リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「A Generalized Mechanism of the Primary Photoreaction in Microbial Rhodopsins as Revealed by Femtosecond Time-Resolved Spectroscopy」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

A Generalized Mechanism of the Primary Photoreaction in Microbial Rhodopsins as Revealed by Femtosecond Time-Resolved Spectroscopy

張, 君輔 東京大学 DOI:10.15083/0002004741

2022.06.22

概要

The biological functions of microbial rhodopsins are activated by all-trans to 13-cis photoisomerization of the protonated retinal Schiff base (PRSB) chromophore. Such photoisomerization proceeds on the femto-to-picosecond time scale, giving rise to the formation of the first ground-state intermediate having 13-cis chromophore conformation. While this ultrafast photoisomerization process has been extensively studied, it was recognized that the excited-state relaxation dynamics differs from one rhodopsin to another. For example, bacteriorhodopsin (BR), the most prototypical proton (H+ )-pumping rhodopsin, shows nearly single exponential decay of the excited-state population with a ~500 fs time constant, 1 whereas the excited state of other rhodopsins such as halorhodopsin,2 proteorhodopsin (PR)3 and Anabaena sensory rhodopsin4 exhibit complex multi-exponential decays consisting of the fast (1 ps) decay components. So far, these multi-exponential decays of the excited-state chromophore have been considered to originate from the branching of the relaxation pathway on the S1 excitedstate potential energy surface (PES),5 from which the isomerization occurs with different rates and efficiencies. However, such conventional understanding does not explain why the S1 PES of different rhodopsins exhibits different branching and why such branching does not occur in BR. Recently, a time-resolved absorption study on sodium (Na+ )-pumping rhodopsin KR2 showed that the ratio of the fast and slow decays strongly depends on pH of the buffer, indicating that the molecular origin of the multi-exponential decay of the excited state is the acid-base equilibrium of the PRSB counterion in the protein in the ground state.6 This study provides a very different picture to explain the multi-exponential decay of the excited state of rhodopsins, but its generality is still unclear because KR2 is a rhodopsin that has a unique chromophore environment and exhibits a peculiar Na+ -pumping function. 7 Therefore, it is highly desirable to examine the importance of the acid-base equilibrium of the PRSB counterion for the excited-state dynamics of ordinary H+ -pumping rhodopsins. Based on this idea, ultrafast dynamics of several microbial rhodopsins were thoroughly studied by femtosecond time-resolved spectroscopy in order to obtain a generalized picture of the primary photoisomerization process in microbial rhodopsins.

First, the author describes the primary photoreaction dynamics of PR, its D97N mutant and bacteriorhodopsin (BR) having ordinary H+ -pumping function, which were investigated in a wide pH range by femtosecond timeresolved absorption spectroscopy. These samples were chosen not only because they are abundant in nature but also because their PRSB counterion characteristics are different (see Figure 1(a)–(c)). Quantitative analysis of the timeresolved absorption spectra confirms that the excited states of these rhodopsins exhibit multi-exponential decays, containing the fast (1 ps) decay components. Furthermore, it was found that the excited-state relaxation dynamics and the retinal photoisomerization efficiency are decisively governed by the protonation state of the corresponding PRSB counterion (Asp97 for PR and Asp85 for BR, respectively): When the PRSB counterion is deprotonated, the excited state predominantly shows the fast (1 ps) decay, and the photoisomerization proceeds less efficient when the counterion is protonated (i.e., neutral). These results clearly indicate that the acidbase equilibrium of the PRSB counterion in the ground state is the major molecular origin of the multi-exponential excited-state decay in the primary photoreaction of microbial rhodopsins.

Based on the understanding obtained with the H+ -pumping rhodopsins, the author studied the primary photoreaction dynamics of the recently discovered TAT rhodopsin that shows no biological function. In TAT rhodopsin, the analogue position of the PRSB counterion is neutral Thr82 residue (Figure 1(d)), which is considered equivalent to that of PR and BR with the protonated PRSB counterion. As expected, the retinal photoisomerization is extremely inefficient and the excited-state population decays exclusively with the slow (>1 ps) decay components. Therefore, the argument proposed with the H+ -pumping rhodopsins is also applicable to the newly discovered TAT rhodopsin.

In addition, the author discusses the ground-state structural change of the PRSB chromophore in PR, which is associated with the change of the protonation state of the counterion Asp97. The author carried out impulsive stimulated Raman measurements, and the obtained Raman spectra revealed that the hydrogen-out-of-plane (HOOP) wagging modes in the 800–1000 cm-1 region is more pronounced when Asp97 is protonated, suggesting a more distorted retinal structure. Such a distorted chromophore structure is interpreted not be optimized for efficient retinal isomerization, giving rise to a lower photoisomerization reactivity when the counterion Asp97 is protonated.

