リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「The Immunology of Takotsubo Syndrome」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

The Immunology of Takotsubo Syndrome

Lim, Kenji Rowel Q. Mann, Douglas L. Kenzaka, Tsuneaki Hayashi, Tomohiro 神戸大学

2023.10.06

概要

Takotsubo syndrome (TTS) is a disorder characterized by transient cardiac dysfunction with ventricular regional wall motion abnormalities, primarily thought to be caused by the effects of a sudden catecholamine surge on the heart. Although the majority of patients exhibit prompt recovery of their cardiac dysfunction, TTS remains associated with increased mortality rates acutely and at long-term, and there is currently no cure for TTS. Inflammation has been shown to play a key role in determining outcomes in TTS patients, as well as in the early pathogenesis of the disorder. There are also cases of TTS patients that have been successfully treated with anti-inflammatory therapies, supporting the importance of the inflammatory response in TTS. In this article, we provide a comprehensive review of the available clinical and pre-clinical literature on the immune response in TTS, in an effort to not only better understand the pathophysiology of TTS but also to generate insights on the treatment of patients with this disorder.

この論文で使われている画像

参考文献

16. Agarwal V. Takotsubo cardiomyopathy with pheochromocytoma: when an

imitator meets a masquerader. JACC Case Rep (2019) 1:91–3. doi: 10.1016/

j.jaccas.2019.07.004

1. Ghadri JR, Wittstein IS, Prasad A, Sharkey S, Dote K, Akashi YJ, et al.

International expert consensus document on takotsubo syndrome (Part I): clinical

characteristics, diagnostic criteria, and pathophysiology. Eur Heart J (2018) 39:2032–

46. doi: 10.1093/eurheartj/ehy076

17. Paur H, Wright PT, Sikkel MB, Tranter MH, Mansfield C, O'gara P, et al. High

levels of circulating epinephrine trigger apical cardiodepression in a beta2-adrenergic

receptor/Gi-dependent manner: a new model of Takotsubo cardiomyopathy.

Circulation (2012) 126:697–706. doi: 10.1161/CIRCULATIONAHA.112.111591

2. Lyon AR, Citro R, Schneider B, Morel O, Ghadri JR, Templin C, et al.

Pathophysiology of takotsubo syndrome: JACC state-of-the-art review. J Am Coll

Cardiol (2021) 77:902–21. doi: 10.1016/j.jacc.2020.10.060

18. Shao Y, Redfors B, Scharin Tang M, Mollmann H, Troidl C, Szardien S,

et al. Novel rat model reveals important roles of beta-adrenoreceptors in stressinduced cardiomyopathy. Int J Cardiol (2013) 168:1943–50. doi: 10.1016/

j.ijcard.2012.12.092

3. Singh T, Khan H, Gamble DT, Scally C, Newby DE, Dawson D. Takotsubo

syndrome: pathophysiology, emerging concepts, and clinical implications. Circulation

(2022) 145:1002–19. doi: 10.1161/CIRCULATIONAHA.121.055854

4. Templin C, Ghadri JR, Diekmann J, Napp LC, Bataiosu DR, Jaguszewski M, et al.

Clinical features and outcomes of takotsubo (Stress) cardiomyopathy. N Engl J Med

(2015) 373:929–38. doi: 10.1056/NEJMoa1406761

19. Shao Y, Redfors B, Stahlman M, Tang MS, Miljanovic A, Mollmann H, et al. A

mouse model reveals an important role for catecholamine-induced lipotoxicity in the

pathogenesis of stress-induced cardiomyopathy. Eur J Heart Fail (2013) 15:9–22. doi:

10.1093/eurjhf/hfs161

5. Wittstein IS, Thiemann DR, Lima JA, Baughman KL, Schulman SP, Gerstenblith

G, et al. Neurohumoral features of myocardial stunning due to sudden emotional stress.

