リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Influence of hydrophilic additives on the signal intensity in electrospray ionization of flavonoid glycosides」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Influence of hydrophilic additives on the signal intensity in electrospray ionization of flavonoid glycosides

景山 亜美 横浜市立大学

2021.03.25

概要

Rationale: The influence of hydrophilic additives glycine, glucose and glycerol on ESI signal intensity of flavonoid glycosides, and a non-reducing disaccharide is examined. The addition of excess glycine into the ESI solution would be predicted to affect signal intensity more than glucose and glycerol due to its strong hydration capability.

Methods: The ESI signal response upon the addition of excess additives prepared was estimated by in both selected ion monitoring and scan modes. All the MS data were acquired in negative-ion mode, because negative-ion mode is recommended for saccharide compounds.

Results: The addition of glycine into the ESI solution of flavonoid glycosides and trehalose resulted in the enhancement of signal intensity, while the addition of glucose and glycerol had little effect. The signal intensity of the rutin was higher than that of naringin and hesperidin, in accordance with their solubility in ESI solution. Trehalose molecules specifically interacted with glycine molecules to form a 1:1 trehalose-glycine complex, while the flavonoid glycosides did not give such complex ions.

Conclusions: The ESI signal enhancement of the saccharides with the additive glycine can be explained by its strong hydration capability with the deprotonated carboxylic oxygens of zwitterionic glycine molecules strongly interacting with water hydrogens resulting in strong hydration enthalpy. Consequently, glycine molecules set the analytes free from the solvation with water molecules in the ESI droplets.

この論文で使われている画像

参考文献

1. Whitehouse CM, Dreyer RN, Yamashita M, Fenn JB. Electrospray interface for liquid chromatographs and mass spectrometers. Anal Chem. 1985;57:675-679. https://doi.org/10.1021/ac00280a023

2. Fenn JB, Mann M, Meng CK, Wong SF, Whitehouse CM. Electrospray ionization for mass spectrometry of large biomolecules. Science. 1989;246:64-71. https://doi.org/10.1126/science.2675315

3. King R, Bonfiglio R, Fernandes-Metzler C, Miller-Stein C, Olah T. Mechanistic investigation of ionization suppression in electrospray ionization. J Am Soc Mass Spectrom. 2000;11:942-950. https://doi.org/10.1016/S1044-0305(00)00163-X

4. Taylor PJ. Matrix effects: The achilles heel of quantitative high-performance liquid chromatography-electrospray-tandem mass spectrometry. Clin Biochem. 2005;38: 328-334. https://doi.org/10.1016/j.clinbiochem.2004.11.007

5. Trufelli H, Palma P, Famiglini G, Cappiello A. An overview of matrix effects in liquid chromatography-mass spectrometry. Mass Spectrom Rev. 2011;30:491-509. https://doi.org/10.1002/mas.20298

6. Tang L, Kebarle P. Dependence of ion intensity in electrospray mass spectrometry on the concentration of the analytes in the electrosprayed solution. Anal Chem. 1993;65:3654-3668. https://doi.org/10.1021/ac00072a020

7. Enke CG. A predictive model for matrix and analyte effects in electrospray ionization of singly-charged ionic analytes. Anal Chem. 1997;69:4885-4893. https://doi.org/10.1021/ac970095w

8. Panuwet P, Hunter Jr RE, D’Souza PE, Chen X, Radford SA, Cohen JR, Marder ME, Kartavenka K, Ryan PB, Barr DB. Biological matrix effects in quantitative tandem mass spectrometry-based analytical methods: Advancing biomonitoring. Crit Rev Anal Chem. 2016;46:93-105. https://doi.org/10.1080/10408347.2014.980775

9. Kiontke A, Oliveria-Birkmeier A, Opitz A, Birkemeyer C. Electrospray ionization efficiency is dependent on different molecular descriptors with respect to solvent pH and instrumental configuration. PLOS One. 2016;11:e0167502. https://doi.org/10.1371/journal.pone.0167502

