リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Anion photoelectron spectroscopy and ion mobility mass spectrometry on chemically-synthesized gold clusters in gas phase」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Anion photoelectron spectroscopy and ion mobility mass spectrometry on chemically-synthesized gold clusters in gas phase

平田, 圭祐 東京大学 DOI:10.15083/0002001908

2021.10.04

概要

Ligand (L)-protected gold clusters with atomically-defined sizes, [AuxLy]z, provide us with an ideal platform to study size-dependent evolution of structures and properties of gold in nanoscale. Geometric and electronic structures of these chemically-synthesized Au clusters have been revealed by single-crystal X-ray diffraction, X-ray and UV-vis absorption spectroscopy, cyclic voltammetry and so on. In contrast, experimental probes in the gas phase further give us complementary and precious information on intrinsic physical properties and elementary excitation and relaxation processes without perturbation from the surrounding environment. For example, photoelectron spectroscopy (PES) and photodissociation mass spectrometry (PDMS) determine the electron affinity and probe photo-induced relaxation processes including photodissociation and photodetachment. Ion mobility mass spectrometry (IMMS) allows us to determine collision cross section and to monitor collision-induced structural isomerization processes of [AuxLy]z in the electronically ground state.

In Chapter 1, I overview the experimental probes of geometric and electronic structures of protected metal clusters in the gas phase. I briefly summarize the chemistry of bare clusters and chemically-synthesized Au clusters.

In Chapter 2, I probed the electronic structure of a prototypical thiolate-protected Au cluster, [Au25(SR)18]−, using anion PES and PDMS. I determined adiabatic electron affinity of [Au25(SR)18]0 and vertical detachment energy of [Au25(SR)18]− for the first time. Selective photoexcitation at 266 nm to an electronically excited state results in indirect emission of thermionic electrons. This is ascribed to the promotion of internal conversion by retardation of nuclear motion toward dissociation.

In Chapter 3, I conducted IMMS on [PdAu8(PPh3)8]2+ and [Au9(PPh3)8]3+ introduced into the gas phase by electrospray ionization (ESI). Upon collisional activation by buffer gas, the electrosprayed [PdAu8(PPh3)8]2+ and [Au9(PPh3)8]3+ were converted to smaller structures. The results suggest that the ligand layer with disordered motif in dispersion is retained during desolvation process by ESI.

In Chapter 4, I summarize the thesis and describe future prospects.

この論文で使われている画像

参考文献

Chapter 1

1. Makov, G.; Nitzan, A.; Brus, L. E. On the Ionization Potential of Small Metal and Dielectric Particles. J. Chem. Phys. 1988, 88, 5076−5085.

2. Perdew, J. P. Energetics of Charged Metallic Particles: from Atom to Bulk Solid. Phys. Rev. B 1988, 37, 6175−6180.

3. Taylor, K. J.; Pettiette-Hall, C. L.; Cheshnovsky, O.; Smalley, R. E. Ultraviolet Photoelectron Spectra of Coinage Metal Clusters. J. Chem. Phys. 1992, 96, 3319−3329.

4. Kubo, R. Electronic Properties of Metallic Fine Particles. I. J. Phys. Soc. Jpn. 1962, 17, 975– 986.

5. Bernhardt, T. M. Gas-Phase Kinetics and Catalytic Reactions of Small Silver and Gold Clusters. Int. J. Mass Spectrom. 2005, 243, 1−29.

6. Wallace, W. T.; Whetten, R. L. Coadsorption of CO and O2 on Selected Gold Clusters: Evidence for Efficient Room-Temperature CO2 Generation. J. Am. Chem. Soc. 2002, 124, 7499–7505.

7. Glib, S.; Weis, P.; Furche, F.; Ahlrichs, R.; Kappes, M. M. Structures of Small Gold Cluster Cations (Aun+, n<14): Ion Mobility Measurements versus Density Functional Calculations. J. Chem. Phys. 2002, 116, 4094−4101.

8. Häkkinen, H.; Yoon, B.; Landman, U.; Li, X.; Zhai, H.-J.; Wang, L.-S. On the Electronic and Atomic Structures of Small AuN− (N = 4–14) Clusters: A Photoelectron Spectroscopy and Density-Functional Study. J. Phys. Chem. A 2003, 107, 6168−6175.

