リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Estimation of spatial distribution and fluid fraction of a potential supercritical geothermal reservoir by magnetotelluric data: a case study from Yuzawa geothermal field, NE Japan」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Estimation of spatial distribution and fluid fraction of a potential supercritical geothermal reservoir by magnetotelluric data: a case study from Yuzawa geothermal field, NE Japan

石須 慶一 小川 康雄 市来 雅啓 長谷 英彰 神田 径 本藏 義守 日野 裕太 関 香織 TSENG Kuo-Hsuan Keiichi Ishizu Yasuo Ogawa Masahiro Ichiki Hideaki Hase Wataru Kanda Yoshimori Honkura Yuta Hino Kaori Seki Kuo Hsuan Tseng 東京工業大学 DOI:https://doi.org/10.1029/2021JB022911

2022.02.07

概要

Fluids within the Earth's crust may exist under supercritical conditions (i.e., >374°C and >22.1 MPa for pure water). Supercritical geothermal reservoirs at depths of 2–10 km below the surface in northeastern (NE) Japan mainly consist of magmatic fluids that exsolved from the melt during the course of fractional crystallization. Supercritical geothermal reservoirs have received attention as next-generation geothermal resources because they can offer significantly more energy than that obtained from conventional geothermal reservoirs found at temperatures <350°C. However, the spatial distribution and fluid fraction of supercritical geothermal reservoirs, which are required for their resource assessment, are poorly understood. Here, the magnetotelluric (MT) method with electrical resistivity imaging is used in the Yuzawa geothermal field, NE Japan, to collect data on the fluid fraction and spatial distribution of a supercritical geothermal reservoir. The collected MT data reveal a potential supercritical geothermal reservoir (>400°C) with dimensions of 3 km (width) × 5 km (length) at a depth of 2.5–6.0 km below the surface. The estimated fluid fraction of the reservoir is 0.1%–4.2% with salinity values of 5–10 wt%. The melt is also imaged below the reservoir, and based on the resistivity model; we develop a mechanism for the evolution of the supercritical geothermal reservoir, wherein upwelling supercritical fluids supplied from the melt are trapped under less permeable silica sealing and accumulate there.

この論文で使われている画像

参考文献

Afanasyev, A., Blundy, J., Melnik, O., & Sparks, S. (2018). Formation of magmatic brine lenses via focussed fluid flow beneath volcanoes. Earth and Planetary Science Letters, 486, 119–128. https://doi.org/10.1016/j.epsl.2018.01.013

Aizawa, K., Koyama, T., Hase, H., Uyeshima, M., Kanda, W., Utsugi, M., et al. (2014). Three-dimensional resistivity structure and magma plumbing system of the Kirishima volcanoes as inferred from broadband magnetotelluric data. Journal of Geophysical Research: Solid Earth, 119(1), 198–215. https://doi.org/10.1002/2013JB010682

Akinfiev, N. N., & Diamond, L. W. (2009). A simple predictive model of quartz solubility in water-salt-CO2 systems at temperatures up to 1,000°C and pressures up to 1,000 MPa. Geochimica et Cosmochimica Acta, 73(6), 1597–1608. https://doi.org/10.1016/j.gca.2008.12.011

Árnason, K., Eysteinsson, H., & Hersir, G. P. (2010). Joint 1-D inversion of TEM and MT data and 3-D inversion of MT data in the Hengill area, SW Iceland. Geothermics, 39(1), 13–34. https://doi.org/10.1016/j.geothermics.2010.01.002

Araya Vargas, J., Meqbel, N. M., Ritter, O., Brasse, H., Weckmann, U., Yáñez, G., & Godoy, B. (2019). Fluid distribution in the Central Andes subduction zone imaged with magnetotellurics. Journal of Geophysical Research: Solid Earth, 124(4), 4017–4034. https://doi.org/10.1029/2018JB016933

Bakker, R. J. (2018). AqSo_NaCl: Computer program to calculate p-T-V-x properties in the H2O-NaCl fluid system applied to fluid inclusion research and pore fluid calculation. Computers & Geosciences, 115, 122–133. https://doi.org/10.1016/j.cageo.2018.03.003

Bali, E., Aradi, L. E., Zierenberg, R., Diamond, L. W., Pettke, T., Szabó, Á., et al. (2020). Geothermal energy and ore-forming potential of 600°C mid-ocean-ridge hydrothermal fluids. Geology, 48(12), 1221–1225. https://doi.org/10.1130/G47791.1

Ban, M., Hirotani, S., Wako, A., Suga, T., Iai, Y., Kagashima, S., et al. (2007). Origin of felsic magmas in a large-caldera-related stratovolcano in the central part of NE Japan—Petrogenesis of the Takamatsu volcano. Journal of Volcanology and Geothermal Research, 167(1), 100–118. https://doi.org/10.1016/j.jvolgeores.2007.05.008

Bannard, J. E. (1975). Effect of density on the electrical conductance of aqueous sodium chloride solutions. Journal of Applied Electrochemistry, 5(1), 43–53. https://doi.org/10.1007/BF00625958

Becken, M., Ritter, O., Bedrosian, P. A., & Weckmann, U. (2011). Correlation between deep fluids, tremor, and creep along the central San An- dreas fault. Nature, 480(7375), 87–90. https://doi.org/10.1038/nature10609