In conclusion, this thesis study clarified that the protonation state of the PRSB counterion plays a decisive role in determining the excited-state dynamics and the photoisomerization reactivity of microbial rhodopsins in general. Although the excited-state relaxation dynamics in different rhodopsins have been explained with difference in the branching of the relaxation pathway on the S1 PES, this study unambiguously showed that the difference, in fact, originates from the difference in the structure in the ground state of microbial rhodopsin, i.e., difference in the protonation state of the PRSB counterion. The present study provides a new, coherent view about the primary photoreaction in retinal proteins.

この論文で使われている画像

参考文献

Chapter1

(1) Spudich, J. L.; Yang, C. S.; Jung, K. H.; Spudich, E. N. Retinylidene Proteins: Structures and Functions from Archaea to Humans. Annu. Rev. Cell Dev. Biol. 2000, 16 (1), 365–392.

(2) Ernst, O. P.; Lodowski, D. T.; Elstner, M.; Hegemann, P.; Brown, L. S.; Kandori, H. Microbial and Animal Rhodopsins: Structures, Functions, and Molecular Mechanisms. Chem. Rev. 2014, 114 (1), 126–163.

(3) Palczewski, K. G Protein-Coupled Receptor Rhodopsin. Annu. Rev. Biochem. 2006, 75 (1), 743–767.

(4) Kandori, H. Ion-Pumping Microbial Rhodopsins. Front. Mol. Biosci. 2015, 2, 52.

(5) Gunaydin, L. A.; Yizhar, O.; Berndt, A.; Sohal, V. S.; Deisseroth, K.; Hegemann, P. Ultrafast Optogenetic Control. Nat. Neurosci. 2010, 13 (3), 387–392.

(6) Oesterhelt, D.; Stoeckenius, W. Rhodopsin-Like Protein From the Purple Membrane of Halobacterium Halobium. Nature New Biol. 1971, 233 (39), 149–152.

(7) Birge, R. R. Nature of the Primary Photochemical Events in Rhodopsin and Bacteriorhodopsin. Biochim. Biophys. Acta 1990, 1016 (3), 293–327.

(8) Haupts, U.; Tittor, J.; Oesterhelt, D. Closing in on Bacteriorhodopsin: Progress in Understanding the Molecule. Annu. Rev. Biophys. Biomol. Struct. 1999, 28 (1), 367–399.

(9) Lanyi, J. K. Bacteriorhodopsin. Annu. Rev. Physiol. 2004, 66 (1), 665–688.

(10) Birge, R. R.; Cooper, T. M.; Lawrence, A. F.; Masthay, M. B.; Zhang, C. F.; Zidovetzki, R. Revised Assignment of Energy Storage in the Primary Photochemical Event in Bacteriorhodopsin. J. Am. Chem. Soc. 1991, 113 (11), 4327–4328.

(11) Logunov, S. L.; El-Sayed, M. A. Redetermination of the Quantum Yield of Photoisomerization and Energy Content in the K-Intermediate of Bacteriorhodopsin Photocycle and Its Mutants by the Photoacoustic Technique. J. Phys. Chem. B 1997, 101 (33), 6629–6633.

(12) Govindjee, R.; Balashov, S. P.; Ebrey, T. G. Quantum Efficiency of the Photochemical Cycle of Bacteriorhodopsin. Biophys. J. 1990, 58 (3), 597–608.

(13) Oesterhelt, D.; Hegemann, P.; Tittor, J. The Photocycle of the Chloride Pump Halorhodopsin. II: Quantum Yields and a Kinetic Model. EMBO J. 1985, 4 (9), 2351–2356.

(14) Tittor, J.; Oesterhelt, D. The Quantum Yield of Bacteriorhodopsin. FEBS Letters 1990, 263 (2), 269–273.

(15) Kandori, H.; Sasabe, H. Excited-State Dynamics of a Protonated Schiff Base of All-Trans Retinal in Methanol Probed by Femtosecond Fluorescence Measurement. Chem. Phys. Lett. 1993, 216 (1-2), 126–172.

(16) Logunov, S. L.; Song, L.; El-Sayed, M. A. Excited-State Dynamics of a Protonated Retinal Schiff Base in Solution. J. Phys. Chem. 1996, 100 (47), 18586–18591.