9. Bulusu, S.; Li, X.; Wang, L.-S.; Zeng, X. C. Evidence of Hollow Golden Cages. Proc. Natl. Acad. Sci. 2006, 103, 8326–8330.

10. de Heer, W. A. The Physics of Simple Metal Clusters: Experimental Aspects and Simple Models. Rev. Mod. Phys. 1993, 65, 611−676.

11. Tsukuda, T. Toward an Atomic-Level Understanding of Size-Specific Properties of Protected and Stabilzied Gold Clusters Bull. Chem. Soc. Jpn. 2012, 85, 151–168.

12. Chen, S.; Ingram, R. S.; Hostetler, M. J.; Pietron, J. J.; Murray, R. W.; Schaaff, T. G.; Khoury,J. T.; Alvarez, M. M.; Whetten, R. L. Gold Nanoelectrodes of Varied Size: Transition to Molecule-Like Charging. Science 1998, 280, 2098–2101.

13. Jin, R.; Zheng, C.; Zhou, M.; Chen, Y. Atomically Precise Colloidal Metal Nanoclusters and Nanoparticles: Fundamentals and Opportunities. Chem. Rev. 2016, 116, 10346–10413.

14. Chakraborty, I.; Pradeep, T. Atomically Precise Clusters of Noble Metals: Emerging Link between Atoms and Nanoparticles. Chem. Rev. 2017, 117, 8208–8271.

15. Konishi, K. Phosphine-Coordinated Pure-Gold Clusters: Diverse Geometrical Structures and Unique Optical Properties/Responses. Struct. Bond 2014, 161, 49–86.

16. Lei, Z.; Wan, X.-K.; Yuan, S.-F.; Guan, Z.-J.; Wang, Q.-M. Alkynyl Approach toward theProtection of Metal Nanoclusters. Acc. Chem. Res. 2018, 51, 2465–2474.

17. Yao, Q.; Chen, T.; Yuan, X.; Xie, J. Toward Total Synthesis of Thiolate-Protected Metal Nanoclusters. Acc. Chem. Res. 2018, 51, 1338–1348.

18. Sakthivel, N. A.; Dass, A. Aromatic Thiolate-Protected Series of Gold Nanomolecules and a Contrary Structural Trend in Size Evolution. Acc. Chem. Res. 2018, 51, 1774–1783.

19. Walter, M.; Akola, J.; Lopez-Acevedo, O.; Jadzinsky, P. D.; Calero, G.; Ackerson, C. J.; Whetten, R. L.; Grönbeck, H.; Häkkinen, H. A Unified View of Ligand-Protected Gold Clusters as Superatom Complexes. Proc. Natl. Acad. Sci. 2008, 105, 9157–9162.

20. Tang, Q.; Hu, G.; Fung, V.; Jiang, D. Insights into Interfaces, Stability, Electronic Properties, and Catalytic Activities of Atomically Precise Metal Nanoclusters from First Principles. Acc. Chem. Res. 2018, 51, 2793–2802.

21. Xu, W. W.; Zheng, X. C.; Gao, Y. Application of Electronic Counting Rules for Ligand- Protected Gold Nanoclusters. Acc. Chem. Res. 2018, 51, 2739–2747.

22. Aikens, C. M. Electronic and Geometric Structure, Optical Properties, and Excited State Behavior in Atomically Precise Thiolate-Stabilized Noble Metal Nanoclusters. Acc. Chem. Res. 2018, 51, 3065–3073.

23. Brust, M.; Walker, M.; Bethell, D.; Schiffrin, D. J.; Whyman, R. Synthesis of Thiol- Derivatised Gold Nanoparticles in a Two-Phase Liquid-Liquid System. J. Chem. Soc., Chem. Commun. 1994, 0, 801–802.

24. Negishi, Y.; Nobusada, K.; Tsukuda, T. Glutathione-Protected Gold Clusters Revisited: Bridging the Gap between Gold(I)-Thiolate Complexes and Thiolate-Protected Gold Nanocrystals. J. Am. Chem. Soc. 2005, 127, 5261–5270.

