リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「放射光時間分解X線回折法を用いたジルコニアの衝撃圧縮下での相転移挙動の解明」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

放射光時間分解X線回折法を用いたジルコニアの衝撃圧縮下での相転移挙動の解明

髙木, 壮大 筑波大学 DOI:10.15068/00160391

2020.07.21

概要

衝突現象は太陽系や惑星の形成,進化に必然的な過程である.太陽系の歴史を理解するには,衝突の起きた年代や衝突規模,衝突によって引き起こされる現象を正確に把握しなければならない.そのためには衝突の履歴をもつ鉱物が貴重な情報源になる.隕石,微惑星,惑星同士の衝突によって物体内部には衝撃波が発生し伝播する.この衝撃に対する鉱物の応答を調べる実験は従来,衝撃後の回収試料の観察や衝撃下でのバルク応答情報(衝撃波速度など)計測から行なわれてきた.しかしながら,鉱物が示す重要な特性である結晶構造が衝撃下でどのような応答を示すのかは直接観察されてこなかったため,衝撃下での変形や相転移挙動は未解明な部分が多い.その一例に,ジルコニア鉱物であるbaddeleyiteが挙げられる.Baddeleyiteは地球,火星などの惑星から月,隕石まで幅広い物質中に存在し,U-Pb年代測定に利用される重要な鉱物である.静的高圧実験から高圧下で可逆的に相転移することが知られているが,高圧相は凍結されず従来の衝撃実験ではbaddeleyiteの衝撃下での相転移挙動は未解明である.

本研究では,放射光時間分解X線回折法とレーザー衝撃圧縮法を用いて衝撃下でのジルコニアの結晶構造変化をその場観察から明らかにすることを目指した.実験は高エネルギー加速器研究機構の放射光施設PF-AR(Photon Factory Advanced Ring)で行なった.まず,隕石衝突規模の衝撃が発生可能な高強度レーザーを整備し,放射光時間分解X線回折測定システムとの同期と音速計測のためのレーザー速度干渉計の整備を行なって放射光施設における衝撃実験システムを構築した.

構築した衝撃実験システムを用い,まずテスト試料として多結晶Al箔を用いた衝撃実験を行なった.音速計測とナノ秒オーダーでの時間分解X線回折測定により衝撃圧縮から解放過程までの変化を細かく観察した.これらから,構築した高強度レーザーによってピーク衝撃圧21.7GPa,歪み速度4.6×107s-1の衝撃波の発生が確認された.多結晶Alはその圧縮下では,圧縮過程から結晶粒の微細化がおきることが判明した.また,微細化が圧縮からその後の解放過程までの過程で起きている一方で,結晶配向性は完全にランダムにはならず,もとの配向性を保持することが明らかになった.

ジルコニアの衝撃実験から,14GPaの衝撃下での構造変化を観察した.その結果,常温常圧で安定な単斜晶相から高圧相である直方晶-I相への構造相転移が衝撃圧縮過程で起き,衝撃解放過程で単斜晶相に戻ることが明らかになった.直方晶-II相への構造相転移は観察されなかった.ジルコニアにおいては,直方晶-I相へのdisplacive型相転移はひずみ速度にかかわらず静的圧縮下と同程度の圧縮で起き,直方晶-II相へのreconstructive型相転移は静的圧縮とは異なる挙動を示すことが判明した.また,イットリウムを含有し正方晶相で安定化した3Y-TZP(3 mol% yttria-doped tetragonal zirconia polycrystal)についても衝撃実験を行ない,微量元素の相転移挙動への影響を調べた.その結果,27.7GPaの衝撃圧縮下では正方晶相から他の相への構造相転移は観察されなかった一方で,衝撃解放過程で部分的に単斜晶相への相転移が観察された.このことから,微量元素が濃集した部分で示し得る異なる構造特性が明らかになった.本実験から,ジルコニア鉱物の衝撃下での変化挙動がその場観察から解明され,衝撃の痕跡から隕石衝突履歴を考えるための重要な情報が得られた.

この論文で使われている画像

参考文献

第一章

Albertazzi, B., Ozaki, N., Zhakhovsky, V., Faenov, A., Habara, H., Harmand, M., Hartley, N., Ilnitsky, D., Inogamov, N., Inubushi, Y., Ishikawa, T., Katayama, T., Koyama, T., Koenig, M., Krygier, A., Matsuoka, T., Matsuyama, S., McBride, E., Migdal, K.P., Morard, G., Ohashi, H., Okuchi, T., Pikuz, T., Purevjav, N., Sakata, O., Sano, Y., Sato, T., Sekine, T., Seto, Y., Takahashi, K., Tanaka, K., Tange, Y., Togashi, T., Tono, K., Umeda, Y., Vinci, T., Yabashi, M., Yabuuchi, T., Yamauchi, K., Yumoto, H. and Kodama, R. (2017) Dynamic fracture of tantalum under extreme tensile stress. Science Advances 3(6), e1602705.

Amelin, Y., Krot, A.N., Hutcheon, I.D. and Ulyanov, A.A. (2002) Lead Isotopic Ages of Chondrules and CalciumAluminum-Rich Inclusions. Science 297(5587), 1678-1683.

Anderholm, N.C. (1970) LASER‐GENERATED STRESS WAVES. Applied Physics Letters 16(3), 113-115.

Bindi, L., Steinhardt, P.J., Yao, N. and Lu, P.J. (2009) Natural quasicrystals. Science 324(5932), 1306-1309.

Bindi, L., Yao, N., Lin, C., Hollister, L.S., Andronicos, C.L., Distler, V.V., Eddy, M.P., Kostin, A., Kryachko, V. and MacPherson, G.J. (2015) Natural quasicrystal with decagonal symmetry. Scientific Reports 5, 9111.

