リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Iridium-catalyzed α-selective deuteration of alcohols」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Iridium-catalyzed α-selective deuteration of alcohols

Itoga, Moeko Yamanishi, Masako Udagawa, Taro Kobayashi, Ayane Maekawa, Keiko Takemoto, Yoshiji Naka, Hiroshi 京都大学 DOI:10.1039/D2SC01805E

2022.08.14

概要

The development of chemoselective C(sp³)-H deuteration is of particular interest in synthetic chemistry. We herein report the α-selective, iridium(III)-bipyridonate-catalyzed hydrogen(H)/deuterium(D) isotope exchange of alcohols using deuterium oxide (D₂O) as the primary deuterium source. This method enables the direct, chemoselective deuteration of primary and secondary alcohols under basic or neutral conditions without being affected by coordinative functional groups such as imidazole and tetrazole. Successful substrates for deuterium labelling include the pharmaceuticals losartan potassium, rapidosept, guaifenesin, and diprophylline. The deuterated losartan potassium shows higher stability towards the metabolism by CYP2C9 than the protiated analogue. Kinetic and DFT studies indicate that the direct deuteration proceeds through dehydrogenation of alcohol to the carbonyl intermediate, conversion of [Ir[III]–H] to [Ir[III]−D] with D₂O, and deuteration of the carbonyl intermediate to give the α-deuterated product.

この論文で使われている画像

参考文献

1 J. Atzrodt, V. Derdau, W. J. Kerr and M. Reid, Angew. Chem., Int. Ed., 2018, 57, 1758–1784.

2 (a) N. A. Meanwell, J. Med. Chem., 2011, 54, 2529–2591; (b) E. M. Russak and E. M. Bednarczyk, Ann. Pharmacother., 2019, 53, 211–216; (c) T. Pirali, M. Serafini, S. Cargnin and A. A. Genazzani, J. Med. Chem., 2019, 62, 5276–5297.

3 (a) M. Dean and V. W. Sung, Drug Des., Dev. Ther., 2018, 12, 313–319; (b) S. Qin, F. Bi, S. Gu, Y. Bai, Z. Chen, Z. Wang, J. Ying, Y. Lu, Z. Meng, H. Pan, P. Yang, H. Zhang, X. Chen, A. Xu, C. Cui, B. Zhu, J. Wu, X. Xin, J. Wang, J. Shan, J. Chen, Z. Zheng, L. Xu, X. Wen, Z. You, Z. Ren, X. Liu, M. Qiu, L. Wu and F. Chen, J. Clin. Oncol., 2021, 39, 3002–3011.

4 (a) G. S. Timmins, Expert Opin. Ther. Pat., 2014, 24, 1067– 1075; (b) MEXT website on a grant in aid-for transformative research areas (B), https://www.mext.go.jp/ content/20211207_mxt_gakjokik_000010099_17.pdf, (accessed October 2021).

5 (a) J. Atzrodt, V. Derdau, W. J. Kerr and M. Reid, Angew. Chem., Int. Ed., 2018, 57, 3022–3047; (b) X. Yang, H. Ben and A. J. Ragauskas, Asian J. Org. Chem., 2021, 10, 2473– 2485; (c) S. Kopf, F. Bourriquen, W. Li, H. Neumann, K. Junge and M. Beller, Chem. Rev., 2022, 122, 6634–6718.