Bedrosian, P. A., Peacock, J. R., Bowles-Martinez, E., Schultz, A., & Hill, G. J. (2018). Crustal inheritance and a top-down control on arc mag- matism at Mount St Helens. Nature Geoscience, 11(11), 865–870. https://doi.org/10.1038/s41561-018-0217-2

Bertrand, E. A., Caldwell, T. G., Hill, G. J., Wallin, E. L., Bennie, S. L., Cozens, N., et al. (2012). Magnetotelluric imaging of upper-crustal con- vection plumes beneath the Taupo Volcanic Zone, New Zealand. Geophysical Research Letters, 39(2). https://doi.org/10.1029/2011GL050177

Blundy, J., Afanasyev, A., Tattitch, B., Sparks, S., Melnik, O., Utkin, I., & Rust, A. (2021). The economic potential of metalliferous sub-volcanic brines. Royal Society Open Science, 8(6), 202192. https://doi.org/10.1098/rsos.202192

Botcharnikov, R. E., Behrens, H., & Holtz, F. (2006). Solubility and speciation of C-O-H fluids in andesitic melt at T = 11,00°C –1,300°C and P = 200 and 500 MPa. Physics, Chemistry, and Rheology of Silicate Melts and Glasses, 229(1), 125–143. https://doi.org/10.1016/j.chemgeo.2006.01.016

Bowles-Martinez, E., & Schultz, A. (2020). Composition of magma and characteristics of the hydrothermal system of Newberry volcano, Oregon, from Magnetotellurics. Geochemistry, Geophysics, Geosystems, 21(3), e2019GC008831. https://doi.org/10.1029/2019GC008831

Caldwell, T. G., Bibby, H. M., & Brown, C. (2004). The magnetotelluric phase tensor. Geophysical Journal International, 158(2), 457–469. https://doi.org/10.1111/j.1365-246X.2004.02281.x

Chave, A. D., & Jones, A. G. (2012). Introduction to the magnetotelluric method. In The magnetotelluric method: Theory and practice (pp. 1–18). Cambridge University Press. https://doi.org/10.1017/CBO9781139020138.002

Cherkose, B. A., & Saibi, H. (2021). Investigation of the Ayrobera geothermal field using 3-D magnetotelluric data inversion, Afar depression, NE Ethiopia. Geothermics, 94, 102114. https://doi.org/10.1016/j.geothermics.2021.102114

Comeau, M. J., Becken, M., Connolly, J. A. D., Grayver, A. V., & Kuvshinov, A. V. (2020). Compaction-driven fluid localization as an explana- tion for lower crustal electrical conductors in an intracontinental setting. Geophysical Research Letters, 47(19), e2020GL088455. https://doi. org/10.1029/2020GL088455

Constable, S., Parker, R. L., & Constable, C. G. (1987). Occam’s inversion: A practical algorithm for generating smooth models from electromag- netic sounding data. Geophysics, 52(3), 289–300. https://doi.org/10.1190/1.1442303

Cordell, D., Unsworth, M. J., Lee, B., Díaz, D., Bennington, N. L., & Thurber, C. H. (2020). Integrating magnetotelluric and seismic images of silicic magma systems: A case study from the Laguna del Maule Volcanic Field, central Chile. Journal of Geophysical Research: Solid Earth, 125(11), e2020JB020459.

Di Paolo, F., Ledo, J., Ślęzak, K., Martínez van Dorth, D., Cabrera-Pérez, I., & Pérez, N. M. (2020). La Palma Island (Spain) geothermal system revealed by 3-D magnetotelluric data inversion. Scientific Reports, 10(1), 18181. https://doi.org/10.1038/s41598-020-75001-z

Doi, N., Kato, O., Ikeuchi, K., Komatsu, R., Miyazaki, S., Akaku, K., & Uchida, T. (1998). Genesis of the plutonic-hydrothermal system around quaternary granite in the Kakkonda geothermal system, Japan. Geothermics, 27(5), 663–690. https://doi.org/10.1016/S0375-6505(98)00039-X

Driesner, T., & Heinrich, C. A. (2007). The system H2O-NaCl. Part I: Correlation formulae for phase relations in temperature-pressure-com- position space from 0°C to 1,000°C, 0 to 5,000 bar, and 0 to 1 XNaCl. Geochimica et Cosmochimica Acta, 71(20), 4880–4901. https://doi.org/10.1016/j.gca.2006.01.033

Elders, W. A., Friðleifsson, G. Ó., & Albertsson, A. (2014). Drilling into magma and the implications of the Iceland Deep Drilling Project (IDDP) for high-temperature geothermal systems worldwide. Geothermics, 49, 111–118. https://doi.org/10.1016/j.geothermics.2013.05.001

Farquharson, C. G. (2008). Constructing piecewise-constant models in multidimensional minimum-structure inversions. Geophysics, 73(1), K1– K9. https://doi.org/10.1190/1.2816650

Feucht, D. W., Sheehan, A. F., & Bedrosian, P. A. (2017). Magnetotelluric imaging of lower crustal melt and lithospheric hydration in the Rocky Mountain Front transition zone, Colorado, USA. Journal of Geophysical Research: Solid Earth, 122(12), 9489–9510. https://doi.org/10.1002/2017JB014474