25. Jadzinsky, P. D.; Calero, G.; Ackerson, C. J.; Bushnell, D. A.; Kornberg, R. D. Structure of a Thiol Monolayer-Protected Gold Nanoparticle at 1.1Å Resolution. Science 2007, 318, 430– 433.

26. Heaven, M. W.; Dass, A.; White, P. S.; Holt, K. M.; Murray, R. M. Crystal Structure of the Gold Nanoparticle [N(C8H17)4][Au25(SCH2CH2Ph)18] J. Am. Chem. Soc. 2008, 130, 3754– 3755.

27. Zhu, M.; Aikens, C. M.; Hollander, F. J.; Schatz, G. C.; Jin, R. Correlating the Crystal Structure of A Thiol-Protected Au25 Cluster and Optical Properties. J. Am. Chem. Soc. 2008, 130, 5883–5885.

28. Qian, H.; Eckenhoff, W. T.; Zhu, Y.; Pintauer, T.; Jin, R. Total Structure Determination of Thiolate-Protected Au38 Nanoparticles. J. Am. Chem. Soc. 2010, 132, 8280–8281.

29. Shichibu, Y.; Konishi, K. HCl-Induced Nuclearity Convergence in Diphosphine-Protected Ultrasmall Gold Clusters: A Novel Synthetic Route to “Magic-Number” Au13 Clusters. Small 2010, 6, 1216–1220.

30. Bhattarai, B.; Zaker, Y.; Atnagulov, A.; Yoon, B.; Landman, U.; Bigioni, T. P. Chemistry and Structure of Silver Molecular Nanoparticles. Acc. Chem. Res. 2018, 51, 3104–3113.

31. Ghosh, A.; Mohammed, O. F.; Bakr, O. Atomic-Level Doping of Metal Clusters. Acc. Chem. Res. 2018, 51, 3094–3103.

32. Joshi, C. P.; Bootharaju, M. S.; Alhilaly, M. J.; Bakr, O. M. [Ag25(SR)18]−: The “Golden” Silver Nanoparticle. J. Am. Chem. Soc. 2015, 137, 11578–11581.

33. AbdulHalim, L. G.; Bootharaju, M. S.; Tang, Q.; Del Gobbo, S.; AbdulHalim, R. G.; Eddaoudi, M.; Jiang, D.-e.; Bakr, O. M. Ag29(BDT)12(TPP)4: A Tetravalent Nanocluster. Nanoscale 2016, 8, 17333–17339.

34. Yan, J.; Su, H.; Yang, H.; Malola, S.; Lin, S.; Häkkinen, H.; Zheng, N. Total Structure and Electronic Structure Analysis of Doped Thiolated Silver [MAg24(SR)18]2− (M =Pd, Pt) Clusters. J. Am. Chem. Soc. 2015, 137, 11880–11883.

35. Bootharaju, M. S.; Sinatra, L.; Bakr, O. M. Distinct Metal-Exchange Pathways of Doped Ag25 Nanoclusters. Nanoscale 2016, 8, 17333–17339.

36. Jin, R. Atomically Precise Metal Nanoclusters: Stable Sizes and Optical Properties.Nanoscale 2015, 7, 1549–1565.

37. Negishi, Y.; Nakazaki, T.; Malola, S.; Takano, S.; Niihori, Y.; Kurashige, W.; Yamazoe, S.; Tsukuda, T.; Häkkinen, H. A Critical Size for Emergence of Nonbulk Electronic and Geometric Structures in Dodecanethiolate-Protected Au Clusters. J. Am. Chem. Soc. 2015, 137, 1206–1212.

38. Kwak, K.; Lee, D. Electrochemistry of Atomically Precise Metal Nanoclusters. Acc. Chem. Res. 2019, 52, 12–22.

39. Yau, S. H.; Varnavski, O.; Goodson III, T. An Ultrafast Look at Au Nanoclusters. Acc. Chem. Res. 2013, 46, 1506–1516.

40. Yi, C.; Zheng, H.; Herbert, P. J.; Chen, Y.; Jin, R. Knappenberger, Jr. Ligand- and Solvent- Dependent Electronic Relaxation Dynamics of Au25(SR)18– Monolayer-Protected Clusters. J. Phys. Chem. C 2017, 121, 24894–24902.