Briggs, R., Torchio, R., Sollier, A., Occelli, F., Videau, L., Kretzschmar, N. and Wulff, M. (2019) Observation of the shock-induced [beta]-Sn to b.c.t.-Sn transition using time-resolved X-ray diffraction. Journal of Synchrotron Radiation 26(1), 96–101.

Broege, D., Fochs, S., Brent, G., Bromage, J., Dorrer, C., Earley, R.F., Guardalben, M.J., Marozas, J.A., Roides, R.G., Sethian, J., Wang, X., Weiner, D., Zweiback, J. and Zuegel, J.D. (2019) The Dynamic Compression Sector laser:A 100-J UV laser for dynamic compression research. Review of Scientific Instruments 90(5), 053001.

Brown, S.B., Gleason, A.E., Galtier, E., Higginbotham, A. , Arnold, B., Fry, A., Granados, E., Hashim, A., Schroer, C.G., Schropp, A., Seiboth, F., Tavella, F., Xing, Z., Mao, W., Lee, H.J. and Nagler, B. (2019) Direct imaging of ultrafast lattice dynamics. Science Advances 5(3), eaau8044. d’Almeida, T., Di Michiel, M., Kaiser, M., Buslaps, T. and Fanget, A. (2002) Time-resolved x-ray diffraction measurements on CdS shocked along thecaxis. Journal of Applied Physics 92(3), 1715-1717.

Devaux, D., Fabbro, R., Tollier, L. and Bartnicki, E. (1993) Generation of shock waves by laser‐induced plasma in confined geometry. Journal of Applied Physics 74(4), 2268-2273.

Fabbro, R., Fournier, J., Ballard, P., Devaux, D. and Virmont, J. (1990) Physical study of laser‐produced plasma in confined geometry. Journal of Applied Physics 68(2), 775-784.

Fowles, R. and Williams, R.F. (1970) Plane Stress Wave Propagation in Solids. Journal of Applied Physics 41(1), 360- 363.

Gleason, A.E., Bolme, C.A., Lee, H.J., Nagler, B., Galtier, E., Milathianaki, D., Hawreliak, J., Kraus, R.G., Eggert, J.H., Fratanduono, D.E., Collins, G.W., Sandberg, R., Yang, W. and Mao, W.L. (2015) Ultrafast visualization of crystallization and grain growth in shock-compressed SiO2. Nature Communications 6, 8191.

Grieve, R.A.F., Langenhorst, F. and Stöffler, D. (1996) Shock metamorphism of quartz in nature and experiment: II. Significance in geoscience*. Meteoritics & Planetary Science 31(1), 6-35.

Grossman, L., Beckett, J.R., Fedkin, A.V., Simon, S.B. and Ciesla, F.J. (2008) Redox Conditions in the Solar Nebula: Observational, Experimental, and Theoretical Constraints. Reviews in Mineralogy and Geochemistry 68(1), 93-140.

Haines, J., Leger, J.M., Hull, S., Petitet, J.P., Pereira, A.S., Perottoni, C.A. and da Jornada, J.A.H. (1997) Characterization of the cotunnite-type phases of zirconia and hafnia by neutron diffraction and Raman spectroscopy. Journal of the American Ceramic Society 80(7), 1910-1914.

Hartley, N.J., Ozaki, N., Matsuoka, T., Albertazzi, B., Faenov, A., Fujimoto, Y., Habara, H., Harmand, M., Inubushi, Y.,Katayama, T., Koenig, M., Krygier, A., Mabey, P., Matsumura, Y., Matsuyama, S., McBride, E.E., Miyanishi, K., Morard, G., Okuchi, T., Pikuz, T., Sakata, O., Sano, Y., Sato, T., Sekine, T., Seto, Y., Takahashi, K., Tanaka, K.A., Tange, Y., Togashi, T., Umeda, Y., Vinci, T., Yabashi, M., Yabuuchi, T., Yamauchi, K. and Kodama, R. (2017) Ultrafast observation of lattice dynamics in laser-irradiated gold foils. Applied Physics Letters 110(7).

Heaman, L.M. (1997) Global mafic magmatism at 2.45 Ga: Remnants of an ancient large igneous province? Geology 25(4), 299-302.

Hildebrand, A.R., Penfield, G.T., Kring, D.A., Pilkington, M., Camargo Z, A., Jacobsen, S.B. and Boynton, W.V. (1991) Chicxulub Crater: A possible Cretaceous/Tertiary boundary impact crater on the Yucatán Peninsula, Mexico.Geology 19(9).

Hironaka, Y., Saito, F., Yazaki, A., Fujimoto, Y., Nakamura, K.G., Kondo, K.-i. and Yoshida, M. (2000) Pump-probe xray diffraction for condensed matter in picosecond time domain. AIP Conference Proceedings 505(1), 1061-1064.

Hollister, L.S., Bindi, L., Yao, N., Poirier, G.R., Andronicos, C.L., MacPherson, G.J., Lin, C., Distler, V.V., Eddy, M.P. and Kostin, A. (2014) Impact-induced shock and the formation of natural quasicrystals in the early solar system. Nature Communications 5, 4040.

Hu, J., Ichiyanagi, K., Doki, T., Goto, A., Eda, T., Norimatsu, K., Harada, S., Horiuchi, D., Kabasawa, Y., Hayashi, S., Uozumi, S.-i., Kawai, N., Nozawa, S., Sato, T., Adachi, S.-i. and Nakamura, K.G. (2013) Complex structural dynamics of bismuth under laser-driven compression. Applied Physics Letters 103(16), 161904.

Hu, J.B., Ichiyanagi, K., Takahashi, H., Koguchi, H., Akasaka, T., Kawai, N., Nozawa, S., Sato, T., Sasaki, Y.C., Adachi, S. and Nakamura, K.G. (2012) Reversible phase transition in laser-shocked 3Y-TZP ceramics observed via nanosecond time-resolved x-ray diffraction. Journal of Applied Physics 111(5), 053526.

