リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「LC3/FtMt Colocalization Patterns Reveal the Progression of FtMt Accumulation in Nigral Neurons of Patients with Progressive Supranuclear Palsy.」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

LC3/FtMt Colocalization Patterns Reveal the Progression of FtMt Accumulation in Nigral Neurons of Patients with Progressive Supranuclear Palsy.

BAKAR Zulzikry Hafiz Abu BELLIER Jean-Pierre 80346022 0000-0002-8758-8075 YANAGISAWA Daijiro 50581112 KATO Tomoko 90754367 MUKAISHO Ken-ichi 50343223 0000-0002-5966-0674 TOOYAMA Ikuo 20207533 0000-0001-8054-9666 滋賀医科大学

2022.01.04

概要

Mitochondrial ferritin (FtMt) is a mitochondrial iron storage protein associated with neurodegenerative diseases. In patients with progressive supranuclear palsy (PSP), FtMt was shown to accumulate in nigral neurons. Here, we investigated FtMt and LC3 in the post-mortem midbrain of PSP patients to reveal novel aspects of the pathology. Immunohistochemistry was used to assess the distribution and abnormal changes in FtMt and LC3 immunoreactivities. Colocalization analysis using double immunofluorescence was performed, and subcellular patterns were examined using 3D imaging and modeling. In the substantia nigra pars compacta (SNc), strong FtMt-IR and LC3-IR were observed in the neurons of PSP patients. In other midbrain regions, such as the superior colliculus, the FtMt-IR and LC3-IR remained unchanged. In the SNc, nigral neurons were categorized into four patterns based on subcellular LC3/FtMt immunofluorescence intensities, degree of colocalization, and subcellular overlapping. This categorization suggested that concomitant accumulation of LC3/FtMt is related to mitophagy processes. Using the LC3-IR to stage neuronal damage, we retraced LC3/FtMt patterns and revealed the progression of FtMt accumulation in nigral neurons. Informed by these findings, we proposed a hypothesis to explain the function of FtMt during PSP progression.

参考文献

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

Murphy, K.E.; Karaconji, T.; Hardman, C.D.; Halliday, G.M. Excessive dopamine neuron loss in progressive supranuclear palsy.

Mov. Disord. 2008, 23, 607–610. [CrossRef]

Mastaglia, F.L.; Grainger, K.; Kee, F.; Sadka, M.; Lefroy, R. Progressive supranuclear palsy (the Steele–Richardson–Olszewski

syndrome) clinical and electrophysiological observations in eleven cases. Proc. Aust. Assoc. Neurol. 1973, 10, 35–44.

Alster, P.; Madetko, N.; Koziorowski, D.; Friedman, A. Progressive supranuclear palsy—Parkinsonism predominant (PSP-P)—A

clinical challenge at the boundaries of PSP and Parkinson’s disease (PD). Front. Neurol. 2020, 11, 180. [CrossRef]

DelveInsight. Progressive supranuclear palsy (PSP)—Epidemiology forecast. Available online: https://www.researchandmarkets.

com/reports/5025131/progressive-supranuclear-palsy-psp (accessed on 3 October 2021).

National Institute of Neurological Disorders and Stroke Progressive Supranuclear Palsy Fact Sheet. Available online: https://

www.ninds.nih.gov/Disorders/Patient-Caregiver-Education/Fact-Sheets/Progressive-Supranuclear-Palsy-Fact-Sheet (accessed

on 10 October 2021).

Bakar, Z.H.A.; Kato, T.; Yanagisawa, D.; Bellier, J.-P.; Mukaisho, K.-i.; Tooyama, I. Immunohistochemical study of mitochondrial

ferritin in the midbrain of patients with progressive supranuclear palsy. Acta Histochem. Cytochem. 2021, 54, 97–104. [CrossRef]

Nogami, A.; Yamazaki, M.; Saito, Y.; Hatsuta, H.; Sakiyama, Y.; Takao, M.; Kimura, K.; Murayama, S. Early stage of progressive

supranuclear palsy: A neuropathological study of 324 consecutive autopsy cases. J. Nippon Med. Sch. 2015, 82, 266–273. [CrossRef]

Albers, D.S.; Beal, M.F. Mitochondrial dysfunction in progressive supranuclear palsy. Neurochem. Int. 2002, 40, 559–564. [CrossRef]

Albers, D.S.; Swerdlow, R.H.; Manfredi, G.; Gajewski, C.; Yang, L.; Parker, W.D., Jr.; Beal, M.F. Further evidence for mitochondrial

dysfunction in progressive supranuclear palsy. Exp. Neurol. 2001, 168, 196–198. [CrossRef]

Gao, G.; Chang, Y.Z. Mitochondrial ferritin in the regulation of brain iron homeostasis and neurodegenerative diseases. Front.