Fournier, R. O. (1999). Hydrothermal processes related to movement of fluid from plastic into brittle rock in the magmatic-epithermal environ- ment. Economic Geology, 94(8), 1193–1211. https://doi.org/10.2113/gsecongeo.94.8.1193

Friðleifsson, G. Ó., Elders, W. A., Zierenberg, R. A., Fowler, A. P. G., Weisenberger, T. B., Mesfin, K. G., et al. (2020). The Iceland Deep Drilling Project at Reykjanes: Drilling into the root zone of a black smoker analog. Journal of Volcanology and Geothermal Research, 391, 106435. https://doi.org/10.1016/j.jvolgeores.2018.08.013

Gaillard, F., & Marziano, G. I. (2005). Electrical conductivity of magma in the course of crystallization controlled by their residual liquid com- position. Journal of Geophysical Research: Solid Earth, 110(B6). https://doi.org/10.1029/2004JB003282

Gresse, M., Uyeshima, M., Koyama, T., Hase, H., Aizawa, K., Yamaya, Y., et al. (2021). Hydrothermal and magmatic system of a volcanic island inferred from magnetotellurics, seismicity, self-potential, and thermal image: An example of Miyakejima (Japan). Journal of Geophysical Research: Solid Earth, 126(6), e2021JB022034. https://doi.org/10.1029/2021JB022034

Guo, X., Li, B., Ni, H., & Mao, Z. (2017). Electrical conductivity of hydrous andesitic melts pertinent to subduction zones. Journal of Geophys- ical Research: Solid Earth, 122(3), 1777–1788. https://doi.org/10.1002/2016JB013524

Hasegawa, A., Zhao, D., Hori, S., Yamamoto, A., & Horiuchi, S. (1991). Deep structure of the northeastern Japan arc and its relationship to seismic and volcanic activity. Nature, 352(6337), 683–689. https://doi.org/10.1038/352683a0

Hashin, Z., & Shtrikman, S. (1962). A variational approach to the theory of the effective magnetic permeability of multiphase materials. Journal of Applied Physics, 33(10), 3125–3131. https://doi.org/10.1063/1.1728579

Hata, M., Oshiman, N., Yoshimura, R., Tanaka, Y., & Uyeshima, M. (2015). Three-dimensional electromagnetic imaging of upwelling fluids in the Kyushu subduction zone, Japan. Journal of Geophysical Research: Solid Earth, 120(1), 1–17. https://doi.org/10.1002/2014JB011336

Heinrich, C. A. (2005). The physical and chemical evolution of low-salinity magmatic fluids at the porphyry to epithermal transition: A thermo-dynamic study. Mineralium Deposita, 39(8), 864–889. https://doi.org/10.1007/s00126-004-0461-9

Heinson, G., Didana, Y., Soeffky, P., Thiel, S., & Wise, T. (2018). The crustal geophysical signature of a world-class magmatic mineral system. Scientific Reports, 8(1), 10608. https://doi.org/10.1038/s41598-018-29016-2

Heise, W., Caldwell, T. G., Bibby, H. M., & Bannister, S. C. (2008). Three-dimensional modeling of magnetotelluric data from the Roto- kawa geothermal field, Taupo Volcanic Zone, New Zealand. Geophysical Journal International, 173(2), 740–750. https://doi.org/10.1111/j.1365-246X.2008.03737.x

Hill, G. J., Caldwell, T. G., Heise, W., Chertkoff, D. G., Bibby, H. M., Burgess, M. K., et al. (2009). Distribution of melt beneath Mount St Helens and Mount Adams inferred from magnetotelluric data. Nature Geoscience, 2(11), 785–789. https://doi.org/10.1038/ngeo661

Horiguchi, K., Ueki, S., Sano, Y., Takahata, N., Hasegawa, A., & Igarashi, G. (2010). Geographical distribution of helium isotope ratios in north- eastern Japan. Island Arc, 19(1), 60–70. https://doi.org/10.1111/j.1440-1738.2009.00703.x

Hyndman, R. D., & Shearer, P. M. (1989). Water in the lower continental crust: Modeling magnetotelluric and seismic reflection results. Geo- physical Journal International, 98(2), 343–365. https://doi.org/10.1111/j.1365-246X.1989.tb03357.x

Ichihara, H., Mogi, T., Tanimoto, K., Yamaya, Y., Hashimoto, T., Uyeshima, M., & Ogawa, Y. (2016). Crustal structure and fluid distribution beneath the southern part of the Hidaka collision zone revealed by 3-D electrical resistivity modeling. Geochemistry, Geophysics, Geosystems, 17(4), 1480–1491. https://doi.org/10.1002/2015GC006222

Ichiki, M., Kaida, T., Nakayama, T., Miura, S., Yamamoto, M., Morita, Y., & Uyeshima, M. (2021). Magma reservoir beneath Azumayama Vol- cano, NE Japan, as inferred from a three-dimensional electrical resistivity model explored by means of magnetotelluric method. Earth, Planets, and Space, 73(1), 150. https://doi.org/10.1186/s40623-021-01451-y

Ikeuchi, K., Doi, N., Sakagawa, Y., Kamenosono, H., & Uchida, T. (1998). High-temperature measurements in well WD-1A and the thermal structure of the Kakkonda geothermal system, Japan. Geothermics, 27(5), 591–607. https://doi.org/10.1016/S0375-6505(98)00035-2