(17) Mathies, R. A.; Brito Cruz, C. H.; Pollard, W. T.; Shank, C. V. Direct Observation of the Femtosecond Excited-State Cis-Trans Isomerization in Bacteriorhodopsin. Science 1988, 240 (4853), 777–779.

(18) Kandori, H.; Yoshihara, K.; Tomioka, H.; Sasabe, H. Primary Photochemical Events in Halorhodopsin Studied by Subpicosecond Time-Resolved Spectroscopy. J. Phys. Chem. 1992, 96 (14), 6066–6071.

(19) Arlt, T.; Schmidt, S.; Zinth, W.; Haupts, U.; Oesterhelt, D. The Initial Reaction Dynamics of the Light-Driven Chloride Pump Halorhodopsin. Chem. Phys. Lett. 1995, 241 (5-6), 559– 565.

(20) Lenz, M. O.; Huber, R.; Schmidt, B.; Gilch, P.; Kalmbach, R.; Engelhard, M.; Wachtveitl, J. First Steps of Retinal Photoisomerization in Proteorhodopsin. Biophys. J. 2006, 91 (1), 255–262.

(21) Wand, A.; Loevsky, B.; Friedman, N.; Sheves, M.; Ruhman, S. Probing Ultrafast Photochemistry of Retinal Proteins in the Near-IR: Bacteriorhodopsin and Anabaena Sensory Rhodopsin vs Retinal Protonated Schiff Base in Solution. J. Phys. Chem. B 2012, 117 (16), 4670–4679.

(22) Tahara, S.; Takeuchi, S.; Abe-Yoshizumi, R.; Inoue, K.; Ohtani, H.; Kandori, H.; Tahara, T. Ultrafast Photoreaction Dynamics of a Light-Driven Sodium-Ion-Pumping Retinal Protein from Krokinobacter eikastus Revealed by Femtosecond Time-Resolved Absorption Spectroscopy. J. Phys. Chem. Lett. 2015, 6 (22), 4481–4486.

(23) Nuss, M. C.; Zinth, W.; Kaiser, W.; Kölling, E.; Oesterhelt, D. Femtosecond Spectroscopy of the First Events of the Photochemical Cycle in Bacteriorhodopsin. Chem. Phys. Lett. 1985, 117 (1), 1–7.

(24) Polland, H. J.; Franz, M. A.; Zinth, W.; Kaiser, W.; Kölling, E.; Oesterhelt, D. Early Picosecond Events in the Photocycle of Bacteriorhodopsin. Biophys. J. 1986, 49 (3), 651– 662.

(25) Huber, R.; Köhler, T.; Lenz, M. O.; Bamberg, E.; Kalmbach, R.; Engelhard, M.; Wachtveitl, J. pH-Dependent Photoisomerization of Retinal in Proteorhodopsin. Biochemistry 2005, 44 (6), 1800–1806.

(26) Marín, M. D. C.; Agathangelou, D.; Orozco-Gonzalez, Y.; Valentini, A.; Kato, Y.; AbeYoshizumi, R.; Kandori, H.; Choi, A.; Jung, K.-H.; Haacke, S.; et al. Fluorescence Enhancement of a Microbial Rhodopsin via Electronic Reprogramming. J. Am. Chem. Soc. 2019, 141 (1), 262–271.

(27) Nakamura, T.; Takeuchi, S.; Shibata, M.; Demura, M.; Kandori, H.; Tahara, T. Ultrafast Pump−Probe Study of the Primary Photoreaction Process in pharaonis Halorhodopsin: Halide Ion Dependence and Isomerization Dynamics. J. Phys. Chem. B 2008, 112 (40), 12795–12800.

(28) Sudo, Y.; Mizuno, M.; Wei, Z.; Takeuchi, S.; Tahara, T.; Mizutani, Y. The Early Steps in the Photocycle of a Photosensor Protein Sensory Rhodopsin I From Salinibacter Ruber. J. Phys. Chem. B 2014, 118 (6), 1510–1518.

(29) Tahara, S.; Takeuchi, S.; Abe-Yoshizumi, R.; Inoue, K.; Ohtani, H.; Kandori, H.; Tahara, T. Origin of the Reactive and Nonreactive Excited States in the Primary Reaction of Rhodopsins: pH Dependence of Femtosecond Absorption of Light-Driven Sodium Ion Pump Rhodopsin KR2. J. Phys. Chem. B 2018, 122 (18), 4784–4792.