41. Kwak, K.; Thanthirige, V. D.; Pyo, K.; Lee, D.; Ramakrishna, G. Energy Gap Law for Exciton Dynamics in Gold Cluster Molecules. J. Phys. Chem. Lett. 2017, 8, 4898–4905.

42. Ohta, T.; Shibuta, M.; Tsunoyama, H.; Negishi, Y.; Eguchi, T.; Nakajima, A. Size and Structure Dependence of Electronic States in Thiolate-Protected Gold Nanoclusters of Au25(SR)18, Au38(SR)24, Au144(SR)60. J. Phys. Chem. C 2013, 117, 3674–3679.

43. Chen, Y.; Liu, C.; Tang, Q.; Zeng, C.; Higaki, T.; Das, A.; Jiang, E.-e.; Rosi, N. L.; Jin, R. Isomerism in Au28(SR)20 Nanocluster and Stable Structures. J. Am. Chem. Soc. 2016, 138, 1482–1485.

44. Antonello, S.; Arrigoni, G.; Dainese, T.; Nardi, M. D.; Parisio, G.; Perotti, L.; René, A.;Venzo, A.; Maran, F. Electron Transfer through 3D Monolayers on Au25 Clusters. ACS Nano2014, 8, 2788–2795.

45. Knoppe, S.; Verbiest, T. Resonance Enhancement of Nonlinear Optical Scattering in Monolayer-Protected Gold Clusters. J. Am. Chem. Soc. 2017, 139, 14853–14856.

46. Knoppe, S.; Bürgi, T. Chirality in Thiolate-Protected Gold Clusters. Acc. Chem. Res. 2014,47, 1318–1326.

47. Takano, S.; Tsukuda, T. Amplification of Optical Activity of Gold Clusters by the Proximity of BINAP. J. Phys. Chem. Lett. 2016, 7, 4509–4513.

48. Black, D. M.; Crittenden, C. M.; Brodbelt, J. S.; Whetten, R. L. Ultraviolet Photodissociation of Selected Gold Clusters: Ultraefficient Unstapling and Ligand Stripping of Au25(pMBA)18 and Au36(pMBA)24. J. Phys. Chem. Lett. 2017, 8, 1283–1289.

49. Greisch, J.; Ballester-Caudet, A.; Kruppa, S. V.; Lei, Z.; Wang, Q.; Riehn, C.; Remacle, F. Gas-Phase Photoluminescence and Photodissociation of Silver-Capped Hexagold Clusters. J. Phys. Chem. A 2018, 122, 5799–5810.

50. Daly, S.; Choi, C. M.; Zavras, A.; Krstić, M.; Chirot, F.; Connell, T. U.; Williams, S. J.; Donnelly, P. S.; Antione, R.; Giuliani, A.; Bonačić-Koutecký, V.; Dugourd, P.; O’Hair, R. A.J. Gas-Phase Structural and Optical Properties of Homo- and Heterobimetallic Rhombic Dodecahedral Nanoclusters [Ag14−nCun(C≡CtBu)12X]+ (X = Cl and Br): Ion Mobility, VUV and UV Spectroscopy, and DFT Calculations. J. Phys. Chem. C 2017, 121, 10719–10727.

51. Angel, L.; Majors, L.; Dharmaratne, A.; Dass, A. Ion Mobility Mass Spectrometry of Au25(SCH2CH2Ph)18 Nanoclusters. ACS Nano 2010, 4, 4691−4700.

52. Baksi, A.; Ghosh, A.; Mudedla, S. K.; Chakraborty, P.; Bhat, S.; Mondal, B.; Krishnadas, K. R.; Sabramanian, V.; Pradeep, T. Isomerism in Monolayer Protected Silver Cluster Ions: An Ion Mobility-Mass Spectrometry Approach. J. Phys. Chem. C 2017, 121, 13421–13427.

53. Ligare, M. R.; Baker, E. S.; Laskin, J.; Johnson, G. E. Ligand Induced Structural Isomerism in Phosphine Coordinated Gold Clusters Revealed by Ion Mobility Mass Spectrometry. Chem. Commun. 2017, 53, 7389–7392.