Ingebritsen, S. E., & Manning, C. E. (2010). Permeability of the continental crust: Dynamic variations inferred from seismicity and metamor- phism. Geofluids, 10(1–2), 193–205. https://doi.org/10.1111/j.1468-8123.2010.00278.x

Ingham, M. R., Bibby, H. M., Heise, W., Jones, K. A., Cairns, P., Dravitzki, S., et al. (2009). A magnetotelluric study of Mount Ruapehu volcano, New Zealand. Geophysical Journal International, 179(2), 887–904. https://doi.org/10.1111/j.1365-246X.2009.04317.x

Ishizu, K., Ogawa, Y., Mogi, T., Yamaya, Y., & Uchida, T. (2021). Ability of the magnetotelluric method to image a deep conductor: Exploration of a supercritical geothermal system. Geothermics, 96, 102205. https://doi.org/10.1016/j.geothermics.2021.102205

Iwamori, H. (1998). Transportation of H2O and melting in subduction zones. Earth and Planetary Science Letters, 160(1), 65–80. https://doi. org/10.1016/S0012-821X(98)00080-6

Kanda, W., Utsugi, M., Takakura, S., & Inoue, H. (2019). Hydrothermal system of the active crater of Aso volcano (Japan) inferred from a three-dimensional resistivity structure model. Earth, Planets, and Space, 71(1), 37. https://doi.org/10.1186/s40623-019-1017-7

Kariya, K. A., & Shankland, T. J. (1983). Electrical conductivity of dry lower crustal rocks. Geophysics, 48(1), 52–61. https://doi.org/10.1190/1.1441407

Kawamoto, T., Yoshikawa, M., Kumagai, Y., Mirabueno, M. H. T., Okuno, M., & Kobayashi, T. (2013). Mantle wedge infiltrated with saline flu- ids from dehydration and decarbonation of subducting slab. Proceedings of the National Academy of Sciences of the United States of America, 110(24), 9663–9668. https://doi.org/10.1073/pnas.1302040110

Kelbert, A. (2020). EMTF XML: New data interchange format and conversion tools for electromagnetic transfer functions. Geophysics, 85(1), F1–F17. https://doi.org/10.1190/geo2018-0679.1

Kelbert, A., Meqbel, N., Egbert, G. D., & Tandon, K. (2014). ModEM: A modular system for inversion of electromagnetic geophysical data. Computers & Geosciences, 66, 40–53. https://doi.org/10.1016/j.cageo.2014.01.010

Kirkby, A. L., Zhang, F., Peacock, J., Hassan, R., & Duan, J. (2019). The MTPy software package for magnetotelluric data analysis and visualis- ation. Journal of Open Source Software, 4(37), 1358. https://doi.org/10.21105/joss.01358

Kita, I., Nagao, K., Nakamura, Y., & Taguchi, S. (1992). Information on geothermal system obtained by chemical and isotropic characteristic of soil and fumarolic gases from the Doroyu-Kawarage geothermal field, Akita, Japan. Journal of the Geothermal Research Society of Japan, 14(2), 115–128. (in Japanese). https://doi.org/10.11367/grsj1979.14.115

Krieger, L., & Peacock, J. R. (2014). MTpy: A Python toolbox for magnetotellurics. Computers & Geosciences, 72, 167–175. https://doi.org/10.1016/j.cageo.2014.07.013

Kummerow, J., Raab, S., Schuessler, J. A., & Meyer, R. (2020). Non-reactive and reactive experiments to determine the electrical conductivities of aqueous geothermal solutions up to supercritical conditions. Journal of Volcanology and Geothermal Research, 391, 106388. https://doi. org/10.1016/j.jvolgeores.2018.05.014

Kurosawa, M., Ishii, S., & Sasa, K. (2010). Trace-element compositions of single fluid inclusions in the Kofu granite, Japan: Implications for compositions of granite-derived fluids. Island Arc, 19(1), 40–59. https://doi.org/10.1111/j.1440-1738.2009.00702.x

Laumonier, M., Gaillard, F., & Sifre, D. (2015). The effect of pressure and water concentration on the electrical conductivity of dacitic melts: Implication for magnetotelluric imaging in subduction areas. Chemical Geology, 418, 66–76. https://doi.org/10.1016/j.chemgeo.2014.09.019

Ledo, J., García-Merino, M., Larnier, H., Slezak, K., Piña-Varas, P., Marcuello, A., et al. (2021). 3-D electrical resistivity of Gran Canaria island using magnetotelluric data. Geothermics, 89, 101945. https://doi.org/10.1016/j.geothermics.2020.101945

Lee, B., Unsworth, M., Árnason, K., & Cordell, D. (2020). Imaging the magmatic system beneath the Krafla geothermal field, Iceland: A new 3-D electrical resistivity model from inversion of magnetotelluric data. Geophysical Journal International, 220(1), 541–567. https://doi. org/10.1093/gji/ggz427

Le Pape, F., Jones, A. G., Unsworth, M. J., Vozar, J., Wei, W., Jin, S., et al. (2015). Constraints on the evolution of crustal flow beneath Northern Tibet. Geochemistry, Geophysics, Geosystems, 16(12), 4237–4260. https://doi.org/10.1002/2015GC005828