6 For selected examples, see:(a) J. Zhou and J. F. Hartwig, Angew. Chem., Int. Ed., 2008, 47, 5783–5787; (b) J. A. Brown, S. Irvine, A. R. Kennedy, W. J. Kerr, S. Andersson and G. N. Nilsson, Chem. Commun., 2008, 1115–1117; (c) R. P. Yu, D. Hesk, N. Rivera, I. Pelczer and P. J. Chirik, Nature, 2016, 529, 195–199; (d) W. J. Kerr, M. Reid and T. Tuttle, Angew. Chem., Int. Ed., 2017, 56, 7808–7812; (e) K. Park, T. Matsuda, T. Yamada, Y. Monguchi, Y. Sawama, N. Doi, Y. Sasai, S. Kondo, Y. Sawama and H. Sajiki, Adv. Synth. Catal., 2018, 360, 2303–2307; (f) A. Bechtoldt and L. Ackermann, ChemCatChem, 2019, 11, 435–438; (g) C. Zarate, H. Yang, M. J. Bezdek, D. Hesk and P. J. Chirik, J. Am. Chem. Soc., 2019, 141, 5034–5044; (h) W. J. Kerr, G. J. Knox, M. Reid, T. Tuttle, J. Bergare and R. A. Bragg, ACS Catal., 2020, 10, 11120–11126; (i) A. Tlahuext-Aca and J. F. Hartwig, ACS Catal., 2021, 11, 1119–1127; (j) M. Farizyan, A. Mondal, S. Mal, F. Deufel and M. Gemmeren, J. Am. Chem. Soc., 2021, 143, 16370–16376; (k) W. Li, J. Rabeah, F. Bourriquen, D. Yang, C. Kreyenschulte, N. Rockstroh, H. Lund, S. Bartling, A.-E. Surkus, K. Junge, A. Bru¨ckner, A. Lei and M. Beller, Nat. Chem., 2022, 14, 334–341; (l) T. He, H. F. T. Klare and M. Oestreich, J. Am. Chem. Soc., 2022, 144, 4734–4738.

7 (a) S. R. Klei, J. T. Golden, T. D. Tilley and R. G. Bergman, J. Am. Chem. Soc., 2002, 124, 2092–2093; (b) T. Maegawa, Y. Fujiwara, Y. Inagaki, H. Esaki, Y. Monguchi and H. Sajiki, Angew. Chem., Int. Ed., 2008, 47, 5394–5397; (c) G. Erdogan and D. B. Grotjahn, Top. Catal., 2010, 53, 1055– 1058; (d) L. Neubert, D. Michalik, S. B¨ahn, S. Imm, H. Neumann, J. Atzrodt, V. Derdau, W. Holla and M. Beller, J. Am. Chem. Soc., 2012, 134, 12239–12244; (e) G. Pieters, C. Taglang, E. Bonnefille, T. Gutmann, C. Puente, J.-C. Berthet, C. Dugave and B. Rosseau, Angew. Chem., Int. Ed., 2014, 53, 230–234; (f) L. V. A. Hale and N. K. Szymczak, J. Am. Chem. Soc., 2016, 138, 13489–13492; (g) M. Valero, R. Weck, S. Gu¨ssregen, J. Arzrodt and V. Derdau, Angew. Chem., Int. Ed., 2018, 57, 8159–8163; (h) W. Kerr, R. J. Mudd, M. Reid, J. Atzrodt and V. Derdau, ACS Catal., 2018, 8, 10895–10900; (i) T. J. Doyon and A. R. Buller, J. Am. Chem. Soc., 2022, 144, 7327–7336.

8 (a) Y. Y. Loh, K. Nagao, A. J. Hoover, D. Hesk, N. R. Rivera, S. L. Colletti, I. W. Davies and D. W. C. MacMillan, Science, 2017, 358, 1182–1187; (b) A. Uttry, S. Mal and M. Gemmeren, J. Am. Chem. Soc., 2021, 143, 10895–10901.

9 R. B. Silverman and M. W. Holladay, in The Organic Chemistry of Drug Design and Drug Action, Academic Press, San Diego, 3rd edn, 2014, ch. 8, pp. 357—422.

10 (a) C. Balzarek and D. R. Tyler, Angew. Chem., Int. Ed., 1999, 38, 2406–2408; (b) C. Balzarek, T. J. R. Weakley and D. R. Tyler, J. Am. Chem. Soc., 2000, 122, 9427–9434; (c) K. L. Breno and D. R. Tyler, Organometallics, 2001, 20, 3864–3868.

11 M. Takahashi, K. Oshima and S. Matsubara, Chem. Lett., 2005, 34, 192–193.

12 T. Nishioka, T. Shibata and I. Kinoshita, Organometallics, 2007, 26, 1126–1128.

13 (a) T. Maegawa, Y. Fujiwara, Y. Inagaki, Y. Monguchi and H. Sajiki, Adv. Synth. Catal., 2008, 350, 2215–2218; (b) Y. Fujiwara, H. Iwata, Y. Sawama, Y. Monguchi and H. Sajiki, Chem. Comunm., 2010, 46, 4977–4979.

14 (a) S. K. S. Tse, P. Xue, C. W. S. Lau, H. H. Y. Sung, I. D. Williams and G. Jia, Chem. – Eur. J., 2011, 17, 13918– 13925; (b) W. Bai, K.-H. Lee, S. K. S. Tse, K. W. Chan, Z. Lin and G. Jia, Organometallics, 2015, 34, 3686–3698.

15 E. Khaskin and D. Milstein, ACS Catal., 2013, 3, 448–452.

16 B. Chatterjee and C. Gunanathan, Org. Lett., 2015, 17, 4794– 4797.

17 N. P. J. Price, T. M. Hartman and K. E. Vermillion, Anal. Chem., 2015, 87, 7282–7290.

18 S. Kar, A. Goeppert, R. Sen, J. Kothandaraman and G. K. S. Prakash, Green Chem., 2018, 20, 2706–2710.

19 (a) P. L. Polavarapu, L. P. Fontana and H. E. Smith, J. Am. Chem. Soc., 1986, 108, 94–99; (b) M. Fujita and T. Hiyama, Tetrahedron Lett., 1987, 28, 2263–2264; (c) M. Fujita and T. Hiyama, J. Org. Chem., 1988, 53, 5405–5415; (d) D. Klomp, T. Maschmeyer, U. Hanefeld and J. A. Peters, Chem. – Eur. J., 2004, 10, 2088–2093; (e) Q. Wang, X. Sheng, J. H. Horner and M. Newcomb, J. Am. Chem. Soc., 2009, 131, 10629–10636.

20 (a) L.-M. Wang, Y. Morioka, K. Jenkinson, A. E. H. Wheatley, S. Saito and H. Naka, Sci. Rep., 2018, 8, 6931; (b) L.-M. Wang, K. Jenkinson, A. E. H. Wheatley, K. Kuwata, S. Saito and H. Naka, ACS Sustainable Chem. Eng., 2018, 6, 15419–15424.

21 (a) M. H. S. A. Hamid, P. A. Slatford and J. M. J. Williams, Adv. Synth. Catal., 2007, 349, 1555–1575; (b) M. G. Edwards, R. F. R. Jazzar, B. M. Paine, D. J. Shermer, M. K. Whittlesey, J. M. J. Williams and D. D. Edney, Chem. Commun., 2004, 90–91; (c) O. Sadai, A. J. Blacker, M. M. Farah, S. P. Marsden and J. M. J. Williams, Chem. Commun., 2010, 46, 1541–1543.

22 (a) R. Kawahara, K. Fujita and R. Yamaguchi, J. Am. Chem. Soc., 2012, 134, 3643–3646; (b) R. Kawahara, K. Fujita and R. Yamaguchi, Angew. Chem., Int. Ed., 2012, 51, 12790– 12794; (c) K. Fujita, R. Kawahara, T. Aikawa and R. Yamaguchi, Angew. Chem., Int. Ed., 2015, 54, 9057–9060; (d) G. Toyooka and K. Fujita, ChemSusChem, 2020, 13, 3820–3824.

23 1-K+ is an angiotensin receptor blocker used for the treatment of hypertension. Aer oral administration, the alcohol is oxidized by cytochrome P450 to give an active metabolite EXP3174 (carboxylic acid), which is 10 to 40 times more potent than 1-K+ itself, via non-active metabolite EXP3179 (aldehyde). See:(a) G. P. Rossi, Hypertension, 2009, 54, 710–712; (b) T. G. Gant and S. Sharshar, WO 067378-A2, 2008.

24 Ru-MACHO is one of the most chemoselective deuteration catalysts and is compatible with the presence of pyridine functionalities.16 In our experiments, Ru-MACHO promoted the deuteration of 4-methylbenzyl alcohol (9) at 60 ◦C (83% D) but hardly deuterated 1-K+ under reported conditions.16 Deuteration of 9 in the presence of 1-K+, 5-phenyl tetrazole with KOtBu, or N-methyl imidazole did not proceed using Ru-MACHO (<3% D), implying that the imidazole and tetrazole moieties of 1-K+ poisoned the Ru catalyst.

25 (a) G. J. Ellames, J. S. Gibson, J. M. Herbert and A. H. McNeill, Tetrahedron, 2001, 57, 9487–9497; (b) P. W. C. Cross, G. J. Ellames, J. S. Gibson, J. M. Herbert, W. J. Kerr, A. H. McNeill and T. W. Mathers, Tetrahedron, 2003, 59, 3349–3358.

26 (a) K. Fujita, N. Tanino and R. Yamaguchi, Org. Lett., 2007, 9, 109–111; (b) R. Kawahara, K.-i. Fujita and R. Yamaguchi, J. Am. Chem. Soc., 2012, 134, 3643–3646.

27 The positive effect of 2-propanol in the deuteration of 1-K+ was found to be substrate-dependent. In the deuteration of 4-methylbenzylalcohol (9) in D2O/1,4-dioxane, the deuteration ratios were 68% (3 h), 89% (5 h), and 93% (7 h) in the absence of 2-propanol whereas the deuteration was slow down in the presence of 2-propanol (10/30 mol%) in a concentration-dependent manner: the deuteration degrees are: 40%/22% (3 h), 63%/38% (5 h) and 96%/66% (7 h), respectively (for details, see the ESI†). For details of the deactivation of Ir-1, see:(a) M. Iguchi, H. Zhong, Y. Himeda and H. Kawanami, Chem. - Eur. J., 2017, 23, 17788–17793. For related use of 2-propanol in chemical deuteration, see: (b) Y. Sawama, T. Yamada, Y. Yabe, K. Morita, K. Shibata, M. Shigetsura, Y. Monguchi and H. Sajiki, Adv. Synth. Catal., 2013, 355, 1529–1534; (c) Y. Sawama, A. Nakano, T. Matsuda, T. Kawajiri, T. Yamada and H. Sajiki, Org. Process Res. Dev., 2019, 23, 648–653.

28 S. B. Madasu, N. A. Vekariya, C. Koteswaramma, A. Islam, P. D. Sanasi and R. B. Korupolu, Org. Process Res. Dev., 2012, 16, 2025–2030.

29 A. L. J. Beckwith and V. W. Bowry, J. Am. Chem. Soc., 1994, 116, 2710–2716.

30 Similar reactivity for alkyne deuteration is also reported with related ruthenium complexes and with silver trifluoroacetate:(a) B. Chatterjee and C. Gunanathan, Chem. Commun., 2016, 52, 4509–4512; (b) D.-C. Wu, J.-W. Bai, L. Guo, G.-Q. Hu, K.-H. Liu, F.-F. Sheng, H.-H. Zhang, Z.-Y. Sun, K. Shen and X. Liu, Tetrahedron Lett., 2021, 66, 152807.

31 (a) S. Egoshi, K. Dodo, K. Ohgane and M. Sodeoka, Org. Biomol. Chem., 2021, 19, 8232–8236; (b) X. Bi, K. Miao and L. Wei, J. Am. Chem. Soc., 2022, 144, 8504–8514.

32 K. Fujita, W. Ito and R. Yamaguchi, ChemCatChem, 2014, 6, 109–112.

33 Ir-catalyzed deuteration of carbonyls with HCO2H and D2O:(a) Y. Himeda, S. Miyazawa, N. Onozawa-Komatsuzaki, T. Hirose and K. Kasuga, Dalton Trans., 2009, 6286–6288; (b) W.-H. Wang, J. F. Hull, J. T. Muckerman, E. Fujita, T. Hirose and Y. Himeda, Chem. - Eur. J., 2012, 18, 9397– 9404.

34 (a) W.-H. Wang, J. T. Muckerman, E. Fujita and Y. Himeda, ACS Catal., 2013, 3, 856–860; (b) G. Zeng, S. Sakaki, K. Fujita, H. Sano and R. Yamaguchi, ACS Catal., 2014, 4, 1010–1020. 35 DFT calculations34b support the outer-sphere, concerted pathway over the inner-sphere b-H elimination in the dehydrogenation process.

参考文献をもっと見る