Ichiyanagi, K., Adachi, S.I., Nozawa, S., Hironaka, Y., Nakamura, K.G., Sato, T., Tomita, A. and Koshihara, S.Y. (2007) Shock-induced lattice deformation of CdS single crystal by nanosecond time-resolved Laue diffraction. Applied Physics Letters 91(23), 231918.

Ichiyanagi, K., Kawai, N., Nozawa, S., Sato, T., Tomita, A., Hoshino, M., Nakamura, K.G., Adachi, S. and Sasaki, Y.C. (2012) Shock-induced intermediate-range structural change of SiO2 glass in the nonlinear elastic region. Applied Physics Letters 101(18), 181901.

Ichiyanagi, K., Takagi, S., Kawai, N., Fukaya, R., Nozawa, S., Nakamura, K.G., Liss, K.D., Kimura, M. and Adachi, S. (2019) Microstructural deformation process of shock-compressed polycrystalline aluminum. Scientific Reports 9, 7604.

Johnson, Q., Keeler, R.N. and Lyle, J.W. (1967) X-ray Diffraction Experiments in Nanosecond Time Intervals. Nature 213(5081), 1114-1115.

Johnson, Q., Mitchell, A., Keeler, R.N. and Evans, L. (1970) X-Ray Diffraction During Shock-Wave Compression. Physical Review Letters 25(16), 1099-1101.

Kalantar, D.H., Belak, J.F., Collins, G.W., Colvin, J.D., Davies, H.M., Eggert, J.H., Germann, T.C., Hawreliak, J., Holian, B.L., Kadau, K., Lomdahl, P.S., Lorenzana, H.E., Meyers, M.A., Rosolankova, K., Schneider, M.S., Sheppard,

J., Stolken, J.S. and Wark, J.S. (2005) Direct observation of the alpha-epsilon transition in shock-compressed iron via nanosecond x-ray diffraction. Physical Review Letters 95(7), 075502.

Kalita, P., Specht, P., Root, S., Sinclair, N., Schuman, A., White, M., Cornelius, A.L., Smith, J. and Sinogeikin, S. (2017) Direct Observations of a Dynamically Driven Phase Transition with in situ X-Ray Diffraction in a Simple Ionic Crystal. Physical Review Letters 119(25), 255701.

Kudoh, Y., Takeda, H. and Arashi, H. (1986) In situ determination of crystal structure for high pressure phase of ZrO2 using a diamond anvil and single crystal X-ray diffraction method. Physics and Chemistry of Minerals 13(4), 233-237. Ma, C. and Rossman, G.R. (2008) Discovery of tazheranite (cubic zirconia) in the Allende meteorite. Geochimica et Cosmochimica Acta 72(12S), A577.

Mashimo, T., Nagayama, K. and Sawaoka, A. (1983) Shock compression of zirconia ZrO2 and zircon ZrSiO4 in the pressure range up to 150 GPa. Physics and Chemistry of Minerals 9(6), 237-247.

Milathianaki, D., Boutet, S., Williams, G.J., Higginbotham, A., Ratner, D., Gleason, A.E., Messerschmidt, M., Seibert, M.M., Swift, D.C. and Hering, P. (2013) Femtosecond Visualization of Lattice Dynamics in Shock-Compressed Matter. Science 342(6155), 220–223.

Montmerle, T., Augereau, J.-C., Chaussidon, M., Gounelle, M., Marty, B. and Morbidelli, A. (2006) From Suns to Life: A Chronological Approach to the History of Life on Earth. Gargaud, M., Claeys, P., López-García, P., Martin, H., Montmerle, T., Pascal, R. and Reisse, J. (eds), pp. 39-95, Springer New York, New York, NY.

Moser, D.E. (1997) Dating the shock wave and thermal imprint of the giant Vredefort impact, South Africa. Geology 25(1), 7-10.

Moser, D.E., Davis, W.J., Reddy, S.M., Flemming, R.L. and Hart, R.J. (2009) Zircon U–Pb strain chronometry reveals deep impact-triggered flow. Earth and Planetary Science Letters 277(1), 73-79.

Niwa, Y., Sato, T., Ichiyanagi, K., Takahashi, K. and Kimura, M. (2016) Time-resolved observation of structural change of copper induced by laser shock using synchrotron radiation with dispersive XAFS. High Pressure Research 36(3), 471–478.

Ohtaka, O., Yamanaka, T., Kume, S., Hara, N., Asano, H. and Izumi, F. (1990) Structural analysis of orthorhombic ZrO2 by high resolution neutron powder diffraction. Proceedings of the Japan Academy, Series B 66(10), 193-196.

Piazolo, S., La Fontaine, A., Trimby, P., Harley, S., Yang, L., Armstrong, R. and Cairney, J.M. (2016) Deformationinduced trace element redistribution in zircon revealed using atom probe tomography. Nature Communications 7, 10490.

Rubin, A.E. and Ma, C. (2017) Meteoritic minerals and their origins. Geochemistry 77(3), 325-385. Schulte, P., Alegret, L., Arenillas, I., Arz, J.A., Barton, P.J., Bown, P.R., Bralower, T.J., Christeson, G.L., Claeys, P., Cockell, C.S., Collins, G.S., Deutsch, A., Goldin, T.J., Goto, K., Grajales-Nishimura, J.M., Grieve, R.A.F.,

Gulick, S.P.S., Johnson, K.R., Kiessling, W., Koeberl, C., Kring, D.A., MacLeod, K.G., Matsui, T., Melosh, J., Montanari, A., Morgan, J.V., Neal, C.R., Nichols, D.J., Norris, R.D., Pierazzo, E., Ravizza, G., Rebolledo-Vieyra, M., Reimold, W.U., Robin, E., Salge, T., Speijer, R.P., Sweet, A.R., Urrutia-Fucugauchi, J., Vajda, V., Whalen,

M.T. and Willumsen, P.S. (2010) The Chicxulub Asteroid Impact and Mass Extinction at the CretaceousPaleogene Boundary. Science 327(5970), 1214-1218.