54. Baksi, A.; Chakraborty, P.; Bhat, S.; Natarajan, G.; Pradeep, T. [Au25(SR)18]22−: a Noble Metal Cluster Dimer in the Gas Phase. Chem. Commun. 2016, 52, 8397–8400.

55. Black, D. M.; Bhattarai, N.; Whetten, R. L.; Bach, S. B. H. Collision-Induced Dissociation of Monolayer Protected Clusters Au144 and Au130 in an Electrospray Time-of-Flight Mass Spectrometer. J. Phys. Chem. A 2014, 118, 10679–10687.

56. Chakraborty, P.; Baksi, A.; Khatun, E.; Nag, A.; Ghosh, A.; Pradeep, T. Dissociation of Gas Phase Ions of Atomically Precise Silver Clusters Reflects Their Solution Phase Stability. J. Phys. Chem. C 2017, 121, 10971–10981.

57. Tomihara, R.; Hirata, K.; Yamamoto, H.; Takano, S.; Koyasu, K.; Tsukdua, T. Collision-Induced Dissociation of Undecagold Clusters Protected by Mixed Ligands [Au11(PPh3)8Cl2]+ (X = Cl, C≡CPh). ACS Omega 2017, 121, 10971–10981.

58. Ghosh, A.; Bodiuzzaman, M.; Nag, A.; Jash, M.; Baksi, A.; Pradeep, T. Sequential Dihydrogen Desorption from Hydride-Protected Atomically Precise Silver Clusters and the Formation of Naked Clusters in the Gas Phase. ACS Nano 2017, 11, 11145–11151.

59. Baksi, A.; Harvey, S. R.; Natarajan, G.; Wysocki, V. H.; Pradeep, T. Possible Isomers in Ligand Protected Ag11 Cluster Ions Identified by Ion Mobility Mass Spectrometry and Fragmented by Surface Induced Dissociation. Chem. Commun. 2016, 52, 3805–3808.

60. Johnson, G. E.; Priest, T.; Laskin, J. Size-Dependent Stability toward Dissociation and Ligand Binding Energies of Phosphine Ligated Gold Cluster Ions. Chem. Sci. 2014, 5, 3275– 3286.

61. Kruit, P.; Read, F. H. Magnetic Field Paralleliser for 2π Electron-Spectrometer and Electron- Image Magnifier. J. Phys. E: Sci. Instrum. 1983, 16, 313–324.

62. Hamouda, R.; Bellina, B.; Bertorelle, F.; Compagnon, I.; Antoine, R.; Broyer, M.; Rayane, D.; Dugourd, P. Electron Emission of Gas-Phase [Au25(SG)18−6H]7− Gold Cluster and Its Action Spectroscopy. J. Phys. Chem. Lett. 2010, 1, 3189–3194.

63. Dass, A.; Stevenson, A.; Dubay, G. R.; Tracy, J. B.; Murray, R. W. Nanoparticle MALDI- TOF Mass Spectrometry without Fragmentation: Au25(SCH2CH2Ph)18 and Mixed Monolayer Au25(SCH2CH2Ph)18−x(L)x. J. Phys. Chem. Lett. 2010, 1, 3189–3194.

64. Grönbeck, H.; Walter, M.; Häkkinen, H. Theoretical Characterization of Cyclic Thiolated Gold Clusters. J. Am. Chem. Soc. 2006, 128, 10268–10275.

65. Zhou, M.; Wysocki, V. H. Acc. Chem. Res. 2014, 47, 1010–1018.

66. Shvartsburg, A. A.; Smith, R. D. Fundamentals of Traveling Wave Ion Mobility Spectrometry.Anal. Chem. 2008, 80, 9689–9699.

Chapter 2

1. Chen, S.; Ingram, R. S.; Hostetler, M. J.; Pietron, J. J.; Murray, R. W.; Schaaff, T. G.; Khoury,J. T.; Alvarez, M. M.; Whetten, R. L. Gold Nanoelectrodes of Varied Size: Transition to Molecule-Like Charging. Science 1998, 280, 2098–2101.