Lowell, R. P., Van Cappellen, P., & Germanovich, L. N. (1993). Silica precipitation in fractures and the evolution of permeability in hydrothermal upflow zones. Science, 260(5105), 192–194. https://doi.org/10.1126/science.260.5105.192

Manning, C. E. (1994). The solubility of quartz in H2O in the lower crust and upper mantle. Geochimica et Cosmochimica Acta, 58(22), 4831– 4839. https://doi.org/10.1016/0016-7037(94)90214-3

Milsch, H., Kristinsdóttir, L. H., Spangenberg, E., Bruhn, D., & Flóvenz, Ó. G. (2010). Effect of the water-steam phase transition on the electrical conductivity of porous rocks. Geothermics, 39(1), 106–114. https://doi.org/10.1016/j.geothermics.2009.09.001

Mitsuhata, Y., Ogawa, Y., Mishina, M., Kono, T., Yokokura, T., & Uchida, T. (2001). Electromagnetic heterogeneity of the seismogen- ic region of 1962 M6.5 Northern Miyagi Earthquake, northeastern Japan. Geophysical Research Letters, 28(23), 4371–4374. https://doi.org/10.1029/2001GL013079

Monecke, T., Monecke, J., Reynolds, T. J., Tsuruoka, S., Bennett, M. M., Skewes, W. B., & Palin, R. M. (2018). Quartz solubility in the H2O-Na- Cl system: A framework for understanding vein formation in porphyry copper deposits. Economic Geology, 113(5), 1007–1046. https://doi. org/10.5382/econgeo.2018.4580

Moorkamp, M., Fishwick, S., Walker, R. J., & Jones, A. G. (2019). Geophysical evidence for crustal and mantle weak zones con- trolling intra-plate seismicity—The 2017 Botswana earthquake sequence. Earth and Planetary Science Letters, 506, 175–183. https://doi.org/10.1016/j.epsl.2018.10.048

Muraoka, H., Uchida, T., Sasada, M., Yagi, M., Akaku, K., Sasaki, M., et al. (1998). Deep geothermal resources survey program: Igneous, meta- morphic and hydrothermal processes in a well encountering 500°C at 3,729 m depth, Kakkonda, Japan. Geothermics, 27(5), 507–534. https:// doi.org/10.1016/S0375-6505(98)00031-5

Naif, S., Key, K., Constable, S., & Evans, R. L. (2013). Melt-rich channel observed at the lithosphere-asthenosphere boundary. Nature, 495(7441), 356–359. https://doi.org/10.1038/nature11939

Nakajima, J., Matsuzawa, T., Hasegawa, A., & Zhao, D. (2001). Seismic imaging of arc magma and fluids under the central part of northeastern Japan. Tectonophysics, 341(1), 1–17. https://doi.org/10.1016/S0040-1951(01)00181-0

New Energy and Industrial Technology Development Organization. (1990). Final report on survey to identify and promote geothermal develop- ment at Minase field (p. 1121). (in Japanese). Retrieved from https://geothermal.jogmec.go.jp/report/nedo/file/30.pdf

Newman, G. A. (2014). A review of high-performance computational strategies for modeling and imaging of electromagnetic induction data. Surveys in Geophysics, 35(1), 85–100. https://doi.org/10.1007/s10712-013-9260-0

Nono, F., Gibert, B., Parat, F., Loggia, D., Cichy, S. B., & Violay, M. (2020). Electrical conductivity of Icelandic deep geothermal reservoirs up to supercritical conditions: Insight from laboratory experiments. Journal of Volcanology and Geothermal Research, 391, 106364. https://doi. org/10.1016/j.jvolgeores.2018.04.021

Nunohara, K., Okano, H., Yamada, R., Hirano, N., & Tsuchiya, N. (2021). Geothermal potentiality in southern part of the Sanzugawa caldera, Ak- ita prefecture, northeast Japan. Journal of the Geothermal Research Society of Japan, 24(4), 313–314. (in Japanese). https://doi.org/10.11367/ grsj.43.65

Nurdiana, A., Okamoto, A., Yoshida, K., Uno, M., Nagaya, T., & Tsuchiya, N. (2021). Multi-stage infiltration of Na- and K-rich fluids from pegma- tites at mid-crustal depths as revealed by feldspar replacement textures. Lithos, 388–389, 106096. https://doi.org/10.1016/j.lithos.2021.106096

Ogawa, Y., Ichiki, M., Kanda, W., Mishina, M., & Asamori, K. (2014). Three-dimensional magnetotelluric imaging of crustal fluids and seismic-ity around Naruko volcano, NE Japan. Earth, Planets, and Space, 66(1), 158. https://doi.org/10.1186/s40623-014-0158-y

Ogawa, Y., Mishina, M., Goto, T., Satoh, H., Oshiman, N., Kasaya, T., et al. (2001). Magnetotelluric imaging of fluids in intraplate earthquake zones, NE Japan Back Arc. Geophysical Research Letters, 28(19), 3741–3744. https://doi.org/10.1029/2001GL013269

Ogawa, Y., Nunohara, K., Tsuchiya, N., Ichiki, M., Hase, H., Kanda, W., et al. (2011–2020). Magnetotelluric transfer functions in the Yuzawa geothermal field. NE Japan. https://doi.org/10.17611/DP/EMTF/YUZAWASGR