Skeen, C.H. and York, C.M. (1968) Laser‐Induced ``Blow‐Off'' Phenomena. Applied Physics Letters 12(11), 369-371.

Sliwa, M., McGonegle, D., Wehrenberg, C., Bolme, C.A., Heighway, P.G., Higginbotham, A., Lazicki, A., Lee, H.J., Nagler, B., Park, H.S., Rudd, R.E., Suggit, M.J., Swift, D., Tavella, F., Zepeda-Ruiz, L., Remington, B.A. and Wark, J.S. (2018) Femtosecond X-Ray Diffraction Studies of the Reversal of the Microstructural Effects of Plastic Deformation during Shock Release of Tantalum. Physical Review Letters 120(26), 265502.

Stöffler, D., Keil, K. and Edward R. D., S. (1991) Shock metamorphism of ordinary chondrites. Geochimica et Cosmochimica Acta 55(12), 3845-3867.

Tomioka, N. and Miyahara, M. (2017) High‐pressure minerals in shocked meteorites. Meteoritics & Planetary Science 52(9), 2017-2039.

Torchio, R., Occelli, F., Mathon, O., Sollier, A., Lescoute, E., Videau, L., Vinci, T., Benuzzi-Mounaix, A., Headspith, J., Helsby, W., Bland, S., Eakins, D., Chapman, D., Pascarelli, S. and Loubeyre, P. (2016) Probing local and electronic structure in Warm Dense Matter: single pulse synchrotron x-ray absorption spectroscopy on shocked Fe. Scientific Reports 6, 26402.

Tracy, S.J., Smith, R.F., Wicks, J.K., Fratanduono, D.E., Gleason, A.E., Bolme, C.A., Prakapenka, V.B., Speziale, S., Appel, K., Fernandez-Pañella, A., Lee, H.J., MacKinnon, A., Tavella, F., Eggert, J.H. and Duffy, T.S. (2019) In situ observation of a phase transition in silicon carbide under shock compression using pulsed x-ray diffraction. Physical Review B 99(21).

Tracy, S.J., Turneaure, S.J. and Duffy, T.S. (2018) In situ X-Ray Diffraction of Shock-Compressed Fused Silica. Physical Review Letters 120(13), 135702.

Turneaure, S.J., Renganathan, P., Winey, J.M. and Gupta, Y.M. (2018a) Twinning and Dislocation Evolution during Shock Compression and Release of Single Crystals: Real-Time X-Ray Diffraction. Physical Review Letters 120(26), 265503.

Turneaure, S.J., Sharma, S.M. and Gupta, Y.M. (2018b) Nanosecond Melting and Recrystallization in Shock-Compressed Silicon. Physical Review Letters 121(13), 135701.

Turneaure, S.J., Sharma, S.M., Volz, T.J., Winey, J.M. and Gupta, Y.M. (2017) Transformation of shock-compressed graphite to hexagonal diamond in nanoseconds. Science Advances 3(10), eaao3561.

Turneaure, S.J., Sinclair, N. and Gupta, Y.M. (2016) Real-Time Examination of Atomistic Mechanisms during ShockInduced Structural Transformation in Silicon. Physical Review Letters 117(4), 045502.

Wang, X., Rigg, P., Sethian, J., Sinclair, N., Weir, N., Williams, B., Zhang, J., Hawreliak, J., Toyoda, Y., Gupta, Y., Li, Y., Broege, D., Bromage, J., Earley, R., Guy, D. and Zuegel, J. (2019) The laser shock station in the dynamic compression sector. I. Review of Scientific Instruments 90(5), 053901.

Wark, J.S., Whitlock, R.R., Hauer, A.A., Swain, J.E. and Solone, P.J. (1989) Subnanosecond x-ray diffraction from lasershocked crystals. Physical Review B 40(8), 5705-5714.

White, L.F., Darling, J.R., Moser, D.E., Cayron, C., Barker, I., Dunlop, J. and Tait, K.T. (2018) Baddeleyite as a widespread and sensitive indicator of meteorite bombardment in planetary crusts. Geology 46(8), 719-722

第二章 2-3

Ichiyanagi, K., Adachi, S.I., Nozawa, S., Hironaka, Y., Nakamura, K.G., Sato, T., Tomita, A. and Koshihara, S.Y. (2007)

Shock-induced lattice deformation of CdS single crystal by nanosecond time-resolved Laue diffraction. Applied

Physics Letters 91(23), 231918

第二章 2-4

Gembicky, M., Adachi, S. and Coppens, P. (2007) A kHz heat-load shutter for white-beam experiments at synchrotron sources. Journal of Synchrotron Radiation 14, 295-296.

Hammersley, A.P. (2016) FIT2D: a multi-purpose data reduction, analysis and visualization program. Journal of Applied Crystallography 49, 646–652.

Ichiyanagi, K., Sato, T., Nozawa, S., Kim, K.H., Lee, J.H., Choi, J., Tomita, A., Ichikawa, H., Adachi, S., Ihee, H. and Koshihara, S. (2009) 100 ps time-resolved solution scattering utilizing a wide-bandwidth X-ray beam from multilayer optics. Journal of Synchrotron Radiation 16, 391–394.

Nozawa, S., Adachi, S.I., Takahashi, J.I., Tazaki, R., Guerin, L., Daimon, M., Tomita, A., Sato, T., Chollet, M., Collet, E., Cailleau, H., Yamamoto, S., Tsuchiya, K., Shioya, T., Sasaki, H., Mori, T., Ichiyanagi, K., Sawa, H., Kawata, H. and Koshihara, S. (2007) Developing 100 ps-resolved X-ray structural analysis capabilities on beamline NW14A at the Photon Factory Advanced Ring. Journal of Synchrotron Radiation 14, 313–319.