N Engl J Med (2005) 352:539–48. doi: 10.1056/NEJMoa043046

6. Eitel I, Lucke C, Grothoff M, Sareban M, Schuler G, Thiele H, et al. Inflammation

in takotsubo cardiomyopathy: insights from cardiovascular magnetic resonance

imaging. Eur Radiol (2010) 20:422–31. doi: 10.1007/s00330-009-1549-5

20. Redfors B, Ali A, Shao Y, Lundgren J, Gan LM, Omerovic E. Different

catecholamines induce different patterns of takotsubo-like cardiac dysfunction in an

apparently afterload dependent manner. Int J Cardiol (2014) 174:330–6. doi: 10.1016/

j.ijcard.2014.04.103

7. Iacucci I, Carbone I, Cannavale G, Conti B, Iampieri I, Rosati R, et al. Myocardial

oedema as the sole marker of acute injury in Takotsubo cardiomyopathy: a

cardiovascular magnetic resonance (CMR) study. Radiol Med (2013) 118:1309–23.

doi: 10.1007/s11547-013-0931-1

21. Y-Hassan S, Sorensson P, Ekenback C, Lundin M, Agewall S, Brolin EB, et al.

Plasma catecholamine levels in the acute and subacute stages of takotsubo syndrome:

Results from the Stockholm myocardial infarction with normal coronaries 2 study. Clin

Cardiol (2021) 44:1567–74. doi: 10.1002/clc.23723

8. Wilson HM, Cheyne L, Brown P, Kerr K, Hannah A, Srinivasan J, et al.

Characterization of the myocardial inflammatory response in acute stress-induced

(Takotsubo) cardiomyopathy. JACC Basic Transl Sci (2018) 3:766–78. doi: 10.1016/

j.jacbts.2018.08.006

22. Scally C, Abbas H, Ahearn T, Srinivasan J, Mezincescu A, Rudd A, et al. Myocardial

and systemic inflammation in acute stress-induced (Takotsubo) cardiomyopathy. Circulation

(2019) 139:1581–92. doi: 10.1161/CIRCULATIONAHA.118.037975

23. Lachmet-Thebaud L, Marchandot B, Matsushita K, Sato C, Dagrenat C,

Greciano S, et al. Impact of residual inflammation on myocardial recovery and

cardiovascular outcome in Takotsubo patients. ESC Heart Fail (2021) 8:259–69. doi:

10.1002/ehf2.12945

9. Ghadri JR, Templin C. The interTAK registry for takotsubo syndrome. Eur Heart

J (2016) 37:2806–8. doi: 10.1093/eurheartj/ehw364

10. Brinjikji W, El-Sayed AM, Salka S. In-hospital mortality among patients with

takotsubo cardiomyopathy: a study of the National Inpatient Sample 2008 to 2009. Am

Heart J (2012) 164:215–21. doi: 10.1016/j.ahj.2012.04.010

24. Matsushita K, Lachmet-Thebaud L, Marchandot B, Trimaille A, Sato C,

Dagrenat C, et al. Incomplete recovery from takotsubo syndrome is a major

determinant of cardiovascular mortality. Circ J (2021) 85:1823–31. doi: 10.1253/

circj.CJ-20-1116

11. El-Battrawy I, Santoro F, Stiermaier T, Moller C, Guastafierro F,

Novo G, et al. Incidence and clinical impact of recurrent takotsubo syndrome:

results from the GEIST registry. J Am Heart Assoc (2019) 8:e010753. doi: 10.1161/

JAHA.118.010753

25. Vallabhajosyula S, Deshmukh AJ, Kashani K, Prasad A, Sakhuja A. Tako-tsubo

cardiomyopathy in severe sepsis: nationwide trends, predictors, and outcomes. J Am

