リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Gelatin hydrogel nonwoven fabrics of a cell culture scaffold to formulate 3-dimensional cell constructs」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Gelatin hydrogel nonwoven fabrics of a cell culture scaffold to formulate 3-dimensional cell constructs

Saotome, Toshiki Shimada, Naoki Matsuno, Kumiko Nakamura, Koichiro Tabata, Yasuhiko 京都大学 DOI:10.1016/j.reth.2021.09.008

2021.12

概要

The objective of this study is to evaluate the possibility of gelatin hydrogel nonwoven fabrics (GHNF) of a cell culture scaffold to formulate 3-dimensional (3D) cell construct. The thickness of cell construct is about 1 mm and the cells inside are live and bio-active, irrespective of their internal distribution. The GHNF were prepared by the solution blow method of gelatin, following by dehydrothermal crosslinking. The GHNF showed a mechanical strength strong enough not to allow the shape to deform even in a wet state. The wet GHNF also showed resistance against repeated compression. After human mesenchymal stromal cells (hMSC) were seeded and cultured, the inner distribution in GHNF, the apoptosis, hypoxia inducible factor (HIF)-1α, Ki67, collagen or sulfated glycosaminoglycan (sGAG) secretion of cells were evaluated. The hMSC proliferated inside the GHNF with time while a homogeneous distribution in the number of cells proliferated from the surface to the 1000 μm depth of GHNF was observed. The number of apoptosis and HIF-1α positive cells was significantly low compared with that of polypropylene nonwoven fabrics with the similar fiber diameters and intra-structure. The GHNF were degraded during cell culture, and completely replaced by collagen and sGAG secreted. It is concluded that the GHNF is a promising cell culture scaffold for 3D cell constructs.

この論文で使われている画像

参考文献

[1] Pampaloni F, Reynaud EG, Stelzer EHK. The third dimension bridges the gap

between cell culture and live tissue. Nat Rev Mol Cell Biol 2007;8:839e45.

[2] Griffith GL, Swartz AM. Capturing complex 3D tissue physiology in vitro. Nat

Rev Mol Cell Biol 2006;7:211e24.

[3] Baharvand H, Hashemi SM, Ashtiani SK, Farrokhi A. Differentiation of human

embryonic stem cells into hepatocytes in 2D and 3D culture systems in vitro.

Int J Dev Biol 2006;50:645e52.

[4] Hirschhaeuser F, Menne H, Dittfeld C, West J, Mueller-Klieser W, KunzSchughart LA. Multicellular tumor spheroids: an underestimated tool is

catching up again. J Biotechnol 2010;148:3e15.

[5] Pickl M, Ries CH. Comparison of 3D and 2D tumor models reveals enhanced

HER2 activation in 3D associated with an increased response to trastuzumab.

Oncogene 2009;28:461e8.

[6] Tung YC, Hsiao AY, Allen SG, Torisawa Y, Hoc M, Takayama S. High-throughput

3D spheroid culture and drug testing using a 384 hanging drop array. Analyst

2011;136:473e8.

[7] Imamura Y, Mukohara T, Shimono Y, Funakoshi Y, Chayahara N, Toyoda M,

et al. Comparison of 2D- and 3D-culture models as drug-testing platforms in

blest cancer. Oncol Rep 2015;33:1837e43.

[8] Memon AI, Sawa Y, Fukushima N, Matsumiya G, Miyagawa S, Taketani S, et al.

Repair of impaired myocardium by means of implantation of engineered

autologous myoblast sheets. J Thorac Cardiovasc Surg 2005;130:1333e41.

[9] Karageorgiou V, Kaplan D. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 2005;26:5474e91.

[10] Zeltinger J, Sherwood J, Graham DA, Mueller R, Griffith LG. Effect of pore size

and void fraction on cellular adhesion, proliferation, and matrix deposition.

Tissue Eng 2001;7:557e72.

428

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

T. Saotome, N. Shimada, K. Matsuno et al.

Regenerative Therapy 18 (2021) 418e429

[42] Tam H, Zhang W, Feaver RK, Parchment N, Sacks SM, Vyavahara N. A novel

crosslinking method for improved tear resistance and biocompatibility of

tissue based biomaterials. Biomaterials 2015;66:83e91.

[43] Chavoshnejad P, Razavi MJ. Effect of the interfiber bonding on the mechanical

behavior of electrospun fibrous mats. Sci Rep 2020;10:7709.

[44] Chang KM, Liao HT, Chen JP. Preparation and characterization of gelatin/hyaluronic acid cryogels for adipose tissue engineering: in vitro and in vivo

studies. Acta Biomater 2013;9:9012e26.

[45] Colom A, Galgoczy R, Almendros I, Xaubet A, Farr R. Oxygen diffusion and

consumption in extracellular matrix gels: implications for designing threedimensional cultures. J Biomed Mater Res A 2014;102A:2776e84.

[46] Deschepper M, Oudina K, David B, Myrtil V, Collet C, Bensidhoum M, et al.

Survival and function of mesenchymal stem cells (MSCs) depend on glucose to

[47]

[48]

[49]

[50]

[51]

429

overcome exposure to long-term, severe and continuous hypoxia. J Cell Mol

Med 2011;15:1505e14.

Zhu W, Chen J, Cong X, Hu S, Che X. Hypoxia and serum deprivation-induced

apoptosis in mesenchymal stem cells. Stem Cell 2006;24:416e25.

Bonnans C, Chou J, Werb Z. Remodelling the extracellular matrix in development and disease. Nat Rev Mol Cell Biol 2014;15:786e801.

Vlierberghe SV, Vanderleyden E, Dubruel P, Vos FD, Schacht E. Affinity study

of novel gelatin cell carriers for fibronectin. Macromol Biosci 2009;9:

1105e15.

Engvall E, Ruoslahti E. Binding of soluble form of fibroblast surface protein,

fibronectin, to collagen. Int J Cancer 1977;20:1e5.

Breslin S, O'Driscoll L. Three-dimensional cell culture: the missing link in drug

discovery. Drug Discov Today 2013;18:240e9.

...

参考文献をもっと見る