リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Inhibition of Rho-kinase ameliorates decreased spine density in the medial prefrontal cortex and methamphetamine-induced cognitive dysfunction in mice carrying schizophrenia-associated mutations of the Arhgap10 gene」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Inhibition of Rho-kinase ameliorates decreased spine density in the medial prefrontal cortex and methamphetamine-induced cognitive dysfunction in mice carrying schizophrenia-associated mutations of the Arhgap10 gene

田中, 里奈子 名古屋大学

2023.07.05

概要

主論文の要旨

Inhibition of Rho-kinase ameliorates decreased spine
density in the medial prefrontal cortex and
methamphetamine-induced cognitive dysfunction in
mice carrying schizophrenia-associated mutations of
the Arhgap10 gene
Rho-kinaseの阻害は、統合失調症に関連するArhgap10遺伝子変異を
有するマウス内側前頭前皮質のスパイン密度の減少と
methamphetamine誘発性認知機能障害を改善する

名古屋大学大学院医学系研究科
臨床医薬学講座

総合医学専攻

医療薬学分野

(指導:山田 清文
田中 里奈子

教授)

【緒言】
近年我々は、日本人統合失調症患者対象のゲノム解析により発症に強く関与する
ARHGAP10 遺伝子のコピー数変異(CNV)を同定した。さらにその中の患者の一人は対
立遺伝子の ARHGAP10 遺伝子エクソン 17 の一塩基変異(SNV: p.S490P)も併せて保有
していた(Sekiguchi et al. 2020)。ARHGAP10 遺伝子ミスセンス変異(p.S490P)は野生型
ARHGAP10 に比べ RhoA との結合能が低いことが確認され、患者由来の ARHGAP10 遺
伝 子 変 異 は ARHGAP10 の 機 能 低 下 を 引 き 起 こ す こ と が 示 唆 さ れ た(Sekiguchi et al.
2020)。ARHGAP10 は活性型である GTP 結合型 RhoA を不活性型の GDP 結合型に変
換することにより、低分子量 G タンパク質 RhoA を負に制御する。また、RhoA のエ
フェクター分子である Rho-kinase はアクチン動態を制御することで神経細胞のスパイ
ン形態変化に関与している(Newey et al. 2005)。
そこで、この患者の遺伝子変異(SNV/CNV)を模した Arhgap10 遺伝子改変マウス
(Arhgap10 S490P/NHEJ マウス)を作製し、病理学的解析並びに行動解析を行った。そ
の結果、ARHGAP10 の下流分子 Rho-kinase の異常な活性化及び統合失調症患者で見ら
れる内側前頭前皮質における錐体細胞のスパイン密度低下、野生型マウスには影響を
及 ぼ さ な い 低 用 量 の methamphetamine に よ り 認 知 機 能 が 低 下 す る こ と を 見 出 し た
(Sekiguchi et al. 2020, Hada et al. 2021)。しかし、これらの表現型と Rho-kinase の関係
は不明である。
そこで本研究では、Arhgap10 S490P/NHEJ マウスの内側前頭前皮質におけるスパイ
ン密度の低下及び methamphetamine 誘発性の認知機能障害に対する Rho-kinase 阻害剤
fasudil の効果を検討した。
【対象及び方法】
本研究では、8-15 週齢の雄性 Arhgap10 S490P/NHEJ マウス及び同腹子の野生型マ
ウスを用いた。fasudil(20 mg/kg)又は vehicle を腹腔内投与し、その 60 分後に線条体、
側 坐 核 及 び 内 側 前 頭 前 皮 質 を 摘 出 し た 。 western blotting 法 に よ り リ ン 酸 化 myosin
phosphatase–targeting subunit 1(MYPT1)(Thr696)及び MYPT1 の発現量を定量した。さ
ら に 、 マ ウ ス 脳 切 片 を 作 製 し 、 免 疫 染 色 法 に よ り 内 側 前 頭 前 皮 質 の neuronal nuclei
(NeuN)陽性細胞数及びリン酸化 MYPT1(Thr696)陽性細胞数をカウントした。また、
fasudil(20 mg/kg)又は vehicle を 7 日間経口投与した翌日に脳を摘出し、ゴルジ染色法
により内側前頭前皮質第 2/3 層における錐体細胞のスパイン密度を解析した。さらに、
認知機能を評価するために視覚弁別試験を行った。充分に視覚弁別学習の成立 した
Arhgap10 S490P/NHEJ マウスを用い、視覚弁別試験開始 5 分前に fasudil(3-20 mg/kg)、
30 分 前 に 低 用 量 methamphetamine(0.3 mg/kg) を 腹 腔 内 投 与 し た 。 な お 、 低 用 量
methamphetamine(0.3 mg/kg)は野生型マウスの視覚弁別試験の成績に影響を与えない
ことを確認している(Hada, Wulaer et al. 2021)。また、fasudil(3-20 mg/kg)及び低用量
methamphetamine(0.3 mg/kg)を腹腔内投与した Arhgap10 S490P/NHEJ マウスの脳切片
を作製し、免疫染色法により内側前頭前皮質の c-Fos 陽性細胞数をカウントした。