Heart Assoc (2018) 7:e009160. doi: 10.1161/JAHA.118.009160

12. Kato K, Di Vece D, Cammann VL, Micek J, Szawan KA, Bacchi B, et al.

Takotsubo recurrence: morphological types and triggers and identification of risk

factors. J Am Coll Cardiol (2019) 73:982–4. doi: 10.1016/j.jacc.2018.12.033

26. Ederhy S, Dolladille C, Thuny F, Alexandre J, Cohen A. Takotsubo syndrome in

patients with cancer treated with immune checkpoint inhibitors: a new adverse cardiac

complication. Eur J Heart Fail (2019) 21:945–7. doi: 10.1002/ejhf.1497

13. Abraham J, Mudd JO, Kapur NK, Klein K, Champion HC, Wittstein IS. Stress

cardiomyopathy after intravenous administration of catecholamines and beta-receptor

agonists. J Am Coll Cardiol (2009) 53:1320–5. doi: 10.1016/j.jacc.2009.02.020

27. Sato T, Hagiwara K, Nishikido A, Miyamoto S, Komiyama K, Matsuno H, et al.

Takotsubo (ampulla-shaped) cardiomyopathy associated with microscopic

polyangiitis. Intern Med (2005) 44:251–5. doi: 10.2169/internalmedicine.44.251

14. Bhat S, Gazi H, Mwansa V, Chhabra L. Catecholamine-induced reverse

takotsubo cardiomyopathy. Proc (Bayl Univ Med Cent) (2019) 32:567–9. doi:

10.1080/08998280.2019.1634229

28. Morel O, Sauer F, Imperiale A, Cimarelli S, Blondet C, Jesel L, et al. Importance

of inflammation and neurohumoral activation in Takotsubo cardiomyopathy. J Card

Fail (2009) 15:206–13. doi: 10.1016/j.cardfail.2008.10.031

15. Giavarini A, Chedid A, Bobrie G, Plouin PF, Hagege A, Amar L. Acute

catecholamine cardiomyopathy in patients with phaeochromocytoma or functional

paraganglioma. Heart (2013) 99:1438–44. doi: 10.1136/heartjnl-2013-304073

Frontiers in Immunology

29. Pirzer R, Elmas E, Haghi D, Lippert C, Kralev S, Lang S, et al. Platelet and

monocyte activity markers and mediators of inflammation in Takotsubo

cardiomyopathy. Heart Vessels (2012) 27:186–92. doi: 10.1007/s00380-011-0132-6

08

frontiersin.org

Lim et al.

10.3389/fimmu.2023.1254011

30. Fitzgibbons TP, Edwards YJK, Shaw P, Iskandar A, Ahmed M, Bote J, et al.

Activation of inflammatory and pro-thrombotic pathways in acute stress

cardiomyopathy. Front Cardiovasc Med (2017) 4:49. doi: 10.3389/fcvm.2017.00049

53. Tiwary SK, Hayashi T, Kovacs A, Mann DL. Recurrent myocardial injury leads

to disease tolerance in a murine model of stress-induced cardiomyopathy. JACC Basic

Transl Sci (2023), 8(7):783–97. doi: 10.1016/j.jacbts.2022.12.007

31. Ghadri JR, Kato K, Cammann VL, Gili S, Jurisic S, Di Vece D, et al. Long-term

prognosis of patients with takotsubo syndrome. J Am Coll Cardiol (2018) 72:874–82.

doi: 10.1016/j.jacc.2018.06.016

54. Hayashi T, Tiwary SK, Lim KRQ, Rocha-Resende C, Kovacs A, Weinheimer C,

et al. Refining the reproducibility of a murine model of stress-induced reversible

cardiomyopathy. Am J Physiol Heart Circ Physiol (2023) 324:H229–40. doi: 10.1152/

ajpheart.00684.2022

32. Gudenkauf B, Goetsch MR, Vakil RM, Cingolani O, Adamo L. Case report:

steroid-responsive takotsubo cardiomyopathy associated with cytokine storm and

obstructive shock. Front Cardiovasc Med (2022) 9:931070. doi: 10.3389/

fcvm.2022.931070

55. Hayashi T, Tiwary SK, Lavine KJ, Acharya S, Brent M, Adamo L, et al. The

programmed death-1 signaling axis modulates inflammation and LV structure/

function in a stress-induced cardiomyopathy model. JACC Basic Transl Sci (2022)