第二章 2-5

Barker, L.M. and Hollenbach, R.E. (1972) Laser interferometer for measuring high velocities of any reflecting surface. Journal of Applied Physics 43(11), 4669-4675.

Bloomquist, D.D. and Sheffield, S.A. (1983) Optically recording interferometer for velocity measurements with subnanosecond resolution. Journal of Applied Physics 54(4), 1717-1722.

Celliers, P.M., Bradley, D.K., Collins, G.W., Hicks, D.G., Boehly, T.R. and Armstrong, W.J. (2004) Line-imaging velocimeter for shock diagnostics at the OMEGA laser facility. Review of Scientific Instruments 75(11), 4916-4929.

Celliers, P.M., Collins, G.W., Da Silva, L.B., Gold, D.M. and Cauble, R. (1998) Accurate measurement of laser-driven shock trajectories with velocity interferometry. Applied Physics Letters 73(10), 1320-1322.

Zwick, H.H. and Shepherd, G.G. (1971) Defocusing a Wide-Angle Michelson Interferometer. Applied Optics 10(11),2569-2571.

第三章

Briggs, R., Suggit, M.J., Gorman, M.G., Coleman, A., Heathcote, R., Higginbotham, A., Patel, S., Wark, J.S. and McMahon, M.I. (2017) Phase transitions in shock compressed bismuth identified using single photon energy dispersive X-ray diffraction (SPEDX). Journal of Physics: Conference Series 950, 042038.

Kalantar, D.H., Collins, G.W., Colvin, J.D., Eggert, J.H., Hawreliak, J., Lorenzana, H.E., Meyers, M.A., Minich, R.W., Rosolankova, K., Schneider, M.S., Stölken, J.S. and Wark, J.S. (2006) In situ diffraction measurements of lattice response due to shock loading, including direct observation of the α–ε phase transition in iron. International

Journal of Impact Engineering 33(1-12), 343-352.

Matsuda, A., Hongo, T., Nagao, H., Igarashi, Y., Nakamura, K.G. and Kondo, K.-i. (2004) Materials dynamics under nanosecond pulsed pressure loading. Science and Technology of Advanced Materials 5(4), 511-516.

Rumsby, P.T., Michaelis, M.M. and Burgess, M. (1975) Laser induced acceleration of metal foils. Optics Communications 15(3), 422-425.

Swift, D.C. and Kraus, R.G. (2008) Properties of plastic ablators in laser-driven material dynamics experiments. Physical Revew E 77(6), 066402.

Thiyagarajan, M. and Thompson, S. (2012) Optical breakdown threshold investigation of 1064 nm laser induced air plasmas. Journal of Applied Physics 111(7), 073302.

Wark, J.S., Whitlock, R.R., Hauer, A., Swain, J.E. and Solone, P.J. (1987) Shock launching in silicon studied with use of pulsed x-ray diffraction. Physical Review B 35(17), 9391-9394.

第四章

Albertazzi, B., Ozaki, N., Zhakhovsky, V., Faenov, A., Habara, H., Harmand, M., Hartley, N., Ilnitsky, D., Inogamov, N., Inubushi, Y., Ishikawa, T., Katayama, T., Koyama, T., Koenig, M., Krygier, A., Matsuoka, T., Matsuyama, S., McBride, E., Migdal, K.P., Morard, G., Ohashi, H., Okuchi, T., Pikuz, T., Purevjav, N., Sakata, O., Sano, Y., Sato, T., Sekine, T., Seto, Y., Takahashi, K., Tanaka, K., Tange, Y., Togashi, T., Tono, K., Umeda, Y., Vinci, T., Yabashi, M., Yabuuchi, T., Yamauchi, K., Yumoto, H. and Kodama, R. (2017) Dynamic fracture of tantalum under extreme tensile stress. Science Advances 3(6), e1602705.

Bringa, E.M., Rosolankova, K., Rudd, R.E., Remington, B.A., Wark, J.S., Duchaineau, M., Kalantar, D.H., Hawreliak, J. and Belak, J. (2006) Shock deformation of face-centred-cubic metals on subnanosecond timescales. Nat Mater 5(10), 805-809.

Bunge, H.J., Weiss, W., Klein, H., Wcislak, L., Garbe, U. and Schneider, J.R. (2003) Orientation relationship of Widmannstatten plates in an iron meteorite measured with high-energy synchrotron radiation. Journal of Applied Crystallography 36(1), 137-140.

Forbes, J.W. (2013) Shock wave compression of condensed matter: a primer, Springer Science & Business Media.

Goldstein, J.I. and Short, J.M. (1967) Cooling rates of 27 iron and stony-iron meteorites. Geochimica et Cosmochimica Acta 31(6), 1001-1023.

Gray, G.T. and Huang, J.C. (1991) Influence of Repeated Shock Loading on the Substructure Evolution of 99.99 WtPercent-Aluminum. Materials Science and Engineering A 145(1), 21–35.

Hammersley, A.P. (2016) FIT2D: a multi-purpose data reduction, analysis and visualization program. Journal of Applied Crystallography 49, 646–652.

He, Y., Godet, S., Jacques, P.J. and Jonas, J.J. (2006) Crystallographic relations between face- and body-centred cubic crystals formed under near-equilibrium conditions: Observations from the Gibeon meteorite. Acta Materialia 54(5), 1323-1334.

Ichiyanagi, K., Takagi, S., Kawai, N., Fukaya, R., Nozawa, S., Nakamura, K.G., Liss, K.D., Kimura, M. and Adachi, S. (2019) Microstructural deformation process of shock-compressed polycrystalline aluminum. Scientific Reports 9, 7604.