10. Kebarle P, Tang L. From ions in solution to ions in the gas phase - the mechanism of electrospray mass spectrometry. Anal Chem. 1993;65:972A-986A. https://doi.org/10.1021/ac00070a001

11. Kebarle P, Verkerk UH. Electrospray: From ions in solution to ions in the gas phase, what we know now. Mass Spectrom Rev. 2009;28:898-917. https://doi.org/10.1002/mas.20247

12. Cech NB, Enke CG. Relating electrospray ionization response to nonpolar character of small peptides. Anal Chem. 2000;72:2717-2723. https://doi.org/10.1021/ac9914869

13. Cech NB, Enke CG. Practical implications of some recent studies in electrospray ionization fundamentals. Mass Spectrom Rev. 2011;20:362-387. https://doi.org/10.1002/mas.10008|

14. Nishikaze T, Takayama M. Study of factors governing negative molecular ion yields of amino acid and peptide in FAB, MALDI and ESI mass spectrometry. Int J Mass Spectrom. 2007;268:47-59. https://doi.org/10.1016/j.ijms.2007.08.004

15. Asakawa D, Moriguchi S, Takayama M. Influence of amino acid composition and phosphorylation on the ion yields of peptides in MALDI-MS. J Am Soc Mass Spectrom. 2012;23:108-115. https://doi.org/10.1021/jasms.8b04131

16. Osaka I, Takayama M. Influence of hydrophobicity on positive- and negative-ion yields of peptides in electrospray ionization mass spectrometry. Rapid Commun. Mass Spectrom. 2014;28:2222-2226. https://doi.org/10.1002/rcm.7010

17. Kageyama (Kaneshima) A, Motoyama A, Takayama M. Influence of solvent composition and surface tension on the signal intensity of amino acids in electrospray ionization mass spectrometry. Mass Spectrom. 2019;8:A0077. https://doi.org/10.5702/massspectrometry.A0077

18. Basch H, Stevens WJ. The structure of glycine-water H-bonded complexes. Chem Phys Let. 1990;169:275-280. https://doi.org/10.1016/0009-2614(90)85201-M

19. Wang W, Zheng W, Pu X, Wong NB, Tian A. The 1:1 glycine-water complex: some theoretical observations. J Mol Struct Theochem. 2002;618:235-244. https://doi.org/10.1016/S0166-1280(02)00543-2

20. Sun J, Bousquet D, Forbert H, Marx D. Glycine in aqueous solution: solvation shells, interfacial water, and vibrational spectroscopy from ab initio molecular dynamics. J Chem Phys. 2010;133:114508. https://doi.org/10.1063/1.3481576

21. Xu S, Nilles JM, Bowen Jr KH. Zwitterion formation in hydrated amino acid, dipole bound anions: How many water molecules are required?. J Chem Phys. 2003;119:10696-10701.

22. Burakowski A, Glinski J. Hydration of amino acids from ultrasonic measurements. J Phys Chem B. 2010;114:12157-12161. https://doi.org/10.1021/jp105255b

23. Jensen JH, Gordon MS. On the number of water molecules necessary to stabilize the glycine zwitterion. J Am Chem Soc. 1995;117:8159-8170. https://doi.org/10.1021/ja00136a013

24. Wincel H. Hydration of gas-phase protonated alkylamines, amino acids and dipeptides produced by electrospray. Int J Mass Spectrom. 2006;251:23-31. https://doi.org/10.1016/j.ijms.2005.12.036

25. Michaux C, Wouters J, Perpete EA, Jacquemin D. Ab initio investigation of the hydration of deprotonated amino acids. J Am Soc Mass Spectrom. 2009;20:632- 638. https://doi.org/10.1016/j.jasms.2008.11.025