Ogawa, Y., & Uchida, T. (1996). A two-dimensional magnetotelluric inversion assuming Gaussian static shift. Geophysical Journal International, 126(1), 69–76. https://doi.org/10.1111/j.1365-246X.1996.tb05267.x

Okada, T., Matsuzawa, T., Nakajima, J., Uchida, N., Yamamoto, M., Hori, S., et al. (2014). Seismic velocity structure in and around the Naruko volcano, NE Japan, and its implications for volcanic and seismic activities. Earth, Planets, and Space, 66(1), 114. https://doi.org/10.1186/1880-5981-66-114

Okamoto, K., Asanuma, H., Ishibashi, T., Yamaya, Y., Saishu, H., Yanagisawa, N., et al. (2019). Geological and engineering features of devel- oping ultra-high-temperature geothermal systems in the world. Geothermics, 82, 267–281. https://doi.org/10.1016/j.geothermics.2019.07.002

Parisio, F., Vilarrasa, V., Wang, W., Kolditz, O., & Nagel, T. (2019). The risks of long-term re-injection in supercritical geothermal systems. Nature Communications, 10(1), 4391. https://doi.org/10.1038/s41467-019-12146-0

Pastor-Galán, D., Spencer, C. J., Furukawa, T., & Tsujimori, T. (2021). Evidence for crustal removal, tectonic erosion, and flare-ups from the Japanese evolving forearc sediment provenance. Earth and Planetary Science Letters, 564, 116893. https://doi.org/10.1016/j.epsl.2021.116893

Peacock, J. R., Earney, T. E., Mangan, M. T., Schermerhorn, W. D., Glen, J. M., Walters, M., & Hartline, C. (2020). Geophysical characteri- zation of the Northwest Geysers geothermal field, California. Journal of Volcanology and Geothermal Research, 399, 106882. https://doi.org/10.1016/j.jvolgeores.2020.106882

Peacock, J. R., Mangan, M. T., McPhee, D., & Ponce, D. A. (2015). Imaging the magmatic system of Mono Basin, California, with magnetotel- lurics in three dimensions. Journal of Geophysical Research: Solid Earth, 120(11), 7273–7289. https://doi.org/10.1002/2015JB012071

Pellerin, L., Johnston, J. M., & Hohmann, G. W. (1992). Evaluation of electromagnetic methods in geothermal exploration. In SEG Technical Program Expanded Abstracts 1992 (Vol. 1, pp. 405–408). Society of Exploration Geophysicists. https://doi.org/10.1190/1.1822102

Piana Agostinetti, N., Licciardi, A., Piccinini, D., Mazzarini, F., Musumeci, G., Saccorotti, G., & Chiarabba, C. (2017). Discovering geothermal supercritical fluids: A new frontier for seismic exploration. Scientific Reports, 7(1), 14592. https://doi.org/10.1038/s41598-017-15118-w

Piña-Varas, P., Ledo, J., Queralt, P., Marcuello, A., & Perez, N. (2018). On the detectability of Teide volcano magma chambers (Tenerife, Canary Islands) with magnetotelluric data. Earth, Planets, and Space, 70(1), 14. https://doi.org/10.1186/s40623-018-0783-y

Pommier, A., & Le-Trong, E. (2011). “SIGMELTS”: A web portal for electrical conductivity calculations in geosciences. Computers & Geo- sciences, 37(9), 1450–1459. https://doi.org/10.1016/j.cageo.2011.01.002

Pytte, A. M., & Reynolds, R. C. (1989). The thermal transformation of smectite to illite. In N. D. Naeser, & T. H. McCulloh (Eds.), Thermal history of sedimentary basins (pp. 133–140). Springer New York. https://doi.org/10.1007/978-1-4612-3492-0_8

Quist, A. S., & Marshall, W. L. (1968). Electrical conductances of aqueous sodium chloride solutions from 0° to 800° and at pressures to 4,000 bars. The Journal of Physical Chemistry, 72(2), 684–703. https://doi.org/10.1021/j100848a050

Reinsch, T., Dobson, P., Asanuma, H., Huenges, E., Poletto, F., & Sanjuan, B. (2017). Utilizing supercritical geothermal systems: A review of past ventures and ongoing research activities. Geothermal Energy, 5(1), 16. https://doi.org/10.1186/s40517-017-0075-y

Revil, A., Qi, Y., Ghorbani, A., Coperey, A., Ahmed, A. S., Finizola, A., & Ricci, T. (2019). Induced polarization of volcanic rocks. 3. Imaging clay cap properties in geothermal fields. Geophysical Journal International, 218(2), 1398–1427. https://doi.org/10.1093/gji/ggz207

Richards, J. P. (2011). Magmatic to hydrothermal metal fluxes in convergent and collided margins. Ore Geology Reviews, 40(1), 1–26. https:// doi.org/10.1016/j.oregeorev.2011.05.006

Saishu, H., Okamoto, A., & Tsuchiya, N. (2014). The significance of silica precipitation on the formation of the permeable-impermeable bound- ary within Earth’s crust. Terra Nova, 26(4), 253–259. https://doi.org/10.1111/ter.12093

Sakuma, H., & Ichiki, M. (2016). Electrical conductivity of NaCl-H2O fluid in the crust. Journal of Geophysical Research: Solid Earth, 121(2), 577–594. https://doi.org/10.1002/2015JB012219