Lu, J.Z., Luo, K.Y., Zhang, Y.K., Sun, G.F., Gu, Y.Y., Zhou, J.Z., Ren, X.D., Zhang, X.C., Zhang, L.F., Chen, K.M., Cui, C.Y., Jiang, Y.F., Feng, A.X. and Zhang, L. (2010) Grain refinement mechanism of multiple laser shock processing impacts on ANSI 304 stainless steel. Acta Materialia 58(16), 5354-5362.

Lutterotti, L., Matthies, S. and Wenk, H.-R. (1999a) MAUD (material analysis using diffraction): a user friendly Java program for Rietveld texture analysis and more, p. 1599, NRC Research Press Ottawa, Canada.

Lutterotti, L., Matthies, S. and Wenk, H.-R. (1999b) MAUD: a friendly Java program for material analysis using diffraction. International Union of Crystallography: Newsletter of the CPD 21, 14–15.

Meyers, M.A., Gregori, F., Kad, B.K., Schneider, M.S., Kalantar, D.H., Remington, B.A., Ravichandran, G., Boehly, T. and Wark, J.S. (2003) Laser-induced shock compression of monocrystalline copper: characterization and analysis. Acta Materialia 51(5), 1211–1228

Mitchell, A.C. and Nellis, W.J. (1981) Shock Compression of Aluminum, Copper, and Tantalum. Journal of Applied Physics 52(5), 3363–3374.

Montross, C.S., Wei, T., Ye, L., Clark, G. and Mai, Y.-W. (2002) Laser shock processing and its effects on microstructure and properties of metal alloys: a review. International Journal of Fatigue 24(10), 1021-1036.

Wehrenberg, C.E., McGonegle, D., Bolme, C., Higginbotham, A., Lazicki, A., Lee, H.J., Nagler, B., Park, H.S., Remington, B.A., Rudd, R.E., Sliwa, M., Suggit, M., Swift, D., Tavella, F., Zepeda-Ruiz, L. and Wark, J.S.

(2017) In situ X-ray diffraction measurement of shock-wave-driven twinning and lattice dynamics. Nature 550(7677), 496–499.

Wenk, H.R., Matthies, S., Donovan, J. and Chateigner, D. (1998) BEARTEX: a Windows-based program system for quantitative texture analysis. Journal of Applied Crystallography 31, 262–269.

Winey, J.M., LaLone, B.M., Trivedi, P.B. and Gupta, Y.M. (2009) Elastic wave amplitudes in shock-compressed thin polycrystalline aluminum samples. Journal of Applied Physics 106(7).

Zhao, F., Wang, L., Fan, D., Bie, B.X., Zhou, X.M., Suo, T., Li, Y.L., Chen, M.W., Liu, C.L., Qi, M.L., Zhu, M.H. and Luo, S.N. (2016) Macrodeformation Twins in Single-Crystal Aluminum. Physical Review Letters 116(7), 075501.

第五章

Al-Khatatbeh, Y., Lee, K.K.M. and Kiefer, B. (2010) Phase relations and hardness trends of ZrO2 phases at high pressure. Physical Review B 81(21).

Baun, W.L. (1963) Phase Transformation at High Temperatures in Hafnia and Zirconia. Science 140(3573), 1330-1331.

Briggs, R., Gorman, M.G., Coleman, A.L., McWilliams, R.S., McBride, E.E., McGonegle, D., Wark, J.S., Peacock, L., Rothman, S., Macleod, S.G., Bolme, C.A., Gleason, A.E., Collins, G.W., Eggert, J.H., Fratanduono, D.E., Smith, R.F., Galtier, E., Granados, E., Lee, H.J., Nagler, B., Nam, I., Xing, Z. and McMahon, M.I. (2017) Ultrafast XRay Diffraction Studies of the Phase Transitions and Equation of State of Scandium Shock Compressed to 82 GPa. Physical Review Letters 118(2), 025501.

Burchell, M.J., Mann, J.R. and Bunch, A.W. (2004) Survival of bacteria and spores under extreme shock pressures. Monthly Notices of the Royal Astronomical Society 352(4), 1273-1278.

Cayron, C., Artaud, B. and Briottet, L. (2006) Reconstruction of parent grains from EBSD data. Materials Characterization 57(4), 386-401.

Cayron, C., Douillard, T., Sibil, A., Fantozzi, G. and Sao-Jao, S. (2010) Reconstruction of the Cubic and Tetragonal Parent Grains from Electron Backscatter Diffraction Maps of Monoclinic Zirconia. Journal of the American Ceramic Society 93(9), 2541-2544.

Cullity, B.D. (1978) Elements of x-ray diffraction second edition, Addison-Wesley Publishing Co., Inc.

Curtis, C.E. and Sowman, H.G. (1953) Investigation of the Thermal Dissociation, Reassociation, and Synthesis of Zircon. Journal of the American Ceramic Society 36(6), 190-198.

Darling, J.R., Moser, D.E., Barker, I.R., Tait, K.T., Chamberlain, K.R., Schmitt, A.K. and Hyde, B.C. (2016) Variable microstructural response of baddeleyite to shock metamorphism in young basaltic shergottite NWA 5298 and improved U–Pb dating of Solar System events. Earth and Planetary Science Letters 444, 1-12.

Davis, G.L. (1977) The ages and uranium contents of zircons from kimberlites and associated rocks, Washington, D.C. : Carnegie Institution of Washington.

Ecault, R., Touchard, F., Boustie, M., Berthe, L. and Dominguez, N. (2016) Numerical modeling of laser-induced shock experiments for the development of the adhesion test for bonded composite materials. Composite Structures 152, 382-394.

El Goresy, A. (1965) Baddeleyite and its significance in impact glasses. Journal of Geophysical Research 70(14), 3453- 3456.

Evans, A.G. and Cannon, R.M. (1986) Overview no. 48: Toughening of brittle solids by martensitic transformations. Acta Metallurgica 34(5), 761-800.