(30) Inoue, K.; Ono, H.; Abe-Yoshizumi, R.; Yoshizawa, S.; Ito, H.; Kogure, K.; Kandori, H. A Light-Driven Sodium Ion Pump in Marine Bacteria. Nat. Commun. 2013, 4 (1), 1678.

(31) Kato, H. E.; Inoue, K.; Abe-Yoshizumi, R.; Kato, Y.; Ono, H.; Konno, M.; Hososhima, S.; Ishizuka, T.; Hoque, M. R.; Kunitomo, H.; et al. Structural Basis for Na+ Transport Mechanism by a Light-Driven Na+ Pump. Nature 2015, 521 (7550), 48–53.

Chapter2

(1) Berera, R.; van Grondelle, R.; Kennis, J. T. M. Ultrafast Transient Absorption Spectroscopy: Principles and Application to Photosynthetic Systems. Photosynth Res 2009, 101, 105–118.

(2) Ruckebusch, C.; Sliwa, M.; Pernot, P.; de Juan, A.; Tauler, R. Comprehensive Data Analysis of Femtosecond Transient Absorption Spectra: A Review. J. Photochem. and Photobiol. C 2012, 13 (1), 1–27.

(3) Johnson, P. J. M.; Prokhorenko, V. I.; Miller, R. J. D. Stable UV to IR Supercontinuum Generation in Calcium Fluoride with Conserved Circular Polarization States. Opt. Express 2009, 17 (24), 21488–21496.

(4) Yamaguchi, S.; Hamaguchi, H.-O. Convenient Method of Measuring the Chirp Structure of Femtosecond White-Light Continuum Pulses. Appl. Spectrosc. 1995, 49 (10), 1513–1515.

(5) Maiman, T. H. Stimulated Optical Radiation in Ruby. Nature 1960, 187, 493–494.

(6) Prince, R. C.; Frontiera, R. R.; Potma, E. O. Stimulated Raman Scattering: From Bulk to Nano. Chem. Rev. 2017, 117 (7), 5070–5094.

(7) Ruhman, S.; Joly, A. G.; Nelson, K. A. Time‐Resolved Observations of Coherent Molecular Vibrational Motion and the General Occurrence of Impulsive Stimulated Scattering. J. Chem. Phys. 1987, 86 (11), 6563–6565.

(8) Dhar, L.; Rogers, J. A.; Nelson, K. A. Time-Resolved Vibrational Spectroscopy in the Impulsive Limit. Chem. Rev. 1994, 94 (1), 157–193.

(9) Kuramochi, H.; Takeuchi, S.; Tahara, T. Femtosecond Time-Resolved Impulsive Stimulated Raman Spectroscopy Using Sub-7-Fs Pulses: Apparatus and Applications. Rev. Sci. Instrum. 2016, 87 (4), 043107.

(10) Kukura, P.; McCamant, D. W.; Mathies, R. A. Femtosecond Stimulated Raman Spectroscopy. Annu. Rev. Phys. Chem. 2007, 58 (1), 461–488.

(11) Frontiera, R. R.; Shim, S.; Mathies, R. A. Origin of Negative and Dispersive Features in Anti-Stokes and Resonance Femtosecond Stimulated Raman Spectroscopy. J. Chem. Phys. 2008, 129 (6), 064507.

(12) Weigel, A.; Dobryakov, A.; Klaumünzer, B.; Sajadi, M.; Saalfrank, P.; Ernsting, N. P. Femtosecond Stimulated Raman Spectroscopy of Flavin After Optical Excitation. J. Phys. Chem. B 2011, 115 (13), 3656–3680.

(13) Cerullo, G.; De Silvestri, S. Ultrafast Optical Parametric Amplifiers. Rev. Sci. Instrum. 2003, 74 (1), 1–18.

(14) Trebino, R.; Kane, D. Using Phase Retrieval to Measure the Intensity and Phase of Ultrashort Pulses: Frequency-Resolved Optical Gating. J. Opt. Soc. Am. A 1993, 10 (5), 1101–1111.

Chapter6

(1) Sharaabi, Y.; Brumfeld, V.; Sheves, M. Binding of Anions to Proteorhodopsin Affects the Asp97 pKa. Biochemistry 2010, 49 (21), 4457–4465.

(2) Jonas, R.; Ebrey, T. G. Binding of a Single Divalent Cation Directly Correlates with the Blue-to-Purple Transition in Bacteriorhodopsin. Proc. Natl. Acad. Sci. U.S.A. 1991, 88 (1), 149–153.