2. Tsukuda, T.; Häkkinen, H. Protected Metal Clusters: From Fundamentals to Applications, 1st ed.; Elsevier, B. V.: Amsterdam, The Netherlands, 2015.

3. Jin, R.; Zheng, C.; Zhou, M.; Chen, Y. Atomically Precise Colloidal Metal Nanoclusters and Nanoparticles: Fundamentals and Opportunities. Chem. Rev. 2016, 116, 10346–10413.

4. Chakraborty, I.; Pradeep, T. Atomically Precise Clusters of Noble Metals: Emerging Link between Atoms and Nanoparticles. Chem. Rev. 2017, 117, 8208–8271.

5. Konishi, K. Phosphine-Coordinated Pure-Gold Clusters: Diverse Geometrical Structures and Unique Optical Properties/Responses. Struct. Bond 2014, 161, 49–86.

6. Lei, Z.; Wan, X.-K.; Yuan, S.-F.; Guan, Z.-J.; Wang, Q.-M. Alkynyl Approach toward the Protection of Metal Nanoclusters. Acc. Chem. Res. 2018, 51, 2465–2474.

7. Yao, Q.; Chen, T.; Yuan, X.; Xie, J. Toward Total Synthesis of Thiolate-Protected Metal Nanoclusters. Acc. Chem. Res. 2018, 51, 1338–1348.

8. Sakthivel, N. A.; Dass, A. Aromatic Thiolate-Protected Series of Gold Nanomolecules and a Contrary Structural Trend in Size Evolution. Acc. Chem. Res. 2018, 51, 1774–1783.

9. Bhattarai, B.; Zaker, Y.; Atnagulov, A.; Yoon, B.; Landman, U.; Bigioni, T. P. Chemistry and Structure of Silver Molecular Nanoparticles. Acc. Chem. Res. 2018, 51, 3104–3113.

10. Yan, J.; Teo, B. K.; Zheng, N. Surface Chemistry of Atomically Precise Coinage–Metal Nanoclusters: From Structural Control to Surface Reactivity and Catalysis. Acc. Chem. Res. 2018, 51, 3084–3093.

11. Walter, M.; Akola, J.; Lopez-Acevedo, O.; Jadzinsky, P. D.; Calero, G.; Ackerson, C. J.; Whetten, R. L.; Grönbeck, H.; Häkkinen, H. A Unified View of Ligand-Protected Gold Clusters as Superatom Complexes. Proc. Natl. Acad. Sci. 2008, 105, 9157–9162.

12. Tang, Q.; Hu, G.; Fung, V.; Jiang, D. Insights into Interfaces, Stability, Electronic Properties, and Catalytic Activities of Atomically Precise Metal Nanoclusters from First Principles. Acc. Chem. Res. 2018, 51, 2793–2802.

13. Xu, W. W.; Zheng, X. C.; Gao, Y. Application of Electronic Counting Rules for Ligand- Protected Gold Nanoclusters. Acc. Chem. Res. 2018, 51, 2739–2747.

14. Aikens, C. M. Electronic and Geometric Structure, Optical Properties, and Excited State Behavior in Atomically Precise Thiolate-Stabilized Noble Metal Nanoclusters. Acc. Chem. Res. 2018, 51, 3065–6073.

15. Jadzinsky, P. D.; Calero, G.; Ackerson, C. J.; Bushnell, D. A.; Kornberg, R. D. Structure of a Thiol Monolayer-Protected Gold Nanoparticle at 1.1 Å Resolution. Science 2007, 318, 430–433.

16. Heaven, M. W.; Dass, A.; White, P. S.; Holt, K. M.; Murray, R. M. Crystal Structure of the Gold Nanoparticle [N(C8H17)4][Au25(SCH2CH2Ph)18] J. Am. Chem. Soc. 2008, 130, 3754– 3755.

17. Zhu, M.; Aikens, C. M.; Hollander, F. J.; Schatz, G. C.; Jin, R. Correlating the Crystal Structure of A Thiol-Protected Au25 Cluster and Optical Properties. J. Am. Chem. Soc. 2008, 130, 5883–5885.

18. Yan, N.; Xia, N.; Liao, L.; Zhu, M.; Jin, F.; Jin, R.; Wu, Z. Unraveling the Long-Pursued Au144 Structure by x-Ray Crystallography. Sci. Adv. 2018, 4, eaat7259.