7:1120–39. doi: 10.1016/j.jacbts.2022.05.006

33. Santoro F, Costantino MD, Guastafierro F, Triggiani G, Ferraretti A, Tarantino

N, et al. Inflammatory patterns in Takotsubo cardiomyopathy and acute coronary

syndrome: A propensity score matched analysis. Atherosclerosis (2018) 274:157–61.

doi: 10.1016/j.atherosclerosis.2018.05.017

56. Liao X, Chang E, Tang X, Watanabe I, Zhang R, Jeong HW, et al. Cardiac

macrophages regulate isoproterenol-induced Takotsubo-like cardiomyopathy. JCI

Insight (2022) 7:e156236. doi: 10.1172/jci.insight.156236

34. Santoro F, Tarantino N, Ferraretti A, Ieva R, Musaico F, Guastafierro F, et al.

Serum interleukin 6 and 10 levels in Takotsubo cardiomyopathy: Increased admission

levels may predict adverse events at follow-up. Atherosclerosis (2016) 254:28–34. doi:

10.1016/j.atherosclerosis.2016.09.012

57. Forte E, Panahi M, Baxan N, Ng FS, Boyle JJ, Branca J, et al. Type 2 MI induced

by a single high dose of isoproterenol in C57BL/6J mice triggers a persistent adaptive

immune response against the heart. J Cell Mol Med (2021) 25:229–43. doi: 10.1111/

jcmm.15937

35. Scally C, Rudd A, Mezincescu A, Wilson H, Srivanasan J, Horgan G, et al.

Persistent long-term structural, functional, and metabolic changes after stress-induced

(Takotsubo) cardiomyopathy. Circulation (2018) 137:1039–48. doi: 10.1161/

CIRCULATIONAHA.117.031841

58. Forte E, Perkins B, Sintou A, Kalkat HS, Papanikolaou A, Jenkins C, et al. Crosspriming dendritic cells exacerbate immunopathology after ischemic tissue damage

in the heart. Circulation (2021) 143:821–36. doi: 10.1161/CIRCULATIONAHA.

120.044581

36. Neil C, Nguyen TH, Kucia A, Crouch B, Sverdlov A, Chirkov Y, et al. Slowly

resolving global myocardial inflammation/oedema in Tako-Tsubo cardiomyopathy:

evidence from T2-weighted cardiac MRI. Heart (2012) 98:1278–84. doi: 10.1136/

heartjnl-2011-301481

59. Surikow SY, Nguyen TH, Stafford I, Chapman M, Chacko S, Singh K, et al.

Nitrosative stress as a modulator of inflammatory change in a model of takotsubo

syndrome. JACC Basic Transl Sci (2018) 3:213–26. doi: 10.1016/j.jacbts.2017.10.002

37. Scally C, Ahearn T, Rudd A, Neil CJ, Srivanasan J, Jagpal B, et al. Right

ventricular involvement and recovery after acute stress-induced (Tako-tsubo)

cardiomyopathy. Am J Cardiol (2016) 117:775–80. doi: 10.1016/j.amjcard.2015.11.057

60. Kolodzinska A, Czarzasta K, Szczepankiewicz B, Glowczynska R, Fojt A, Ilczuk

T, et al. Toll-like receptor expression and apoptosis morphological patterns in female

rat hearts with takotsubo syndrome induced by isoprenaline. Life Sci (2018) 199:112–

21. doi: 10.1016/j.lfs.2018.02.042

38. Nef HM, Mollmann H, Kostin S, Troidl C, Voss S, Weber M, et al. Tako-Tsubo

cardiomyopathy: intraindividual structural analysis in the acute phase and after

functional recovery. Eur Heart J (2007) 28:2456–64. doi: 10.1093/eurheartj/ehl570