Pharmacol. 2014, 5, 19. [CrossRef]

Levi, S.; Corsi, B.; Bosisio, M.; Invernizzi, R.; Volz, A.; Sanford, D.; Arosio, P.; Drysdale, J. A human mitochondrial ferritin encoded

by an intronless gene. J. Biol. Chem. 2001, 276, 24437–24440. [CrossRef]

Corsi, B.; Cozzi, A.; Arosio, P.; Drysdale, J.; Santambrogio, P.; Campanella, A.; Biasiotto, G.; Albertini, A.; Levi, S. Human

mitochondrial ferritin expressed in HeLa cells incorporates iron and affects cellular iron metabolism. J. Biol. Chem. 2002, 277,

22430–22437. [CrossRef]

Nie, G.; Sheftel, A.D.; Kim, S.F.; Ponka, P. Overexpression of mitochondrial ferritin causes cytosolic iron depletion and changes

cellular iron homeostasis. Blood 2005, 105, 2161–2167. [CrossRef]

Yang, H.; Yang, M.; Guan, H.; Liu, Z.; Zhao, S.; Takeuchi, S.; Yanagisawa, D.; Tooyama, I. Mitochondrial ferritin in neurodegenerative diseases. Neurosci. Res. 2013, 77, 1–7. [CrossRef]

Yang, H.; Guan, H.; Yang, M.; Liu, Z.; Takeuchi, S.; Yanagisawa, D.; Vincent, S.R.; Zhao, S.; Tooyama, I. Upregulation of

mitochondrial ferritin by proinflammatory cytokines: Implications for a role in Alzheimer’s disease. J. Alzheimers Dis. 2015, 45,

797–811. [CrossRef]

Gao, G.; Zhang, N.; Wang, Y.Q.; Wu, Q.; Yu, P.; Shi, Z.H.; Duan, X.L.; Zhao, B.L.; Wu, W.S.; Chang, Y.Z. Mitochondrial ferritin

protects hydrogen peroxide-induced neuronal cell damage. Aging Dis. 2017, 8, 458–470. [CrossRef]

Kandimalla, R.; Manczak, M.; Yin, X.; Wang, R.; Reddy, P.H. Hippocampal phosphorylated tau induced cognitive decline,

dendritic spine loss and mitochondrial abnormalities in a mouse model of Alzheimer’s disease. Hum. Mol. Genet. 2018, 27, 30–40.

[CrossRef]

Reddy, P.H.; Oliver, D.M. Amyloid beta and phosphorylated tau-induced defective autophagy and mitophagy in Alzheimer’s

disease. Cells 2019, 8, 488. [CrossRef]

Manczak, M.; Reddy, P.H. Abnormal interaction between the mitochondrial fission protein Drp1 and hyperphosphorylated tau

in Alzheimer’s disease neurons: Implications for mitochondrial dysfunction and neuronal damage. Hum. Mol. Genet. 2012, 21,

2538–2547. [CrossRef]

Wang, X.; Yang, H.; Yanagisawa, D.; Bellier, J.P.; Morino, K.; Zhao, S.; Liu, P.; Vigers, P.; Tooyama, I. Mitochondrial ferritin affects

mitochondria by stabilizing HIF-1α in retinal pigment epithelium: Implications for the pathophysiology of age-related macular

degeneration. Neurobiol. Aging 2016, 47, 168–179. [CrossRef]

Towers, C.G.; Wodetzki, D.K.; Thorburn, J.; Smith, K.R.; Caino, M.C.; Thorburn, A. Mitochondrial-derived vesicles compensate

for loss of LC3-mediated mitophagy. Dev. Cell 2021, 56, 2029–2042.e5. [CrossRef]

Swerdlow, N.S.; Wilkins, H.M. Mitophagy and the brain. Int. J. Mol. Sci. 2020, 21, 9661. [CrossRef]

Piras, A.; Collin, L.; Grüninger, F.; Graff, C.; Rönnbäck, A. Autophagic and lysosomal defects in human tauopathies: Analysis of

post-mortem brain from patients with familial Alzheimer disease, corticobasal degeneration and progressive supranuclear palsy.

Acta Neuropathol. Commun. 2016, 4, 22. [CrossRef]

Li, L.; Wang, X.; Fei, X.; Xia, L.; Qin, Z.; Liang, Z. Parkinson’s disease involves autophagy and abnormal distribution of cathepsin

L. Neurosci. Lett. 2011, 489, 62–67. [CrossRef]

Liu, B.; Sun, J.; Zhang, J.; Mao, W.; Ma, Y.; Li, S.; Cheng, X.; Lv, C. Autophagy-related protein expression in the substantia nigra

and Eldepryl intervention in rat models of Parkinson’s disease. Brain Res. 2015, 1625, 180–188. [CrossRef]

Int. J. Mol. Sci. 2022, 23, 537

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

14 of 14

Boman, A. Lysosomal Network Proteins as Biomarkers and Therapeutic Targets in Neurodegenerative Disease. Ph.D. Thesis,

Linköping University, Linköping, Sweden, 15 November 2015.