19. Jin, R. Atomically Precise Metal Nanoclusters: Stable Sizes and Optical Properties.Nanoscale 2015, 7, 1549–1565.

20. Negishi, Y.; Nakazaki, T.; Malola, S.; Takano, S.; Niihori, Y.; Kurashige, W.; Yamazoe, S.; Tsukuda, T.; Häkkinen, H. A Critical Size for Emergence of Nonbulk Electronic and Geometric Structures in Dodecanethiolate-Protected Au Clusters. J. Am. Chem. Soc. 2015, 137, 1206–1212.

21. Kwak, K.; Lee, D. Electrochemistry of Atomically Precise Metal Nanoclusters. Acc. Chem. Res. 2019, 52, 12–22.

22. Yau, S. H.; Varnavski, O.; Goodson III, T. An Ultrafast Look at Au Nanoclusters. Acc. Chem. Res. 2013, 46, 1506–1516.

23. Yi, C.; Zheng, H.; Herbert, P. J.; Chen, Y.; Jin, R. Knappenberger, Jr. Ligand- and Solvent- Dependent Electronic Relaxation Dynamics of Au25(SR)18– Monolayer-Protected Clusters. J. Phys. Chem. C 2017, 121, 24894–24902.

24. Kwak, K.; Thanthirige, V. D.; Pyo, K.; Lee, D.; Ramakrishna, G. Energy Gap Law for Exciton Dynamics in Gold Cluster Molecules. J. Phys. Chem. Lett. 2017, 8, 4898–4905

25. Negishi, Y.; Nobusada, K.; Tsukuda, T. Glutathione-Protected Gold Clusters Revisited: Bridging the Gap between Gold(I)-Thiolate Complexes and Thiolate-Protected Gold Nanocrystals. J. Am. Chem. Soc. 2005, 127, 5261–5270.

26. Kang, X.; Chong, H.; Zhu, M. Au25(SR)18: the Captain of the Great Nanocluster Ship.Nanoscale, 2018, 10, 10758.

27. Joshi, C. P.; Bootharaju, M. S.; Alhilaly, M. J.; Bakr, O. M. [Ag25(SR)18]−: The “Golden” Silver Nanoparticle. J. Am. Chem. Soc. 2015, 137, 11578–11581.

28. Schacht, J.; Gaston, N. From the Superatom Model to a Diverse Array of Superelements: A Systematic Study of Dopant Influence on the Electronic Structure of Thiolate-Protected Gold Clusters. ChemPhysChem 2016, 17, 3237–3244.

29. Yu, P.; Wen, X.; Toh, Y.; Huang, J.; Tang, J. Metallophilic Bond-Induced Quenching of Delayed Fluorescence in Au25@BSA Nanoclusters. Part. Part. Syst. Charact. 2013, 30, 467–472.

30. Katla, S. K.; Zhang, J.; Castro, E.; Bernal, R. A.; Li, X. Atomically Precise Au25(SG)18 Nanoclusters: Rapid Single-Step Synthesis and Application in Photothermal Therapy. ACS Appl. Mater. Interfaces 2018, 10, 75–82.

31. Yu, C.; Li, G.; Kumar, S.; Kawasaki, H.; Jin, R. Stable Au25(SR)18/TiO2 Composite Nanostructure with Enhanced Visible Light Photocatalytic Activity. J. Phys. Chem. C 2013, 4, 2847–2852.

32. Agrachev, M.; Ruzzi, M.; Venzo, A.; Maran, F. Nuclear and Electron Magnetic Resonance Spectroscopies of Atomically Precise Gold Nanoclusters. Acc. Chem. Res. 2019, 52, 44–52.

33. Ohta, T., Shibuta, M., Tsunoyama, H., Negishi, Y., Eguchi, T., Nakajima, A. Size and Structure Dependence of Electronic States in Thiolate-Protected Gold Nanoclusters of Au25(SR)18, Au38(SR)24, and Au144(SR)60. J. Phys. Chem. C 2013, 117, 3674–3679.