Evans, A.G. and Heuer, A.H. (1980) Review—Transformation Toughening in Ceramics: Martensitic Transformations in Crack-Tip Stress Fields. Journal of the American Ceramic Society 63(5‐6), 241-248.

Fujimoto, M., Akahama, Y., Fukui, H., Hirao, N. and Ohishi, Y. (2018) Observation of the negative pressure derivative of the bulk modulus in monoclinic ZrO2. AIP Advances 8(1).

Fukui, H., Fujimoto, M., Akahama, Y., Sano-Furukawa, A. and Hattori, T. (2019) Structure change of monoclinic ZrO2 baddeleyite involving softenings of bulk modulus and atom vibrations. Acta Crystallographica Section B 75(4),742-749.

Garvie, R.C., Hannink, R.H. and Pascoe, R.T. (1975) Ceramic steel? Nature 258(5537), 703.

Gleason, A.E., Bolme, C.A., Lee, H.J., Nagler, B., Galtier, E., Milathianaki, D., Hawreliak, J., Kraus, R.G., Eggert, J.H., Fratanduono, D.E., Collins, G.W., Sandberg, R., Yang, W. and Mao, W.L. (2015) Ultrafast visualization of crystallization and grain growth in shock-compressed SiO2. Nature Communications 6, 8191.

Grady, D.E. and Mashimo, T. (1992) Shock and release wave properties of yttria‐doped tetragonal and cubic zirconia. Journal of Applied Physics 71(10), 4868-4874.

Gupta, T.K., Bechtold, J.H., Kuznicki, R.C., Cadoff, L.H. and Rossing, B.R. (1977) Stabilization of tetragonal phase in polycrystalline zirconia. Journal of Materials Science 12(12), 2421-2426.

Haines, J., Leger, J.M., Hull, S., Petitet, J.P., Pereira, A.S., Perottoni, C.A. and da Jornada, J.A.H. (1997) Characterization of the cotunnite-type phases of zirconia and hafnia by neutron diffraction and Raman spectroscopy. Journal of the American Ceramic Society 80(7), 1910-1914.

Hammersley, A.P. (2016) FIT2D: a multi-purpose data reduction, analysis and visualization program. Journal of Applied Crystallography 49, 646–652.

Hannink, R.H.J., Kelly, P.M. and Muddle, B.C. (2000) Transformation Toughening in Zirconia-Containing Ceramics. Journal of the American Ceramic Society 83(3), 461-487.

Heaman, L.M. (1997) Global mafic magmatism at 2.45 Ga: Remnants of an ancient large igneous province? Geology 25(4), 299-302.

Heaman, L.M. and LeCheminant, A.N. (1993) Paragenesis and U-Pb systematics of baddeleyite (ZrO2). Chemical Geology 110(1-3), 95-126.

Herd, C.D.K., Moser, D.E., Tait, K., Darling, J.R., Shaulis, B.J. and McCoy, T.J. (2018) Microstructural Geochronology: Planetary Records down to Atom Scale. Moser, D.E., Corfu, F., Darling, J.R., Reddy, S.M. and Tait, K. (eds), pp. 137-166.

Howard, C.J. and Hill, R.J. (1991) The polymorphs of zirconia: phase abundance and crystal structure by Rietveld analysis of neutron and X-ray diffraction data. Journal of Materials Science 26(1), 127-134.

Hu, J., Ichiyanagi, K., Takahashi, H., Koguchi, H., Akasaka, T., Kawai, N., Nozawa, S., Sato, T., Sasaki, Y.C., Adachi, S.- i. and Nakamura, K.G. (2013) Erratum: “Reversible phase transition in laser-shocked 3Y-TZP ceramics observed via nanosecond time-resolved x-ray diffraction” [J. Appl. Phys. 111, 053526 (2012)]. Journal of Applied Physics 113(3).

Hu, J.B., Ichiyanagi, K., Takahashi, H., Koguchi, H., Akasaka, T., Kawai, N., Nozawa, S., Sato, T., Sasaki, Y.C., Adachi, S. and Nakamura, K.G. (2012) Reversible phase transition in laser-shocked 3Y-TZP ceramics observed via nanosecond time-resolved x-ray diffraction. Journal of Applied Physics 111(5), 053526.

Kalita, P., Specht, P., Root, S., Sinclair, N., Schuman, A., White, M., Cornelius, A.L., Smith, J. and Sinogeikin, S. (2017) Direct Observations of a Dynamically Driven Phase Transition with in situ X-Ray Diffraction in a Simple Ionic Crystal. Physical Review Letters 119(25), 255701.

Kim, D.-J. (1990) Effect of Ta2O5, Nb2O5, and HfO2 Alloying on the Transformability of Y2O3-Stabilized Tetragonal ZrO2. Journal of the American Ceramic Society 73(1), 115-120.

Kresten, P. (1974) Uranium in kimberlites and associated rocks, with special reference to Lesotho occurrences. Lithos 7(3), 171-180.

Krot, A.N., Rubin, A.E. and Kononkova, N.N. (1993) First occurrence of pyrophanite (MnTi03) and baddeleyite (ZrO2) in an ordinary chondrite. Meteoritics 28(2), 232-239.

Kudoh, Y., Takeda, H. and Arashi, H. (1986) In situ determination of crystal structure for high pressure phase of ZrO2 using a diamond anvil and single crystal X-ray diffraction method. Physics and Chemistry of Minerals 13(4), 233-237.

Kusaba, K., Syono, Y., Kikuchi, M. and Fukuoka, K. (1985) Shock behavior of zircon: Phase transition to scheelite structure and decomposition. Earth and Planetary Science Letters 72(4), 433-439.

Larson, A.C.V.D., R. B. (2000) General Structure Analysis System (GSAS). Los Alamos National Laboratory Report LAUR, 86-748.