-1-

【結果】
Rho-kinase 阻害剤 fasudil の腹腔内投与は、Arhgap10 S490P/NHEJ マウスの線条体及
び側坐核において Rho-kinase の基質である MYPT1 のリン酸化(Thr696)レベルの増加
を 有 意 に 低 下 さ せ た (Fig. 1A, B, C, D) 。 ま た 、 western blotting 法 で は 、 Arhgap10
S490P/NHEJ マウスの内側前頭前皮質において MYPT1 のリン酸化(Thr696)レベルに差
が見られなかった(Fig. 1E, F)。一方、免疫組織学的解析では fasudil の腹腔内投与によ
り Arhgap10 S490P/NHEJ マウスの内側前頭前皮質の神経細胞マーカーNeuN とリン酸
化 MYPT1(Thr696)の共陽性細胞数の増加が有意に低下した(Fig. 2)。また、fasudil を
7 日間経口投与することにより、Arhgap10 S490P/NHEJ マウスの内側前頭前皮質にお
けるスパイン密度の低下を有意に改善した(Fig. 3)。さらに、fasudil の投与は低用量
methamphetamine 処置 Arhgap10 S490P/NHEJ マウスの視覚弁別能の低下を改善し(Fig.
4)、methamphetamine により増加した内側前頭前皮質における神経活動マーカーc-Fos
陽性細胞数を有意に減少させた(Fig. 5)。
【考察】
Fasudil の投与により Arhgap10 S490P/NHEJ マウスの線条体、側坐核及び内側前頭前
皮質においてリン酸化 MYPT1(Thr696)レベルが抑制されたことから、fasudil は脳内に
おいて Rho-kinase 活性を抑制することが示唆された(Fig. 1, 2)。次に、ゴルジ染色の結
果より Rho-kinase が Arhgap10 S490P/NHEJ マウスの内側前頭前皮質第 2/3 層における
錐体細胞のスパイン密度低下に寄与することが示唆された(Fig. 3)。RhoA/Rho-kinase
シグナルは、アクチン細胞骨格を調節し、神経細胞のスパインの収縮及び消失と神経
突 起 の 退 縮 を 促 進 す る こ と が 知 ら れ て い る (Sarowar et al. 2020, Martin-Camara et al.
2021)。我々は Rho-kinase 阻害剤 Y-27632 が、ARHGAP10 変異を有する統合失調症患
者由来の人工多能性幹細胞から分化したチロシンヒドロキシラーゼ陽性神経細胞の神
経突起伸長の障害を改善することを報告している(Sekiguchi et al. 2020)。さらに、本研
究の結果は他グループの RhoA 又は Rho-kinase の阻害剤が様々な神経精神疾患モデル
マ ウ ス の 異 常 な ス パ イ ン 形 態 を 改 善 す る と い う 報 告 と 一 致 す る (Bobo-Jiménez et al.
2017, Francis et al. 2019)。 続 い て 、 視 覚 弁 別 試 験 の 結 果 よ り 、 Rho-kinase が 低 用 量
methamphetamine により誘発される認知機能障害に関与することが示唆された(Fig. 4)。
fasudil が低用量 methamphetamine 処置後の内側前頭前皮質における c-Fos 陽性細胞数
の増加を抑制したことから、Rho-kinase は低用量 methamphetamine により惹起される
内側前頭前皮質の異常な神経活動の活性化に寄与することが示唆された(Fig. 5)。視覚
弁別試験では、皮質-線条体回路が重要な役割を果たしている。特に前頭前皮質の神
経活動は、刺激と応答の関連付けや逆転学習時よって活性化される(Asaad et al. 1998,
Brigman et al. 2013, Bissonette et al. 2015)。我々は、野生型マウスにおいて Y-27632 を
内側前頭前皮質へ局所投与することにより、methamphetamine(1 mg/kg)誘発性の視覚
弁別障害が改善することを報告している(Liao et al. 2022)。これらの結果より、Rhokinase を介した内側前頭前皮質における methamphetamine 誘発性の異常な神経細胞の