34. Jiang, D.; Kühn, M.; Tang, Q.; Weigend, F. Superatomic Orbitals under Spin-Orbit Coupling.J. Phys. Chem. Lett. 2014, 5, 3286–3289.

35. Tofanelli, M. A.; Salorinne, K.; Ni, T. W.; Malola, S.; Newell, B.; Phillips, B.; Häkkinen, H.; Ackerson, C. Jahn–Teller Effects in Au25(SR)18. Chem. Sci. 2016, 7, 1882–1890.

36. Hamouda, R.; Bellina, B.; Bertorelle, F.; Compagnon, I.; Antoine, R.; Broyer, M.; Rayane, D.; Dugourd, P. Electron Emission of Gas-Phase [Au25(SG)18-6H]7− Gold Cluster and Its Action Spectroscopy. J. Phys. Chem. Lett. 2010, 1, 3189–3194.

37. Akola, J.; Walter, M.; Whetten, R. L.; Häkkinen, H.; Grönbeck, H. On the Structure of Thiolate-Protected Au25. J. Am. Chem. Soc. 2008, 130, 3756–3757.

38. Kacprzak, K. A.; Lehtovaara, L.; Akola, J.; Lopez-Acevedo, O.; Häkkinen, H. A Density Functional Investigation of Thiolate-Protected Bimetal PdAu24(SR)18z Clusters: Doping the Superatom Complex. Phys. Chem. Chem. Phys. 2009, 11, 7123–7129.

39. Jung, J.; Kang, S.; Han Y.-K. Ligand Effects on the Stability of Thiol-Stabilized Gold Nanoclusters: Au25(SR)18−, Au38(SR)24, and Au102(SR)44. Nanoscale 2012, 4, 4206–4210.

40. Taylor, K. J.; Pettiette-Hall, C. L.; Cheshnovsky, O.; Smalley, R. E. Ultraviolet Photoelectron Spectra of Coinage Metal Clusters. J. Chem. Phys. 1993, 65, 611−676.

41. Ning, C.-G.; Xiong, X.-G.; Wang, Y.-L.; Li, J.; Wang, L.-S. Probing the Electronic Structure and Chemical Bonding of the “Staple” Motifs of Thiolate Gold Nanoparticles: Au(SCH3)2− and Au2(SCH3)3−. Phys. Chem. Chem. Phys. 2012, 14, 9323–9329.

42. Black, D. M.; Crittenden, C. M.; Brodbelt, J. S.; Whetten, R. L. Ultraviolet Photodissociation of Selected Gold Clusters: Ultraefficient Unstapling and Ligand Stripping of Au25(pMBA)18 and Au36(pMBA)24. J. Phys. Chem. Lett. 2017, 8, 1283–1289.

43. Weidele, H.; Kreisle, D.; Recknagel, E.; Icking-Konert, G. S.; Handschuh, H.; Ganteför, G.; Eberhartdt. W. Thermionic Emission from Small Clusters: Direct Observation of the KineticEnergy Distribution of the Electrons. Chem. Phys. Lett. 1995, 237, 425–431.

44. Ganteför, G.; Eberhardt, W.; Weidele, H.; Kreisle, D.; Recknagel, E. Energy Dissipation in Small Clusters: Direct Photoemission, Dissociation, and Thermionic Emission. Phys. Rev. Lett. 1996, 77, 4524–4527.

45. Mooney, C. R. S.; Parkes, M. A.; Iskra, A.; Fielding, H. H. Controlling Radical Formation in the Photoactive Yellow Protein Chromophore. Angew. Chem. Int. Ed. 2015, 54, 5646–5649.

46. Liu, C.; Lin, S.; Pei, Y.; Zeng, X. C. Semiring Chemistry of Au25(SR)18: Fragmentation Pathway and Catalytic Active Site. J. Am. Chem. Soc. 2013, 135, 18067–18079.

Chapter 3

1. Häkkinen, H. Atomic and Electronic Structure of Gold Clusters: Understanding Flake, Cages and Superatoms from Simple Concepts. Chem. Soc. Rev. 2008, 37, 1847–1859.

2. Jin, R. Quantum Sized, Thiolate-protected Gold Nanoclusters. Nanoscale 2010, 2, 343–362.

3. Maity, P.; Xie, S.; