder/water mixes— measurement using a mixer torque rheometer, Int. J. Pharm. 38 (1987) 227–229.

[15] 日本粉体工業技術協会, 造粒ハンドブック, オーム社 (1991) p.88.

[16] S. Watano, K. Miyanami, Image processing for on-line monitoring of granule size distribution and shape in fluidized bed granulation, Powder Technol. 83 (1995) 55–60.

[17] P. A. Wauters, B. Scarlett, L. X. Liu, J. D. Litster, G. M. Meesters, A population balance model for high shear granulation, Chem. Eng. Commun. 190 (2003) 1309–1334.

第三章

[1] ICH Expert Working Group, ICH Harmonized Tripartite Guideline, Pharmaceutical Development Q8, Revision 2, 2009.

[2] U.S. Department of Health and Human Services, Food and Drug Administration, Guidance for Industry, PAT – A framework for innovative pharmaceutical development, manufacturing, and quality assurance, 2004.

[3] M. Fujiwara, W. Momose, K. Kuroda, T. Inatani, K. Yamashita, K. Sako, Proportional control of moisture content of granules by adjusting inlet air temperature in fluidized bed granulation using near-infrared spectroscopy, Adv. Powder Technol. 25 (2014) 704–709.

[4] H. Nakagawa, Y. Kikkawa, K. Matsuura, S. Tanabe, T. Watanabe, Implementation of enhanced QbD to drug product development, J. Jpn. Soc. Pharm. Mach. Eng. 24 (2015) 469–475.

[5] N. Ouchiyama, T. Tanaka, Estimation of the average number of contacts between randomly mixed solid particles, Ind. Eng. Chem. Fundam. 19 (1980) 338–340.

[6] N. Ouchiyama, T. Tanaka, Mathematical model in the kinetics of granulation, Ind. Eng. Chem. Process Des. Develop. 13 (1974) 383–389.

[7] N. Ouchiyama, T. Tanaka, The probability of coalescence in granulation kinetics, Ind. Eng. Chem. Process Des. Develop. 14 (1975) 286–289.

[8] N. Ouchiyama, T. Tanaka, Kinetic analysis of continuous pan granulation. Possible explanations for conflicting experiments and several indications for practice, Ind. Eng. Chem. Process Des. Develop. 20 (1981) 340–348.

[9] S. Watano, T. Morikawa, K. Miyanami, Mathematical model in the kinetics of agitation fluidized bed granulation. Effects of moisture content, damping speed and operation time on granule growth rate, Chem. Pharm. Bull. 44 (1996) 409–415.

[10] A.A. Adetayo, J.D. Litster, S.E. Pratsinis, B. J. Ennis, Population balance modelling of drum granulation of materials with wide size distribution, Powder Technol. 82 (1995) 37–49.

[11] C. Biggs, R. Boerefijin, M. Buscan, A. Salman, M. Holunslow, Fluidised bed granulation: modelling the growth and breakage kinetics using population balances, Proc. World Congress on Particle Technol., Sydney (2002) 629–636.

[12] H. Liu, T. O’Connor, S. Lee, S. Yoon, A process optimization strategy of a pulsed-spray fluidized bed granulation process based on predictive three-stage population balance model, Powder Technol. 327 (2018) 188–200.

[13] H. Liu, S.C. Galbraith, S.-Y. Park, B. Cha, Z. Huang, R.F. Meyer, M.H. Flamm, T. O’Connor, S. Lee, S. Yoon, Development of a three-compartmental population balance model for a continuous twin screw wet granulation process, Pharm. Dev. Technol. 7450 (2018) 1–39.

[14] D. Barrasso, A. El Hagrasy, J.D. Litster, R. Ramachandran, Multi-dimensional population balance model development and validation for a twin screw granulation process, Powder Technol. 270 (2015) 612–621.

[15] K. Hayashi, S. Watano, Investigation of fluidized bed granulation mechanism by using an online particle size monitoring device, J. Soc. Powder Technol. Jpn. 55 (2018) 316–323.

[16] P.A. Wauters, B. Scarlett, L.X. Liu, J.D. Litster, G.M. Meesters, A population balance model for high shear granulation, Chem. Eng. Commun. 190 (2003) 1309–1334.

[17] A.D. Randolph, M.A. Larson, Theory of particulate processes, 1st ed., Academic Press, Cambridge, 1971.

[18] M.J. Hounslow, J.M.K. Pearson, T. Instone, Tracer studies of high ‐ shear granulation: II. Population balance modeling, AIChE J. 47 (2001) 1984–1999.

[19] P.C. Kapur, D.W. Fuerstenau, Coalescence model for granulation, Ind. Eng. Chem. Proc. Design Dev. 8 (1969) 56–62.

[20] D. Eyre, R.C. Everson, Q.P. Campbell. New parameterization for a discrete batch grinding equation, Powder Technol. 98 (1998) 265–272.

[21] C.L. Marshall, Multi-component population balance modeling of wet granulation via constantnumber Monte Carlo, Ph.D. dissertation Pennsylvania State University, United States (2012).

[22] X. Shen, J.P.Y. Maa, Numerical simulations of particle size distributions: Comparison with analytical solutions and kaolinite flocculation experiments, Mar. Geol. 379 (2016) 84–99.

[23] K.V. Sastry, D.W. Fuerstenau, Size distribution of agglomerates in coalescing dispersed phase systems, Ind. Eng. Chem. Fund. 9 (1970) 145–149.

[24] T. Abberger, Population Balance Modelling of Granulation, in: A.D. Salman, M.J. Hounslow, J.P.K. Seville (Eds.), Granulation, Vol. 11 (Handb. Powder Technol.), 1st ed., Elsevier Science, Amsterdam, 2007: pp. 1110–1188.

[25] P. Rosin, E. Rammler, The Laws Governing the Fineness of Powdered Coal, J. Inst. Fuel 7 (1933) 29–36.

[26] J.G. Bennet, Broken coal, J. Inst. Fuel 10 (1936) 22–39.

[27] T.B. Drew (Ed.), Advances in Chemical Engineering, Vol. 10, Academic Press, New York, 1978.

[28] B. Pulvermacher, E. Ruckenstein, Time evolution of the size spectrum in granulation, Chem. Eng. J. 9 (1975) 21–29.

第四章

[1] ICH Expert Working Group, ICH Harmonized Tripartite Guideline, Pharmaceutical Development Q8, Revision 2, 2009.

[2] K. Hayashi, S. Watano, Novel population balance model for granule aggregation and breakage in fluidized bed granulation and drying, Powder Technol. 342 (2019) 664–675.

[3] P.A. Cundall, O.D.L. Strack, Discrete numerical model for granular assemblies, Geotechnique 29 (1979) 47–65.

[4] T.B. Anderson, R. Jackson, Fluid mechanical description of fluidized beds. Equations of motion, Ind. Eng. Chem. Fundam. 6 (1967) 527–539.

[5] Y. Tsuji, T. Kawaguchi, T. Tanaka, Discrete particle simulation of two-dimensional fluidized bed, Powder Technol. 77 (1993) 79–87.

[6] M. Sakai, S. Koshizuka, Development of a coarse grain simulation methodology for discrete element method in gas-solid flows, J. Soc. Powder Technol., Jpn. 45 (2008) 12–22.

[7] M. Sakai, Y. Yamada, Y. Shigeto, Numerical simulation of cohesive particles in a fluidized bed by the DEM coarse grain model, J. Soc. Powder Technol., Jpn. 47 (2010) 522–530.

[8] M. Yamanoi, Y. Nakata, DEM Simulation based on scaling rule, J. Soc. Powder Technol., Jpn. 55 (2018) 95–103.

[9] J.A. Gantt, I.T. Cameron, J.D. Litster, E.P. Gatzke, Determination of coalescence kernels for highshear granulation using DEM simulations, Powder Technol. 170 (2006) 53–63.

[10] M. Sen, D. Barrasso, R. Singh, R. Ramachandran, A multi-scale hybrid CFD-DEM-PBM description of a fluid-bed granulation process, Processes 2 (2014) 89–111.

[11] D. Barrasso, T. Eppinger, F.E. Pereira, R. Aglave, K. Debus, S.K. Bermingham, R. Ramachandran, A multi-scale, mechanistic model of a wet granulation process using a novel bi-directional PBMDEM coupling algorithm, Chem. Eng. Sci. 123 (2015) 500–513.

[12] T. Kulju, M. Paavola, H. Spittka, R.L. Keiski, E. Juuso, K. Leiviskä, E. Muurinen, Modeling continuous high-shear wet granulation with DEM-PB, Chem. Eng. Sci. 142 (2016) 190–200.

[13] K. Hayashi, S. Watano, Investigation of fluidized bed granulation mechanism by using an online particle size monitoring device, J. Soc. Powder Technol. Jpn. 55 (2018) 316–323.

[14] H. Hertz, Über die berührung fester elastischer Körper (On the contact of rigid elastic solids). In: Miscellaneous Papers. Jones and Schott, Editors, J. reine und angewandte Mathematik 92, Macmillan, London (1896), p. 156 English translation: H. Hertz (1882).

[15] R.D. Mindlin, Compliance of elastic bodies in contact, J. Appl. Mech. 16 (1949) 259–268.

[16] R.D. Mindlin, H. Deresiewicz, Elastic spheres in contact under varying oblique forces, ASME, September (1953) 327–344.

[17] Y. Tsuji, T. Tanaka, T. Ishida, Lagrangian numerical simulation of plug flow of cohesionless particles in a horizontal pipe, Powder Technol. 71 (1992) 239–250.

[18] E. Sakaguchi, E. Ozaki, T. Igarashi, Plugging of the flow of granular materials during the discharge from a silo, Int. J. Mod. Phys. B 7 (1993) 1949–1963.

[19] C.-Y. Wen, Y.H. Yu, Mechanics of fluidization, Chem. Eng. Prog. Symp. 62 (1966) 100–111.

[20] S. Ergun, Fluid flow through packed columns, Chem. Eng. Prog. 48 (1952) 89–94.

[21] D. Gidaspow, R. Bezburuah, J. Ding, Hydrodynamics of circulating fluidized beds, kinetic theory approach., In Fluidization VII, Proc. 7th Eng. Fund. Conf. on Fluidization, (1992) 75–82.

[22] M.J. Hounslow, R.L. Ryall, V.R. Marshall, A discretized population balance for nucleation, growth, and aggregation, AIChE Journal 34 (1988) 1821–1832.

[23] A. Dubey, A. Sarkar, M.G. Ierapetritou, C.R. Wassgren, M.J. Muzzio, Computational approaches for studying the granular dynamics of continuous blending processes, 1 DEM based methods., Macromol. Mater. Eng. 296 (2011) 290–307.

[24] M. Sen, D. Barrasso, R. Singh, R. Ramachandran, A multi-scale hybrid CFD-DEM-PBM description of fluid-bed granulation process, Processes 2 (2014) 89–111.

[25] H. Tan, M. Goldschmidt, R. Boerefijn, M. Hounslow, A. Salman, J. Kuipers, Building population balances for fluidized bed granulation: lessons from kinetic theory of granular flow, Powder Technol. 142 (2004) 103–109.

[26] G.D. Ingram, PhD thesis, Univ. of Queensland, St. Lucia, Queensland, AU, 2006.

[27] A. Darelius, A. Rasmuson, I.N. Bjorn, S. Folestad, High shear wet granulation modelling—a mechanistic approach using population balances, Powder Technol. 160 (2005) 209–218.

[28] M.J. Hounslow, The population balance as a tool for understanding particle rate processes, Kona (1998) 179–193.

[29] M. Goldshmidt, Hydrodynamic modelling of fluidized bed granulation, PhD thesis, Twente Univ., NL, 2001.

[30] J.A. Gantt, I.T. Cameron, J.D. Litster, E.P. Gatzke, Determination of coalescence kernels for high- shear granulation using DEM simulations, Powder Technol. 170 (2006) 53–63.

[31] P.C. Kapur, D.W. Fuerstenau, Coalescence model for granulation, Ind. Eng. Chem. Proc. Design Dev. 8 (1969) 56–62.

[32] N. Ouchiyama, T. Tanaka, Mathematical model in the kinetics of granulation, Ind. Eng. Chem. Process Des. Develop. 13 (1974) 383–389.

[33] R.H. Wilhelm, M. Kwauk, The Fluidization of solid particles, Chem. Eng. Prog. 44 (1948) 201– 218.

[34] 守富 寛, 北野 邦尋, 最近の流動層工学とその応用 I 流動層工学と技術の現状−アンケー ト結果の報告−, 化学工学 49 (1985) 322–324.

[35] K. Kuwagi, A. Kogane, H. Hirano, A.B. Alias, T. Takami, Non-dimensionalization and threedimensional flow regime map for fluidization analyses, Chem. Eng. Sci. 119 (2014) 199–211.

第五章

[1] D. Barrasso, A. El Hagrasy, J.D. Litster, R. Ramachandran, Multi-dimensional population balance model development and validation for a twin screw granulation process, Powder Technol. 270 (2015) 612–621.

[2] N. Metta, M. Verstraeten, M. Ghijs, A. Kumar, E. Schafer, R. Singh, T.D. Beer, I. Nopens, P. Cappuyns, I.V. Assche, M. Ierapetritou, R. Ramachandran, Model development and prediction of particle size distribution, density and friability of a comilling operation in a continuous pharmaceutical manufacturing process., Int. J. Pharmaceutics, 549 (2018) 271–282.

[3] H. Leuenberger, Granulation, New techniques, Pharm. Acta Helv. 57 (1982) 72–82.

[4] P. Holm, T. Schaefer, H.G. Kristensen, Granulation in high-speed mixers Part VI. Effects of process conditions on power consumption and granule growth, Powder Technol. 43 (1985) 225–233.

[5] S. Schildcrout, Rheology of pharmaceutical granulations, J. Pharm. Pharmcol. 36 (1984) 502–505.

[6] S. Watano, T. Morikawa, K. Miyanami, Kinetics of granule growth in fluidized bed granulation with moisture control, Chem. Pharm. Bull. 43 (1995) 1764–1771.

[7] M. Fujiwara, W. Momose, K. Kuroda, T. Inatani, K. Yamashita, K. Sako, Proportional control of moisture content of granules by adjusting inlet air temperature in fluidized bed granulation using near-infrared spectroscopy, Adv. Powder Technol. 25 (2014) 704–709.

[8] S. Watano, Direct control of wet granulation processes by image processing system, Powder Technol. 117 (2001) 163–172.

[9] A. Burggraeve, T. Van Den Kerhof, M. Hellings, J.P. Remon, C. Vervaet, T. De Beer, Evaluation of in-line spatial filter velocimetry as PAT monitoring tool for particle growth during fluid bed granulation, Eur. J. Pharm. Biopharm. 76 (2010) 138–146.

[10] N. Ouchiyama, T. Tanaka, Estimation of the average number of contacts between randomly mixed solid particles, Ind. Eng. Chem. Fundam. 19 (1980) 338–340.

[11] N. Ouchiyama, T. Tanaka, Mathematical model in the kinetics of granulation, Ind. Eng. Chem. Process Des. Develop. 13 (1974) 383–389.

[12] N. Ouchiyama, T. Tanaka, The probability of coalescence in granulation kinetics, Ind. Eng. Chem. Process Des. Develop. 14 (1975) 286–289.

[13] N. Ouchiyama, T. Tanaka, Kinetic analysis of continuous pan granulation. Possible explanations for conflicting experiments and several indications for practice, Ind. Eng. Chem. Process Des. Develop. 20 (1981) 340–348.

[14] S. Watano, T. Morikawa, K. Miyanami, Mathematical model in the kinetics of agitation fluidized bed granulation. Effects of moisture content, damping speed and operation time on granule growth rate, Chem. Pharm. Bull. 44 (1996) 409–415.

[15] A.A. Adetayo, J.D. Litster, S.E. Pratsinis, B. J. Ennis, Population balance modelling of drum granulation of materials with wide size distribution, Powder Technol. 82 (1995) 37–49.

[16] C. Biggs, R. Boerefijin, M. Buscan, A. Salman, M. Holunslow, Fluidised bed granulation: modelling the growth and breakage kinetics using population balances, Proc. World Congress on Particle Technol., Sydney (2002) 629–636.

[17] H. Liu, T. O’Connor, S. Lee, S. Yoon, A process optimization strategy of a pulsed-spray fluidized bed granulation process based on predictive three-stage population balance model, Powder Technol. 327 (2018) 188–200.

[18] H. Liu, S.C. Galbraith, S.-Y. Park, B. Cha, Z. Huang, R.F. Meyer, M.H. Flamm, T. O’Connor, S. Lee, S. Yoon, Development of a three-compartmental population balance model for a continuous twin screw wet granulation process, Pharm. Dev. Technol. 7450 (2018) 1–39.

[19] D. Barrasso, A. El Hagrasy, J.D. Litster, R. Ramachandran, Multi-dimensional population balance model development and validation for a twin screw granulation process, Powder Technol. 270 (2015) 612–621.

[20] J.A. Gantt, I.T. Cameron, J.D. Litster, E.P. Gatzke, Determination of coalescence kernels for highshear granulation using DEM simulations, Powder Technol. 170 (2006) 53–63.

[21] M. Sen, D. Barrasso, R. Singh, R. Ramachandran, A multi-scale hybrid CFD-DEM-PBM description of a fluid-bed granulation process, Processes 2 (2014) 89–111.

[22] D. Barrasso, T. Eppinger, F.E. Pereira, R. Aglave, K. Debus, S.K. Bermingham, R. Ramachandran, A multi-scale, mechanistic model of a wet granulation process using a novel bi-directional PBMDEM coupling algorithm, Chem. Eng. Sci. 123 (2015) 500–513.

[23] K. Hayashi, S. Watano, Novel population balance model for granule aggregation and breakage in fluidized bed granulation and drying, Powder Technol. 342 (2019) 664–675.

[24] K. Hayashi, S. Watano, Investigation of fluidized bed granulation mechanism by using an online particle size monitoring device, J. Soc. Powder Technol. Jpn. 55 (2018) 316–323.

[25] S. Cooper, C.J. Coronella, CFD simulations of particle mixing in a binary fluidized bed, Powder Technol. 151 (2005) 27–36.

[26] H. Tan, M. Goldschmidt, R. Boerefijn, M. Hounslow, A. Salman, J. Kuipers, Building population balances for fluidized bed granulation: lessons from kinetic theory of granular flow, Powder Technol. 142 (2004) 103–109.

[27] A.D. Randolph, M.A. Larson, Theory of particulate processes, 1st ed., Academic Press, Cambridge, 1971.

[28] M.J. Hounslow, J.M.K. Pearson, T. Instone, Tracer studies of high ‐ shear granulation: II. Population balance modeling, AIChE J. 47 (2001) 1984–1999.

[29] P.C. Kapur, D.W. Fuerstenau, Coalescence model for granulation, Ind. Eng. Chem. Proc. Design Dev. 8 (1969) 56–62.

[30] D. Eyre, R.C. Everson, Q.P. Campbell. New parameterization for a discrete batch grinding equation, Powder Technol. 98 (1998) 265–272.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る