-2-

活性化が、Arhgap10 S490P/NHEJ マウスの methamphetamine に誘発される認知機能障
害と関連していることが示唆された。
【結語】
本研究で得られた知見より、Rho-kinase は Arhgap10 S490P/NHEJ マウスのスパイン
形態の神経病理学的変化と methamphetamine 誘発性の認知機能障害に重要な役割を果
たしていることが示唆された。 したがって、RhoA/Rho-kinase シグナルは ARHGAP10
遺伝子変異を有する統合失調症患者に対する新しい治療標的になり得る可能性が示さ
れた。

-3-

Fig. 1 The effect of fasudil on phosphorylation levels of MYPT1 at Thr696 in Arhgap10 S490P/NHEJ mice. A, C, E:
Western blotting of pMYPT1 (Thr696) and total MYPT1 in the striatum (A), NAc (C), and medial prefrontal cortex
(mPFC) (E). B, D, F: Ratios of pMYPT1 (Thr696) levels to total MYPT1 levels in the striatum (B), NAc (D), and
mPFC (F) of Arhgap10 S490P/NHEJ mice or WT mice 60 min after fasudil (20 mg/kg, i.p.) treatment. Data represent
the mean ± SEM (n = 10 mice per group) and were analyzed by Tukey’s multiple comparison test. **P < 0.01 compared
with WT mice and #P < 0.05, ##P < 0.01 compared with the vehicle group.

-4-

Fig. 2 The effect of fasudil on expression levels of pMYPT1 (Thr696) on NeuN-positive neurons in the mPFC of
Arhgap10 S490P/NHEJ mice. A. Representative images of pMYPT1 (Thr696) (magenta) and NeuN (green)
immunoreactivity in the mPFC of Arhgap10 S490P/NHEJ mice (scale bar indicates 10 μm). B. Ratio of pMYPT1
(Thr696) and NeuN double-positive neurons to NeuN-positive neurons in the mPFC of Arhgap10 S490P/NHEJ mice
or WT mice 60 min after fasudil (20 mg/kg, i.p.) treatment. Data represent the mean ± SEM (n = 15 slices in each of 5
mice per group (3 slices per mouse)) and were analyzed by Tukey’s multiple comparison test. *P < 0.05 compared with
WT mice and ##P < 0.01 compared with the vehicle group.

-5-

Fig. 3 The effect of fasudil on spine density in the mPFC of Arhgap10 S490P/NHEJ mice A. Representative images of
dendric spines (scale bar indicates 5 μm). B. Spine density of layer 2/3 pyramidal neurons in the mPFC of Arhgap10
S490P/NHEJ mice or WT mice after fasudil (20 mg/kg, p.o.) treatment for 7 days. Data represent the mean ± SEM
(n = 30–32 dendrites in each of 5 mice per group (6–7 dendrites per mouse)) and were analyzed by Tukey’s multiple
comparison test. **P < 0.01 compared with WT mice and ##P < 0.01 compared with the vehicle group.

Fig. 4 The effect of fasudil on the methamphetamine-induced impairment of visual discrimination in Arhgap10
S490P/NHEJ mice. Percentage of correct responses in the visual discrimination task. The animals were treated with
methamphetamine (0.3 mg/kg, i.p.) and fasudil (20 mg/kg, i.p.) 30 min and 5 min before the task, respectively. Data
represent the mean ± SEM (n = 7–16 mice per group) and were analyzed by Tukey’s multiple comparison test.
**P < 0.01 compared with WT mice and #P < 0.05 compared with the vehicle group.

-6-

Fig. 5 The effect of fasudil on the number of c-Fos–positive cells in the mPFC of Arhgap10
S490P/NHEJ mice A. Representative images of c-Fos immunoreactivity in the mPFC of Arhgap10 S490P/NHEJ mice
(scale bar indicates 50 μm). B. Number of c-Fos–positive cells in the mPFC of Arhgap10 S490P/NHEJ mice. The
animals were treated with methamphetamine (0.3 mg/kg, i.p.) and fasudil (20 mg/kg, i.p.) 150 min and 125 min before
perfusion, respectively. Data represent the mean ± SEM (n = 12–15 slices in each of 4–5 mice per group (3 slices per
mouse). *P < 0.05, **P < 0.01 compared with the saline-saline–treated group and ##P < 0.01 compared with the
methamphetamine-saline–treated group.

-7-

この論文で使われている画像

参考文献

[1] N. Gogtay, et al., Age of onset of schizophrenia: perspectives from structural

neuroimaging studies, Schizophr. Bull. 37 (3) (2011) 504–513.

[2] P. Stepnicki, M. Kondej, A.A. Kaczor, Current concepts and treatments of

schizophrenia, Molecules 23 (8) (2018).

[3] C.G.J. Guerrin, et al., The dual hit hypothesis of schizophrenia: evidence from

animal models, Neurosci. Biobehav. Rev. 131 (2021) 1150–1168.

[4] I. Kushima, et al., Cross-disorder analysis of genic and regulatory copy number

variations in bipolar disorder, schizophrenia, and autism spectrum disorder, Biol.

Psychiatry 92 (5) (2022) 362–374.

[5] I. Kushima, et al., Comparative analyses of copy-number variation in autism

spectrum disorder and schizophrenia reveal etiological overlap and biological

insights, Cell Rep. 24 (11) (2018) 2838–2856.

[6] A. Jutla, J. Foss-Feig, J. Veenstra-VanderWeele, Autism spectrum disorder and

schizophrenia: an updated conceptual review, Autism Res. 15 (3) (2022) 384–412.

[7] H. Li, et al., Methamphetamine enhances the development of schizophrenia in firstdegree relatives of patients with schizophrenia, Can. J. Psychiatry 59 (2) (2014)

107–113.

[8] J.A. Lieberman, J.M. Kane, J. Alvir, Provocative tests with psychostimulant drugs

in schizophrenia, Psychopharmacology 91 (4) (1987) 415–433.

[9] C. Curran, N. Byrappa, A. McBride, Stimulant psychosis: systematic review, Br. J.

Psychiatry 185 (2004) 196–204.

[10] M. Laruelle, et al., Single photon emission computerized tomography imaging of

amphetamine-induced dopamine release in drug-free schizophrenic subjects, Proc.

Natl. Acad. Sci. USA 93 (17) (1996) 9235–9240.

[11] Q. Wu, J. Huang, R. Wu, Drugs based on NMDAR hypofunction hypothesis in

schizophrenia, Front Neurosci. 15 (2021), 641047.

[12] R.S. Kahn, I.E. Sommer, The neurobiology and treatment of first-episode

schizophrenia, Mol. Psychiatry 20 (1) (2015) 84–97.

[13] A. Lin, et al., Neurocognitive predictors of functional outcome two to 13 years after

identification as ultra-high risk for psychosis, Schizophr. Res. 132 (1) (2011) 1–7.

[14] P.D. Harvey, et al., Cognitive dysfunction in schizophrenia: An expert group paper

on the current state of the art, Schizophr. Res. Cogn. 29 (2022), 100249.

[15] O.D. Howes, et al., Neuroimaging in schizophrenia: an overview of findings and

their implications for synaptic changes, Neuropsychopharmacology (2022).

[16] J.R. Glausier, D.A. Lewis, Dendritic spine pathology in schizophrenia,

Neuroscience 251 (2013) 90–107.

[17] K. Broadbelt, W. Byne, L.B. Jones, Evidence for a decrease in basilar dendrites of

pyramidal cells in schizophrenic medial prefrontal cortex, Schizophr. Res. 58 (1)

(2002) 75–81.

[18] G.T. Konopaske, et al., Prefrontal cortical dendritic spine pathology in

schizophrenia and bipolar disorder, JAMA Psychiatry 71 (12) (2014) 1323–1331.

[19] K. Runge, C. Cardoso, A. de Chevigny, Dendritic spine plasticity: function and

mechanisms, Front. Synaptic Neurosci. 12 (2020) 36.

[20] Z. Yan, B. Rein, Mechanisms of synaptic transmission dysregulation in the

prefrontal cortex: pathophysiological implications, Mol. Psychiatry 27 (1) (2022)

445–465.

[21] M. Sekiguchi, et al., ARHGAP10, which encodes Rho GTPase-activating protein 10,

is a novel gene for schizophrenia risk, Transl. Psychiatry 10 (1) (2020) 247.

[22] K. Hada, et al., Mice carrying a schizophrenia-associated mutation of the Arhgap10

gene are vulnerable to the effects of methamphetamine treatment on cognitive

function: association with morphological abnormalities in striatal neurons, Mol.

Brain 14 (1) (2021) 21.

[23] N. Mosaddeghzadeh, M.R. Ahmadian, The RHO family GTPases: mechanisms of

regulation and signaling, Cells 10 (7) (2021).

[24] L. Liu, et al., ARHGAP10 inhibits the proliferation and metastasis of CRC cells via

blocking the activity of RhoA/AKT signaling pathway, Onco Targets Ther. 12

(2019) 11507–11516.

[25] K. Riento, A.J. Ridley, Rocks: multifunctional kinases in cell behaviour, Nat. Rev.

Mol. Cell Biol. 4 (6) (2003) 446–456.

[26] T. Sarowar, A.M. Grabrucker, Rho GTPases in the amygdala-a switch for fears?

Cells 9 (9) (2020).

[27] S.E. Newey, et al., Rho GTPases, dendritic structure, and mental retardation,

J. Neurobiol. 64 (1) (2005) 58–74.

[28] S. Takase, et al., Antipsychotic-like effects of fasudil, a Rho-kinase inhibitor, in a

pharmacologic animal model of schizophrenia, Eur. J. Pharm. 931 (2022), 175207.

[29] M. Isshiki, et al., Enhanced synapse remodelling as a common phenotype in mouse

models of autism, Nat. Commun. 5 (2014) 4742.

[30] M. Sawahata, et al., Microinjection of Reelin into the mPFC prevents MK-801induced recognition memory impairment in mice, Pharm. Res. 173 (2021),

105832.

[31] Y. Kawano, et al., Phosphorylation of myosin-binding subunit (MBS) of myosin

phosphatase by Rho-kinase in vivo, J. Cell Biol. 147 (5) (1999) 1023–1038.

[32] M. Amano, et al., Identification of the kinase-substrate recognition interface

between MYPT1 and Rho-Kinase, Biomolecules 12 (2) (2022).

[33] J. Liao et al., Rho kinase inhibitors ameliorate acute methamphetamine-induced

cognitive impairment through the cortico-striatal circuit in mice [accessed

Funding information

This study was supported by AMED (JP21wm0425007,

JP21wm0425017, JP19dm0207075), Japan; Japan Society for the

Promotion of Science (JSPS) KAKENHI (20H03428, 20K07082), Japan;

SRF, Japan; Takeda Science Foundation, Japan; Toyoaki Scholarship

Foundation, Japan.

CRediT authorship contribution statement

Rinako Tanaka: Conceptualization, Methodology, Investigation,

Formal analysis, Writing – original draft, Funding acquisition. Jingzhu

Liao: Methodology, Investigation, Formal analysis. Kazuhiro Hada:

Methodology, Investigation, Formal analysis, Writing – review & edit­

ing. Daisuke Mori: Resources. Taku Nagai: Writing – review & editing,

Funding acquisition, Supervision. Tetsuo Matsuzaki: Writing – review

& editing, Supervision. Toshitaka Nabeshima: Writing – review &

editing, Supervision. Kozo Kaibuchi: Writing – review & editing,

Funding acquisition, Supervision. Norio Ozaki: Writing – review &

editing, Funding acquisition, Supervision. Hiroyuki Mizoguchi:

Writing – review & editing, Funding acquisition, Supervision. Kiyofumi

Yamada: Writing – review & editing, Project administration, Funding

acquisition, Supervision.

Declaration of Competing Interest

This study was funded in part by Sumitomo Pharma Co., Ltd.

Data Availability

Data will be made available on request.

Acknowledgments

Fasudil hydrochloride was kindly provided by Asahikasei Co., Ltd.

(Tokyo, Japan). The authors wish to acknowledge the Division for

Medical Research Engineering, Nagoya University Graduate School of

Medicine, for the use of a BZ9000 bright-field microscopic (KEYENCE)

and a cryostat (CM3050S; Leica), and the staff of the Division of

Experimental Animals, Nagoya University Graduate School of Medicine,

for their technical support. This work was financially supported by JST

SPRING, Grant Number JPMJSP2125. One of the authors (R.T.) would

like to take this opportunity to thank the Interdisciplinary Frontier NextGeneration Researcher Program of the Tokai Higher Education and

Research System.

Author Contributions

R.T. wrote the main text and prepared most of the figures; R.T.

performed immunohistochemistry and Golgi staining and analyzed the

data; JZ.L. performed behavioral experiments and analyzed the data; K.

H. performed western blotting and analyzed the data; D.M. generated

the Arhgap10 S490P/NHEJ mice; Ta.N., T. M., To.N., K.K., N.O., H.M.,

and K.Y. supervised the overall project. All authors have carefully read

the paper and approved the final manuscript.

10

R. Tanaka et al.

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

Pharmacological Research 187 (2023) 106589

[52] O. Martin-Camara, et al., Emerging targets in drug discovery against

neurodegenerative diseases: Control of synapsis disfunction by the RhoA/ROCK

pathway, Eur. J. Med. Chem. 225 (2021), 113742.

[53] T.C. Francis, et al., The selective RhoA inhibitor rhosin promotes stress resiliency

through enhancing D1-medium spiny neuron plasticity and reducing

hyperexcitability, Biol. Psychiatry 85 (12) (2019) 1001–1010.

[54] V. Bobo-Jim´

enez, et al., APC/C(Cdh1)-Rock2 pathway controls dendritic integrity

and memory, Proc. Natl. Acad. Sci. USA 114 (17) (2017) 4513–4518.

[55] S. Mulherkar, et al., RhoA-ROCK inhibition reverses synaptic remodeling and

motor and cognitive deficits caused by traumatic brain injury, Sci. Rep. 7 (1)

(2017) 10689.

[56] S.A. Swanger, et al., ROCK1 and ROCK2 inhibition alters dendritic spine

morphology in hippocampal neurons, Cell Logist. 5 (4) (2015), e1133266.

[57] D.L. Spark, et al., Beyond antipsychotics: a twenty-first century update for

preclinical development of schizophrenia therapeutics, Transl. Psychiatry 12 (1)

(2022) 147.

[58] J. Nithianantharajah, et al., Bridging the translational divide: identical cognitive

touchscreen testing in mice and humans carrying mutations in a disease-relevant

homologous gene, Sci. Rep. 5 (2015) 14613.

[59] A.M. Swanson, L.M. DePoy, S.L. Gourley, Inhibiting Rho kinase promotes goaldirected decision making and blocks habitual responding for cocaine, Nat.

Commun. 8 (1) (2017) 1861.

[60] L.M. DePoy, et al., Induction and blockade of adolescent cocaine-induced habits,

Biol. Psychiatry 81 (7) (2017) 595–605.

[61] M. Salery, et al., From signaling molecules to circuits and behaviors: cell-typespecific adaptations to psychostimulant exposure in the striatum, Biol. Psychiatry

87 (11) (2020) 944–953.

[62] C.H. Trepanier, M.F. Jackson, J.F. MacDonald, Regulation of NMDA receptors by

the tyrosine kinase Fyn, FEBS J. 279 (1) (2012) 12–19.

[63] M. Wu, et al., Rho-Rho-Kinase regulates Ras-ERK signaling through SynGAP1 for

dendritic spine morphology, Neurochem. Res. (2022).

[64] T. Nakazawa, et al., Regulation of dendritic spine morphology by an NMDA

receptor-associated Rho GTPase-activating protein, p250GAP, J. Neurochem. 105

(4) (2008) 1384–1393.

[65] J.L. Brigman, et al., GluN2B in corticostriatal circuits governs choice learning and

choice shifting, Nat. Neurosci. 16 (8) (2013) 1101–1110.

[66] I. Lee, J.Y. Shin, Medial prefrontal cortex is selectively involved in response

selection using visual context in the background, Learn Mem. 19 (6) (2012)

247–250.

[67] A. Izquierdo, et al., The neural basis of reversal learning: An updated perspective,

Neuroscience 345 (2017) 12–26.

[68] S.L. Gourley, A.J. Koleske, J.R. Taylor, Loss of dendrite stabilization by the Ablrelated gene (Arg) kinase regulates behavioral flexibility and sensitivity to cocaine,

Proc. Natl. Acad. Sci. USA 106 (39) (2009) 16859–16864.

[69] S.L. Gourley, et al., Arg kinase regulates prefrontal dendritic spine refinement and

cocaine-induced plasticity, J. Neurosci. 32 (7) (2012) 2314–2323.

[70] Y. Yao, et al., Discovery of novel N-substituted prolinamido indazoles as potent rho

kinase inhibitors and vasorelaxation agents, Molecules 22 (10) (2017).

[71] M. Tamura, et al., Development of specific Rho-kinase inhibitors and their clinical

application, Biochim. Biophys. Acta 1754 (1–2) (2005) 245–252.

November 22, 2022]Author, [Prepr. ] September 28, 2022 doi: 10.22541/

au.166439569.90753669/v1.

W.F. Asaad, G. Rainer, E.K. Miller, Neural activity in the primate prefrontal cortex

during associative learning, Neuron 21 (6) (1998) 1399–1407.

M. Zheng, et al., Choice-dependent cross-modal interaction in the medial prefrontal

cortex of rats, Mol. Brain 14 (1) (2021) 13.

H.C. Bergstrom, et al., Dorsolateral striatum engagement interferes with early

discrimination learning, Cell Rep. 23 (8) (2018) 2264–2272.

B.C. Shyu, et al., Methamphetamine and modulation functionality of the prelimbic

cortex for developing a possible treatment of Alzheimer’s disease in an animal

model, Front. Aging Neurosci. 13 (2021), 751913.

B. Gonz´

alez, et al., The effects of single-dose injections of modafinil and

methamphetamine on epigenetic and functional markers in the mouse medial

prefrontal cortex: potential role of dopamine receptors, Prog.

Neuropsychopharmacol. Biol. Psychiatry 88 (2019) 222–234.

E. Martín-García, et al., Frequency of cocaine self-administration influences drug

seeking in the rat: optogenetic evidence for a role of the prelimbic cortex,

Neuropsychopharmacology 39 (10) (2014) 2317–2330.

N.B. Gross, P.C. Duncker, J.F. Marshall, Cortical ionotropic glutamate receptor

antagonism protects against methamphetamine-induced striatal neurotoxicity,

Neuroscience 199 (2011) 272–283.

A.N. Mead, et al., AMPA-receptor involvement in c-fos expression in the medial

prefrontal cortex and amygdala dissociates neural substrates of conditioned

activity and conditioned reward, Eur. J. Neurosci. 11 (11) (1999) 4089–4098.

M.E. Grassie, et al., The myosin phosphatase targeting protein (MYPT) family: a

regulated mechanism for achieving substrate specificity of the catalytic subunit of

protein phosphatase type 1delta, Arch. Biochem. Biophys. 510 (2) (2011) 147–159.

T.M. Seccia, et al., ROCK (RhoA/Rho Kinase) in cardiovascular-renal

pathophysiology: a review of new advancements, J. Clin. Med. 9 (5) (2020).

J.H. Lee, et al., Selective ROCK2 inhibition in focal cerebral ischemia, Ann. Clin.

Transl. Neurol. 1 (1) (2014) 2–14.

M. Iizuka, et al., Distinct distribution and localization of Rho-kinase in mouse

epithelial, muscle and neural tissues, Cell Struct. Funct. 37 (2) (2012) 155–175.

K.A. Saal, et al., Altered expression of growth associated protein-43 and Rho kinase

in human patients with Parkinson’s disease, Brain Pathol. 27 (1) (2017) 13–25.

B. Niego, et al., Selective inhibition of brain endothelial Rho-kinase-2 provides

optimal protection of an in vitro blood-brain barrier from tissue-type plasminogen

activator and plasmin, PLoS One 12 (5) (2017), e0177332.

B. Lontay, et al., Protein phosphatase-1M and Rho-kinase affect exocytosis from

cortical synaptosomes and influence neurotransmission at a glutamatergic giant

synapse of the rat auditory system, J. Neurochem. 123 (1) (2012) 84–99.

N.G. Hedrick, et al., Rho GTPase complementation underlies BDNF-dependent

homo- and heterosynaptic plasticity, Nature 538 (7623) (2016) 104–108.

W. Ba, J. van der Raadt, N. Nadif Kasri, Rho GTPase signaling at the synapse:

implications for intellectual disability, Exp. Cell Res. 319 (15) (2013) 2368–2374.

S. Hartmann, A.J. Ridley, S. Lutz, The function of rho-associated kinases ROCK1

and ROCK2 in the pathogenesis of cardiovascular disease, Front. Pharm. 6 (2015)

276.

11

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る