(3) Tahara, S.; Takeuchi, S.; Abe-Yoshizumi, R.; Inoue, K.; Ohtani, H.; Kandori, H.; Tahara, T. Origin of the Reactive and Nonreactive Excited States in the Primary Reaction of Rhodopsins: pH Dependence of Femtosecond Absorption of Light-Driven Sodium Ion Pump Rhodopsin KR2. J. Phys. Chem. B 2018, 122 (18), 4784–4792.

(4) Kataoka, C.; Inoue, K.; Katayama, K.; Béjà, O.; Kandori, H. Unique Photochemistry Observed in a New Microbial Rhodopsin. J. Phys. Chem. Lett. 2019, 10 (17), 5117–5121.

(5) Smith, S. O.; Braiman, M. S.; Myers, A. B.; Pardoen, J. A.; Courtin, J. M. L.; Winkel, C.; Lugtenburg, J.; Mathies, R. A. Vibrational Analysis of the All-Trans-Retinal Chromophore in Light-Adapted Bacteriorhodopsin. J. Am. Chem. Soc. 1987, 109 (10), 3108–3125.

(6) Smith, S. O.; Mathies, R. A. Resonance Raman Spectra of the Acidified and Deionized Forms of Bacteriorhodopsin. Biophys. J. 1985, 47 (2), 251–254.

(7) Oesterhelt, D.; Hegemann, P.; Tittor, J. The Photocycle of the Chloride Pump Halorhodopsin. II: Quantum Yields and a Kinetic Model. EMBO J. 1985, 4 (9), 2351–2356.

(8) Govindjee, R.; Balashov, S. P.; Ebrey, T. G. Quantum Efficiency of the Photochemical Cycle of Bacteriorhodopsin. Biophys. J. 1990, 58 (3), 597–608.

(9) Kandori, H.; Yoshihara, K.; Tomioka, H.; Sasabe, H. Primary Photochemical Events in Halorhodopsin Studied by Subpicosecond Time-Resolved Spectroscopy. J. Phys. Chem. 1992, 96 (14), 6066–6071.

(10) Arlt, T.; Schmidt, S.; Zinth, W.; Haupts, U.; Oesterhelt, D. The Initial Reaction Dynamics of the Light-Driven Chloride Pump Halorhodopsin. Chem. Phys. Lett. 1995, 241 (5-6), 559– 565.

(11) Nakamura, T.; Takeuchi, S.; Shibata, M.; Demura, M.; Kandori, H.; Tahara, T. Ultrafast Pump−Probe Study of the Primary Photoreaction Process in pharaonis Halorhodopsin: Halide Ion Dependence and Isomerization Dynamics. J. Phys. Chem. B 2008, 112 (40), 12795–12800.

(12) Sudo, Y.; Mizuno, M.; Wei, Z.; Takeuchi, S.; Tahara, T.; Mizutani, Y. The Early Steps in the Photocycle of a Photosensor Protein Sensory Rhodopsin I from Salinibacter ruber. J. Phys. Chem. B 2014, 118 (6), 1510–1518.

(13) Takeuchi, S.; Ruhman, S.; Tsuneda, T.; Chiba, M.; Taketsugu, T.; Tahara, T. Spectroscopic Tracking of Structural Evolution in Ultrafast Stilbene Photoisomerization. Science 2008, 322 (5904), 1073–1077.

(14) Kuramochi, H.; Takeuchi, S.; Tahara, T. Femtosecond Time-Resolved Impulsive Stimulated Raman Spectroscopy Using Sub-7-Fs Pulses: Apparatus and Applications. Rev. Sci. Instrum. 2016, 87 (4), 043107.

(15) Fujisawa, T.; Fujisawa, T.; Kuramochi, H.; Hosoi, H.; Hosoi, H.; Takeuchi, S.; Tahara, T. Role of Coherent Low-Frequency Motion in Excited-State Proton Transfer of Green Fluorescent Protein Studied by Time-Resolved Impulsive Stimulated Raman Spectroscopy. J. Am. Chem. Soc. 2016, 138 (12), 3942–3945.

(16) Kuramochi, H.; Takeuchi, S.; Yonezawa, K.; Kamikubo, H.; Kataoka, M.; Tahara, T. Probing the Early Stages of Photoreception in Photoactive Yellow Protein with Ultrafast Time-Domain Raman Spectroscopy. Nat. Chem. 2017, 9 (7), 660–666.

(17) Luecke, H.; Schobert, B.; Richter, H. T.; Cartailler, J. P.; Lanyi, J. K. Structure of Bacteriorhodopsin at 1.55 Å Resolution. J. Mol. Biol. 1999, 291 (4), 899–911.

参考文献をもっと見る