Liu, L.-G. (1979) High-pressure phase transformations in baddeleyite and zircon, with geophysical implications. Earth and Planetary Science Letters 44(3), 390-396.

Lovering, J.F. and Wark, D.A. (1971) Uranium-enriched phases in Apollo 11 and Apollo 12 basaltic rocks. Lunar and Planetary Science Conference Proceedings 2, 151.

Ma, C. and Rossman, G.R. (2008) Discovery of tazheranite (cubic zirconia) in the Allende meteorite. Geochimica et Cosmochimica Acta 72(12S), A577.

Mashimo, T., Nagayama, K. and Sawaoka, A. (1983) Shock compression of zirconia ZrO2 and zircon ZrSiO4 in the pressure range up to 150 GPa. Physics and Chemistry of Minerals 9(6), 237-247.

Mashimo, T., Nakamura, A., Nishida, M., Matsuzaki, S., Kusaba, K., Fukuoka, K. and Syono, Y. (1995) Anomalous shock compression behavior of yttria‐doped tetragonal zirconia. Journal of Applied Physics 77(10), 5069-5076.

Matsuda, A., Hongo, T., Nagao, H., Igarashi, Y., Nakamura, K.G. and Kondo, K.-i. (2004) Materials dynamics under nanosecond pulsed pressure loading. Science and Technology of Advanced Materials 5(4), 511-516.

McBride, E.E., Krygier, A., Ehnes, A., Galtier, E., Harmand, M., Konôpková, Z., Lee, H.J., Liermann, H.-P., Nagler, B., Pelka, A., Rödel, M., Schropp, A., Smith, R.F., Spindloe, C., Swift, D., Tavella, F., Toleikis, S., Tschentscher, T., Wark, J.S. and Higginbotham, A. (2018) Phase transition lowering in dynamically compressed silicon. Nature Physics 15(1), 89-94.

McMeeking, R.M. and Evans, A.G. (1982) Mechanics of transformation‐toughening in brittle materials. Journal of the American Ceramic Society 65(5), 242-246.

Mitchell, A.C. and Nellis, W.J. (1981) Shock Compression of Aluminum, Copper, and Tantalum. Journal of Applied Physics 52(5), 3363–3374.

Moser, D.E., Arcuri, G.A., Reinhard, D.A., White, L.F., Darling, J.R., Barker, I.R., Larson, D.J., Irving, A.J., McCubbin, F.M., Tait, K.T., Roszjar, J., Wittmann, A. and Davis, C. (2019) Decline of giant impacts on Mars by 4.48 billion years ago and an early opportunity for habitability. Nature Geoscience 12(7), 522-527.

Moser, D.E., Chamberlain, K.R., Tait, K.T., Schmitt, A.K., Darling, J.R., Barker, I.R. and Hyde, B.C. (2013) Solving the

Martian meteorite age conundrum using micro-baddeleyite and launch-generated zircon. Nature 499(7459), 454- 457.

Niihara, T., Kaiden, H., Misawa, K., Sekine, T. and Mikouchi, T. (2012) U–Pb isotopic systematics of shock-loaded and annealed baddeleyite: Implications for crystallization ages of Martian meteorite shergottites. Earth and Planetary Science Letters 341-344, 195-210.

Ohtaka, O., Andrault, D., Bouvier, P., Schultz, E. and Mezouar, M. (2005) Phase relations and equation of state of ZrO2 to 100 GPa. Journal of Applied Crystallography 38(5), 727-733.

Ohtaka, O., Fukui, H., Kunisada, T., Fujisawa, T., Funakoshi, K., Utsumi, W., Irifune, T., Kuroda, K. and Kikegawa, T. (2001) Phase relations and equations of state of ZrO2 under high temperature and high pressure. Physical Review B 63(17), 174108.

Ohtaka, O., Yamanaka, T., Kume, S., Hara, N., Asano, H. and Izumi, F. (1990) Structural analysis of orthorhombic ZrO2 by high resolution neutron powder diffraction. Proceedings of the Japan Academy, Series B 66(10), 193-196.

Porter, D.L. and Heuer, A.H. (1977) Mechanisms of toughening partially stabilized zirconia (PSZ). Journal of the American Ceramic Society 60(3‐4), 183-184.

Ramdohr, P. and Goresey, A.E. (1970) Opaque Minerals of the Lunar Rocks and Dust from Mare Tranquillitatis. Science 167(3918), 615-618.

Ravindran, T.R. and Yadav, K. (2015) Re-examination of high pressure orthorhombic-I phase of ZrO2 by Raman spectroscopy. The European Physical Journal B 88(1), 24.

Schmitt, A.K., Chamberlain, K.R., Swapp, S.M. and Harrison, T.M. (2010) In situ U–Pb dating of micro-baddeleyite by secondary ion mass spectrometry. Chemical Geology 269(3), 386-395.

Smith, J.V. and Hervig, R.L. (1979) Shergotty meteorite: Mineralogy, petrography and minor elements. Meteoritics 14(1), 121-142.

Tange, Y. and Takahashi, E. (2004) Stability of the high-pressure polymorph of zircon (ZrSiO4) in the deep mantle. Physics of the Earth and Planetary Interiors 143-144, 223-229.

Teufer, G. (1962) The crystal structure of tetragonal ZrO2. Acta Crystallographica 15(11), 1187.

Toby, B.H. (2001) EXPGUI, a graphical user interface for GSAS. Journal of Applied Crystallography 34(2), 210-213.

White, L.F., Darling, J.R., Moser, D.E., Cayron, C., Barker, I., Dunlop, J. and Tait, K.T. (2018) Baddeleyite as a widespread and sensitive indicator of meteorite bombardment in planetary crusts. Geology 46(8), 719-722.

Wyckoff, R.W.G. (1963) Crystal Structures, Wiley, New York.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る