Samrock, F., Grayver, A. V., Eysteinsson, H., & Saar, M. O. (2018). Magnetotelluric image of transcrustal magmatic system beneath the Tulu Moye geothermal prospect in the Ethiopian Rift. Geophysical Research Letters, 45(23), 12847–12855. https://doi.org/10.1029/2018GL080333

Scholz, C. H. (2019). The mechanics of earthquakes and faulting. The mechanics of earthquakes and faulting (3rd ed.). Cambridge University Press. https://doi.org/10.1017/9781316681473

Scott, S., Driesner, T., & Weis, P. (2015). Geologic controls on supercritical geothermal resources above magmatic intrusions. Nature Communi- cations, 6(1), 7837. https://doi.org/10.1038/ncomms8837

Sibson, R. H. (2020). Preparation zones for large crustal earthquakes consequent on fault-valve action. Earth, Planets, and Space, 72(1), 31. https://doi.org/10.1186/s40623-020-01153-x

Sillitoe, R. H. (2010). Porphyry copper systems. Economic Geology, 105(1), 3–41. https://doi.org/10.2113/gsecongeo.105.1.3

Sinmyo, R., & Keppler, H. (2016). Electrical conductivity of NaCl-bearing aqueous fluids to 600°C and 1 GPa. Contributions to Mineralogy and Petrology, 172(1), 4. https://doi.org/10.1007/s00410-016-1323-z

Siripunvaraporn, W., & Egbert, G. (2009). WSINV3DMT: Vertical magnetic field transfer function inversion and parallel implementation. Phys- ics of the Earth and Planetary Interiors, 173(3), 317–329. https://doi.org/10.1016/j.pepi.2009.01.013

Siripunvaraporn, W., Egbert, G., Lenbury, Y., & Uyeshima, M. (2005). Three-dimensional magnetotelluric inversion: Data-space method. Physics of the Earth and Planetary Interiors, 150(1–3), 3–14. https://doi.org/10.1016/j.pepi.2004.08.023

Stimac, J., Wilmarth, M., Mandeno, P. E., Dobson, P., & Winick, J. (2017). Review of exploitable supercritical geothermal resources to 5 km at Geysers-Clear Lake, Salton Sea, and Coso. GRC Transactions, 41, 806–835. Retrieved from https://publications.mygeoenergynow.org/ grc/1033767.pdf

Takeno, N. (2000). Thermal and geochemical structure of the Uenotai geothermal system, Japan. Geothermics, 29(2), 257–277. https://doi. org/10.1016/S0375-6505(99)00062-0

Tamanyu, S., Fujiwara, S., Ishikawa, J., & Jingu, H. (1998). Fracture system related to geothermal reservoir based on core samples of slim holes. Example from the Uenotai geothermal field, northern Honshu, Japan. Geothermics, 27(2), 143–166. https://doi.org/10.1016/S0375-6505(97)10012-8

Tamura, Y., Tatsumi, Y., Zhao, D., Kido, Y., & Shukuno, H. (2002). Hot fingers in the mantle wedge: New insights into magma genesis in sub- duction zones. Earth and Planetary Science Letters, 197(1), 105–116. https://doi.org/10.1016/S0012-821X(02)00465-X

Tatsumi, Y. (1989). Migration of fluid phases and genesis of basalt magmas in subduction zones. Journal of Geophysical Research: Solid Earth, 94(B4), 4697–4707. https://doi.org/10.1029/JB094iB04p04697

Tatsumi, Y., Takahashi, T., Hirahara, Y., Chang, Q., Miyazaki, T., Kimura, J.-I., et al. (2008). New insights into andesite genesis: The role of mantle-derived calc-alkalic and crust-derived tholeiitic melts in magma differentiation beneath Zao volcano, NE Japan. Journal of Petrology, 49(11), 1971–2008. https://doi.org/10.1093/petrology/egn055

Tseng, K. H., Ogawa, Y., Nurhasan Tank, S. B., Ujihara, N., Honkura, Y., Honkura, Y., et al. (2020). Anatomy of active volcanic edifice at the Kusatsu-Shirane volcano, Japan, by magnetotellurics: Hydrothermal implications for volcanic unrests. Earth, Planets, and Space, 72(1), 161. https://doi.org/10.1186/s40623-020-01283-2

Tsuchiya, N., & Hirano, N. (2007). Chemical reaction diversity of geofluids revealed by hydrothermal experiments under sub- and supercritical states. Island Arc, 16(1), 6–15. https://doi.org/10.1111/j.1440-1738.2007.00554.x

Tsuchiya, N., Yamada, R., & Uno, M. (2016). Supercritical geothermal reservoir revealed by a granite-porphyry system. Geothermics, 63, 182–194. https://doi.org/10.1016/j.geothermics.2015.12.011

Tuttle, O. F., & Bowen, N. L. (1958). Origin of granite in the light of experimental studies in the system NaAlSi3O8-KAlSi3O8-SiO2-H2O. In O. F. Tuttle, & N. L. Bowen (Eds.), GSA Memoirs (Vol. 74, p. 146). Geological Society of America. https://doi.org/10.1130/MEM74-p1