61. Wallner M, Duran JM, Mohsin S, Troupes CD, Vanhoutte D, Borghetti G, et al.

Acute catecholamine exposure causes reversible myocyte injury without cardiac

regeneration. Circ Res (2016) 119:865–79. doi: 10.1161/CIRCRESAHA.116.308687

39. Surikow SY, Raman B, Licari J, Singh K, Nguyen TH, Horowitz JD. Evidence of

nitrosative stress within hearts of patients dying of Tako-tsubo cardiomyopathy. Int J

Cardiol (2015) 189:112–4. doi: 10.1016/j.ijcard.2015.03.416

62. Sachdeva J, Dai W, Kloner RA. Functional and histological assessment of an

experimental model of Takotsubo's cardiomyopathy. J Am Heart Assoc (2014) 3:

e000921. doi: 10.1161/JAHA.114.000921

40. Elsokkari I, Cala A, Khan S, Hill A. Takotsubo cardiomyopathy: not always

innocent or predictable. A unique post mortem insight. Int J Cardiol (2013) 167:e46–

48. doi: 10.1016/j.ijcard.2013.03.090

63. Ellison GM, Torella D, Karakikes I, Purushothaman S, Curcio A, Gasparri C,

et al. Acute b-adrenergic overload produces myocyte damage through calcium leakage

from the ryanodine receptor 2 but spares cardiac stem cells. J Biol Chem (2007)

282:11397–11409.

41. Kapellos TS, Bonaguro L, Gemund I, Reusch N, Saglam A, Hinkley ER, et al.

Human monocyte subsets and phenotypes in major chronic inflammatory diseases.

Front Immunol (2019) 10:2035. doi: 10.3389/fimmu.2019.02035

64. Redfors B, Shao Y, Wikstrom J, Lyon AR, Oldfors A, Gan LM, et al. Contrast

echocardiography reveals apparently normal coronary perfusion in a rat model of

stress-induced (Takotsubo) cardiomyopathy. Eur Heart J Cardiovasc Imaging (2014)

15:152–7. doi: 10.1093/ehjci/jet079

42. Ozanska A, Szymczak D, Rybka J. Pattern of human monocyte subpopulations

in health and disease. Scand J Immunol (2020) 92:e12883. doi: 10.1111/sji.12883

65. Willis BC, Salazar-Cantu A, Silva-Platas C, Fernandez-Sada E, Villegas CA, RiosArgaiz E, et al. Impaired oxidative metabolism and calcium mishandling underlie

cardiac dysfunction in a rat model of post-acute isoproterenol-induced

cardiomyopathy. Am J Physiol Heart Circ Physiol (2015) 308:H467–477. doi:

10.1152/ajpheart.00734.2013

43. Liu S, Ngo D, Chirkov Y, Stansborough J, Chong CR, Horowitz JD. Prolonged

suppression of the anti-oxidant/anti-inflammatory effects of BNP post-Takotsubo

syndrome. ESC Heart Fail (2020) 7:2250–7. doi: 10.1002/ehf2.12729

44. Venkatraman A, Bajaj NS, Khawaja A, Meador W. Cardiogenic shock from

atypical Takotsubo cardiomyopathy attributed to acute disseminated encephalomyelitis

lesion involving the medulla. Clin Auton Res (2016) 26:149–51. doi: 10.1007/s10286016-0346-x

66. Ali A, Redfors B, Lundgren J, Alkhoury J, Oras J, Gan LM, et al. Effects of

pretreatment with cardiostimulants and beta-blockers on isoprenaline-induced

takotsubo-like cardiac dysfunction in rats. Int J Cardiol (2019) 281:99–104. doi:

10.1016/j.ijcard.2018.12.045

45. Srichawla BS. Dimethyl fumarate-induced takotsubo cardiomyopathy in a

patient with relapsing-remitting multiple sclerosis. Cureus (2022) 14:e23789. doi:

10.7759/cureus.23789

67. Grimm D, Elsner D, Schunkert H, Pfeifer M, Griese D, Bruckschlegel G, et al.

Development of heart failure following isoproterenol administration in the rat: role of

the renin-angiotensin system. Cardiovasc Res (1998) 37:91–100. doi: 10.1016/S00086363(97)00212-5

46. Lin W, Tay SH, Mak A. Takotsubo syndrome and rheumatic diseases-a critical

systematic review. Rheumatol (Oxford) (2021) 60:11–22. doi: 10.1093/rheumatology/

keaa504

68. Angelini P, Tobis JM. Is high-dose catecholamine administration in small

animals an appropriate model for takotsubo syndrome? Circ J (2015) 79:897. doi:

10.1253/circj.CJ-15-0099

47. Mirijello A, D'errico MM, Curci S, Bossa F, D'angelo C, Vendemiale G, et al.

Takotsubo syndrome and inflammatory bowel diseases: does a link exist? Dig Dis

(2020) 38:204–10. doi: 10.1159/000502088

69. Seong SY, Matzinger P. Hydrophobicity: an ancient damage-associated

molecular pattern that initiates innate immune responses. Nat Rev Immunol (2004)

4:469–78. doi: 10.1038/nri1372

48. De Giorgi A, Fabbian F, Pala M, Parisi C, Misurati E, Molino C, et al. Takotsubo

cardiomyopathy and acute infectious diseases: a mini-review of case reports. Angiology

(2015) 66:257–61. doi: 10.1177/0003319714523673

70. Lin Q, Li M, Fang D, Fang J, Su SB. The essential roles of Toll-like receptor

signaling pathways in sterile inflammatory diseases. Int Immunopharmacol (2011)

11:1422–32. doi: 10.1016/j.intimp.2011.04.026

49. Shah RM, Shah M, Shah S, Li A, Jauhar S. Takotsubo syndrome and COVID-19:

associations and implications. Curr Probl Cardiol (2021) 46:100763. doi: 10.1016/

j.cpcardiol.2020.100763

71. Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy.

Nat Rev Cancer (2012) 12:252–64. doi: 10.1038/nrc3239

50. Y-Hassan S. Myocarditis is an essential feature rather than an exclusion criterion

for takotsubo syndrome: Case report. Int J Cardiol (2015) 187:304–6. doi: 10.1016/

j.ijcard.2015.03.275

72. Cueto FJ, Del Fresno C, Sancho D. DNGR-1, a dendritic cell-specific sensor of

tissue damage that dually modulates immunity and inflammation. Front Immunol

(2019) 10:3146. doi: 10.3389/fimmu.2019.03146

51. Kvetnansky R, Sun CL, Lake CR, Thoa N, Torda T, Kopin IJ. Effect of handling

and forced immobilization on rat plasma levels of epinephrine, norepinephrine, and

dopamine-beta-hydroxylase. Endocrinology (1978) 103:1868–74. doi: 10.1210/endo103-5-1868

73. Rona G, Chappel CI, Balazs T, Gaudry R. An infarct-like myocardial lesion and

other toxic manifestations produced by isoproterenol in the rat. AMA Arch Pathol

(1959) 67:443–55.

52. Ueyama T, Kasamatsu K, Hano T, Yamamoto K, Tsuruo Y, Nishio I. Emotional

stress induces transient left ventricular hypocontraction in the rat via activation of

cardiac adrenoceptors: a possible animal model of 'tako-tsubo' cardiomyopathy. Circ J

(2002) 66:712–3. doi: 10.1253/circj.66.712

Frontiers in Immunology

74. Bruns B, Antoniou M, Baier I, Joos M, Sevinchan M, Moog M-C, et al.

Calcineurin signaling promotes takotsubo syndrome. Nat Cardiovasc Res (2023)

2:645–55. doi: 10.1038/s44161-023-00296-w

09

frontiersin.org

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る