Krüger, U.; Wang, Y.; Kumar, S.; Mandelkow, E.M. Autophagic degradation of tau in primary neurons and its enhancement by

trehalose. Neurobiol. Aging 2012, 33, 2291–2305. [CrossRef]

Wang, Y.; Mandelkow, E. Degradation of Tau protein by autophagy and proteasomal pathways. Biochem. Soc. Trans. 2012, 40,

644–652. [CrossRef]

Wang, Y.; Martinez-Vicente, M.; Krüger, U.; Kaushik, S.; Wong, E.; Mandelkow, E.M.; Cuervo, A.M.; Mandelkow, E. Tau

fragmentation, aggregation and clearance: The dual role of lysosomal processing. Hum. Mol. Genet. 2009, 18, 4153–4170.

[CrossRef]

Lee, M.J.; Lee, J.H.; Rubinsztein, D.C. Tau degradation: The ubiquitin–proteasome system versus the autophagy-lysosome system.

Prog. Neurobiol. 2013, 105, 49–59. [CrossRef]

Hansen, T.E.; Johansen, T. Following autophagy step by step. BMC Biol. 2011, 9, 39. [CrossRef]

Yoo, S.M.; Jung, Y.K. A molecular approach to mitophagy and mitochondrial dynamics. Mol. Cells 2018, 41, 18–26.

Sarkar, C.; Zhao, Z.; Aungst, S.; Sabirzhanov, B.; Faden, A.I.; Lipinski, M.M. Impaired autophagy flux is associated with neuronal

cell death after traumatic brain injury. Autophagy 2014, 10, 2208–2222. [CrossRef]

Cui, D.; Sun, D.; Wang, X.; Yi, L.; Kulikowicz, E.; Reyes, M.; Zhu, J.; Yang, Z.J.; Jiang, W.; Koehler, R.C. Impaired autophagosome

clearance contributes to neuronal death in a piglet model of neonatal hypoxic-ischemic encephalopathy. Cell Death Dis. 2017,

8, e2919. [CrossRef]

Long, Z.; Chen, J.; Zhao, Y.; Zhou, W.; Yao, Q.; Wang, Y.; He, G. Dynamic changes of autophagic flux induced by Abeta in the

brain of postmortem Alzheimer’s disease patients, animal models and cell models. Aging 2020, 12, 10912–10930. [CrossRef]

Wang, L.; Yang, H.; Zhao, S.; Sato, H.; Konishi, Y.; Beach, T.G.; Abdelalim, E.M.; Bisem, N.J.; Tooyama, I. Expression and

localization of mitochondrial ferritin mRNA in Alzheimer’s disease cerebral cortex. PLoS ONE 2011, 6, e22325. [CrossRef]

Alster, P.; Madetko, N.; Koziorowski, D.; Friedman, A. Microglial activation and inflammation as a factor in the pathogenesis of

progressive supranuclear palsy (PSP). Front. Neurosci. 2020, 14, 893. [CrossRef]

Filomeni, G.; De Zio, D.; Cecconi, F. Oxidative stress and autophagy: The clash between damage and metabolic needs. Cell Death

Differ. 2015, 22, 377–388. [CrossRef]

Trist, B.G.; Hare, D.J.; Double, K.L. Oxidative stress in the aging substantia nigra and the etiology of Parkinson’s disease. Aging

Cell 2019, 18, e13031. [CrossRef]

Wang, X.; Ma, H.; Sun, J.; Zheng, T.; Zhao, P.; Li, H.; Yang, M. Mitochondrial ferritin deficiency promotes osteoblastic ferroptosis

via mitophagy in Type 2 diabetic osteoporosis. Biol. Trace Elem. Res. 2021, 200, 298–307. [CrossRef]

Kageyama, Y.; Saito, A.; Pletnikova, O.; Rudow, G.L.; Irie, Y.; An, Y.; Murakami, K.; Irie, K.; Resnick, S.M.; Fowler, D.R. Amyloid β

toxic conformer has dynamic localization in the human inferior parietal cortex in absence of amyloid plaques. Sci. Rep. 2018,

8, 1–17.

Abdelalim, E.M.; Tooyama, I. Mapping of NPR-B immunoreactivity in the brainstem of Macaca fascicularis. Brain Struct. Funct.

2011, 216, 387–402. [CrossRef]

Yang, M.; Yang, H.; Guan, H.; Kato, T.; Mukaisho, K.; Sugihara, H.; Ogasawara, K.; Terada, T.; Tooyama, I. Characterization of

a novel monoclonal antibody against human mitochondrial ferritin and its immunohistochemical application in human and

monkey substantia Nigra. Acta Histochem. Cytochem. 2017, 50, 49–55. [CrossRef]

Stauffer, W.; Sheng, H.; Lim, H.N. EzColocalization: An ImageJ plugin for visualizing and measuring colocalization in cells and

organisms. Sci. Rep. 2018, 8, 1–13. [CrossRef]

Meshlab. Available online: https://www.meshlab.net/ (accessed on 20 September 2021).

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る