Umeda, K., Hayashi, S., & Ban, M. (1999). K-Ar ages of Zarumori, Takamatsu, Funagata, and Sankichi-Hayama volcanoes, NE Japan. Bulletin of the Volcanological Society of Japan, 44(4), 217–222. (in Japanese). https://doi.org/10.18940/kazan.44.4_217

Unsworth, M. J., Jones, A. G., Wei, W., Marquis, G., Gokarn, S. G., Spratt, J. E., & Spratt, J. E. (2005). Crustal rheology of the Himalaya and Southern Tibet inferred from magnetotelluric data. Nature, 438(7064), 78–81. https://doi.org/10.1038/nature04154

Ussher, G., Harvey, C., Johnstone, R., & Anderson, E. (2000). Understanding the resistivities observed in geothermal systems. In Proceedings World Geothermal Congress (pp. 1915–1920). Kyushu. Retrieved from https://www.geothermal-energy.org/pdf/IGAstandard/WGC/2000/ R0279.PDF

Wallace, P. J. (2005). Volatiles in subduction zone magmas: Concentrations and fluxes based on melt inclusion and volcanic gas data. Journal of Volcanology and Geothermal Research, 140(1), 217–240. https://doi.org/10.1016/j.jvolgeores.2004.07.023

Wannamaker, P. E., Caldwell, T. G., Jiracek, G. R., Maris, V., Hill, G. J., Ogawa, Y., et al. (2009). Fluid and deformation regime of an advancing subduction system at Marlborough, New Zealand. Nature, 460(7256), 733–736. https://doi.org/10.1038/nature08204

Watanabe, N., Numakura, T., Sakaguchi, K., Saishu, H., Okamoto, A., Ingebritsen, S. E., & Tsuchiya, N. (2017). Potentially exploitable supercrit- ical geothermal resources in the ductile crust. Nature Geoscience, 10(2), 140–144. https://doi.org/10.1038/ngeo2879

Watanabe, N., Yamaya, Y., Kitamura, K., & Mogi, T. (2021). Viscosity-dependent empirical formula for electrical conductivity of H2O-NaCl fluids at elevated temperatures and high salinity. Fluid Phase Equilibria, 549, 113187. https://doi.org/10.1016/j.fluid.2021.113187

Watanabe, T., & Peach, C. J. (2002). Electrical impedance measurement of plastically deforming halite rocks at 125°C and 50 MPa. Journal of Geophysical Research: Solid Earth, 107(B1), ECV2-1–ECV2-12. https://doi.org/10.1029/2001JB000204

Weatherley, D., & Henley, R. (2013). Flash vaporization during earthquakes evidenced by gold deposits. Nature Geoscience, 6, 294–298. https:// doi.org/10.1038/ngeo1759

Weis, P., Driesner, T., & Heinrich, C. A. (2012). Porphyry-copper ore shells form at stable pressure-temperature fronts within dynamic fluid plumes. Science, 338(6114), 1613–1616. https://doi.org/10.1126/science.1225009

Wersin, P., Johnson, L. H., & McKinley, I. G. (2007). Performance of the bentonite barrier at temperatures beyond 100°C: A critical review. Physics and Chemistry of the Earth, 32(8), 780–788. https://doi.org/10.1016/j.pce.2006.02.051

Wight, D. E. (1988). SEG standard for MT and EMAP data. In SEG Technical Program Expanded Abstracts 1988 (Vol. 1, pp. 249–251). Society of Exploration Geophysicists. https://doi.org/10.1190/1.1892244

Wilson, M. (Ed.). (1989). Partial melting processes in the Earth’s upper mantle. In Igneous petrogenesis (pp. 37–72). Springer Netherlands. https://doi.org/10.1007/978-1-4020-6788-4_3

Wise, T., & Thiel, S. (2020). Proterozoic tectonothermal processes imaged with magnetotellurics and seismic reflection in southern Australia. Geoscience Frontiers, 11(3), 885–893. https://doi.org/10.1016/j.gsf.2019.09.006

Yamaya, Y., Alanis, P. K. B., Takeuchi, A., Cordon, J. M., Mogi, T., Hashimoto, T., et al. (2013). A large hydrothermal reservoir beneath Taal Volcano (Philippines) revealed by magnetotelluric resistivity survey: 2-D resistivity modeling. Bulletin of Volcanology, 75(7), 729. https://doi. org/10.1007/s00445-013-0729-y

Yamaya, Y., Mogi, T., Honda, R., Hase, H., Hashimoto, T., & Uyeshima, M. (2017). Three-dimensional resistivity structure in Ishikari Lowland, Hokkaido, northeastern Japan—Implications to strain concentration mechanism. Geochemistry, Geophysics, Geosystems, 18(2), 735–754. https://doi.org/10.1002/2016GC006771

Yoshida, T., Kimura, J.-I., Yamada, R., Acocella, V., Sato, H., Zhao, D., et al. (2014). Evolution of late Cenozoic magmatism and the crust-mantle structure in the NE Japan Arc. Geological Society, London, Special Publications, 385(1), 335. https://doi.org/10.1144/SP385.15

Yoshimura, R., Ogawa, Y., Yukutake, Y., Kanda, W., Komori, S., Hase, H., et al. (2018). Resistivity characterization of Hakone volcano, Cen- tral Japan, by three-dimensional magnetotelluric inversion. Earth, Planets, and Space, 70(1), 66. https://doi.org/10.1186/s40623-018-0848-y

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る