リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「A Simple Screening of Flower Sensitivity to Ethylene in Several Ornamental Asteraceae Species」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

A Simple Screening of Flower Sensitivity to Ethylene in Several Ornamental Asteraceae Species

Yang, Yang Ohno, Sho Tanaka, Yoshiyuki Doi, Motoaki 京都大学 DOI:10.2503/hortj.qh-069

2023

概要

Generally, Asteraceae flowers such as chrysanthemums and gerberas, are low ethylene-sensitive and do not exhibit petal wilting and abscission. However, previous research found that the flowers of dahlia, an Asteraceae member belonging to the tribe Coreopsideae, are ethylene-sensitive and show abscission layer development in petal-ovary boundaries. In this study, we investigated the ethylene sensitivity of 17 ornamental Asteraceae species belonging to different tribes by measuring the petal drawing resistance and vase life after 1-3 μL·L-1 ethylene exposure for 20 h. Although more than half of the tested species did not respond to ethylene, several species showed ethylene-sensitive petal wilting and abscission of fresh ray florets. Ethylene-sensitive petal wilting occurred in only two species (Calendula officinalis L. and Osteospermum L.) of the tribe Calenduleae, while ethylene-sensitive petal abscission occurred mainly in six species (Bidens ferulifolia D.C., Coreopsis lanceolata L., Cosmos atrosanguineus (Hook) Voss., Cosmos bipinnatus Cav., Cosmos sulphureus Cav. and Dahlia Cav.) of tribe Coreopsideae and one species (Helianthus annuus L.) of the tribe Heliantheae. In these species, abscission petals maintained their turgidity, and this process could be detected by measuring the petal drawing resistance of the ray florets. The reduction in petal drawing resistance, associated with abscission layer development in the petal-ovary boundaries, was observed only in these ethylene-sensitive species. The results of this study suggest that the ethylene sensitivity and petal senescing patterns in Asteraceae flowers may be associated with the phylogenetic classification at the tribe level.

この論文で使われている画像

参考文献

Azuma, M., T. Onozaki and K. Ichimura. 2020. Difference of eth‐

ylene production and response to ethylene in cut flowers

of dahlia (Dahlia variabilis) cultivars. Sci. Hortic. 273:

109635.

Bleecker, A. B. and S. E. Patterson. 1997. Last exit: senescence,

505

abscission, and meristem arrest in Arabidopsis. Plant Cell 9:

1169–1179.

Clark, E. M., J. M. Dole, A. S. Carlson, E. P. Moody, I. F.

McCall, F. L. Fanelli and W. C. Fonteno. 2010. Vase life of

new cut flower cultivars. HortTechnology 20: 1016–1025.

Craker, L. E. and F. B. Abeles. 1969. Abscission: quantitative

measurement with a recording abscission. Plant Physiol. 8:

1139–1143.

Estornell, L. H., J. Agustí, P. Merelo, M. Talón and F. R. Tadeo.

2013. Elucidating mechanisms underlying organ abscission.

Plant Sci. 199: 48–60.

Funk, V. A. 1991. The Compositae of the Guianas, I: Heliantheae

(Heliantheae, Tageteae, Coreopsideae). Rhodora 93: 256–

267.

Fu, Z. X., B. H. Jiao, B. Nie, G. J. Zhang, T. G. Gao and China

Phylogeny Consortium. 2016. A comprehensive generic‐

level phylogeny of the sunflower family: Implications for

the systematics of Chinese Asteraceae. J. Syst. Evol. 54:

416–437.

González-Carranza, Z. H. and J. A. Roberts. 2012. Ethylene and

cell separation processes. Annu. Rev. Plant Biol. 44: 243–273.

Ichimura, K., H. Shimizu-Yumoto and R. Goto. 2009. Ethylene

production by gynoecium and receptacle is associated with

sepal abscission in cut Delphinium flowers. Postharvest Biol.

Technol. 52: 267–272.

Kim, J. 2014. Four shades of detachment: regulation of floral

organ abscission. Plant Signalung and Behavior 9: 1–9.

Mandel, J. R., R. B. Dikow, C. M. Siniscalchi, R. Thapa, L. E.

Watson and V. A. Funk. 2019. A fully resolved backbone

phylogeny reveals numerous dispersals and explosive diver‐

sifications throughout the history of Asteraceae. Proc. Natl.

Acad. Sci. USA 116: 14083–14088.

Nakano, T. and Y. Ito. 2013. Molecular mechanisms controlling

plant organ abscission. Plant Biotechnol. 30: 209–216.

Patterson, S. E. 2001. Cutting loose, abscission and dehiscence in

Arabidopsis. Plant Physiol. 126: 494–500.

Patterson, S. E. and A. B. Bleecker. 2004. Ethylene-dependent

and -independent processes associated with floral organ

abscission in Arabidopsis. Plant Physiol. 134: 194–203.

Roberts, J. A., K. A. Elliott and Z. H. González-Carranza. 2002.

Abscission, dehiscence, and other cell separation processes.

Annu. Rev. Plant Biol. 53: 131–158.

Ryding, O. and K. Bremer. 1991. Phylogeny, distribution, and

classification of the Coreopsideae (Asteraceae). Syst. Bot.

17: 649–659.

Tata, J. S. and H. C. Wien. 2014. Anatomy of petal drop in sun‐

flowers. J. Amer. Soc. Hort. Sci. 139: 669–675.

Taylor, J. E. and C. A. Whitelaw. 2001. Signals in abscission.

New Phytol. 151: 323–340.

van Doorn, W. G. 2001. Categories of petal senescence and

abscission: a re-evaluation. Ann. Bot. 87: 447–456.

van Doorn, W. G. 2002. Effect of ethylene on flower abscission:

a survey. Ann. Bot. 89: 689–693.

van Doorn, W. G. and A. D. Stead. 1997. Abscission of flowers

and floral parts. J. Exp. Bot. 48: 821–837.

van Doorn, W. G. and E. J. Woltering. 2008. Physiology and

molecular biology of petal senescence. J. Exp. Bot. 59: 453–

480.

Woltering, E. J. and W. G. van Doorn. 1988. Role of ethylene in

senescence of petals-morphological and taxonomical rela‐

tionships. J. Exp. Bot. 39: 1605–1616.

Yang, Y., S. Takenaga, S. Ohno and M. Doi. 2021. Ethylene sen‐

sitive abscission layer formation and petal senescence in cut

dahlia inflorescences. Hort. J. 90: 460–468.

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る