26. Dunn MS, Ross FJ, Read LS. The solubility of the amino acids in water. J Biol Chem. 1933;103:579-595.

27. Cao Z, Hu Y, Li J, Kai Y, Yang W. Solubility of glycine in binary system of ethanol+water solvent mixture: Experimental data and thermodynamic modeling. Fluid Phase Equilibria. 2013;360:156-160. https://doi.org/10.1016/j.fluid.2013.09.013

28. Peng B, Li R, Yan W. Solubility of rutin in ethanol+water at (273.15 to 323.15) K. J Chem Eng Data. 2009;54:1378-1381. https://doi.org/10.1021/je800816f

29. Jabbari M, Khosravi N, Feizabadi M, Ajloo D. Solubility temperature and solvent dependence and preferential solvation of citrus flavonoid naringin in aqueous DMSO mixtures: an experimental and molecular dynamics simulation study. RSC Adv. 2017;7:14776-14789. https://doi.org/10.1039/C7RA00038C

30. Anwer MK, Al-Shdefat R, Jamil S, Alam P, Abdel-Kader MS, Shakeel F. Solubility of bioactive compound hesperidin in six pure solvents at (298.15 to 333.15) K. J Chem Eng Data. 2014;59:2065-2069. https://doi.org/10.1021/je500206w

31. Wang P, Jiang J, Jia X, Jiang L, Li S. Solubility of trehalose in water+ethanol solvent system from (288.15 to 318.25) K. J Chem Eng Data. 2014;59:1872-1876. https://doi.org/10.1021/je5000428

32. Shiraga K, Adachi A, Nakamura M, Tajima T, Ajito K, Ogawa Y. Characterization of the hydrogen-bond network of water around sucrose and trehalose: Microwave and terahertz spectroscopic study. J Chem Phys. 2017;146:105102. https://doi.org/10.1063/1.4978232

33. Soper AK, Ricci MA, Bruni F, Rhys NH, McLain SE. Trehalose in water revisited. J Phys Chem B. 2018;122:7365-7374. https://doi.org/10.1021/acs.jpcb.8b03450

34. Liu J, Chen C, Li W. Hydrogen bonding analysis of ,-trehalose aqueous solutions: a molecular dynamic simulation study. ICBBB’2017. 2017;43-49. http://dx.doi.org/10.1145/3051166.3051168

35. Lins RD, Pereira CS, Hunenberger PH. Trehalose-protein interaction in aqueous solution. Proteins. 2004;55:177-186. https://doi.org/10.1002/prot.10632

36. Ciric A, Prosen H, Jelikic-stankov M, Durdevic P. Evaluation of matrix effect in determination of some bioflavonoids in food samples by LC-MS/MS method. Talanta. 2012;99:780-790. https://doi.org/10.1016/j.talanta.2012.07.025

37. Chebil L, Humeau C, Anthoni J, Dehez F, Engasser JM, Ghoul M. Solubility of flavonoids in organic solvents. J Chem Eng Data. 2007;52:1552-1556. https://doi.org/10.1021/je7001094

38. Alves LA, Almeida e Silva JB, Giulietti M. Solubility of D-Glucose in water and ethanol/water mixtures. J Chem Eng Data. 2007;52:2166-2170. https://doi.org/10.1021/je700177n

39. Saielli G, Bagno A. Preferential solvation of glucose and talose in wateracetonitrile mixtures: a molecular dynamics simulation study. Phys Chem Chem Phys. 2010;12:2981-2988. https://doi.org/10.1039/B922550A

40. Klassen JS, Blades AT, Kebarle P. Determinations of ion-molecule equilibria involving ions produced by electrospray. Hydration of protonated amines, diamines, and some small peptides. J Phys Chem. 1995;99:15509-15517. https://doi.org/10.1021/j100042a027

41. Balk RW, Somsen G. Conformation and solvation. Hydrophobic hydration and preferential solvation of some monosaccharides in mixture of water and N,Ndimethylformamide. J Chem Soc Faraday Trans 1. 1986;1(82):933-942. https://doi.org/10.1039/F19868200933

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る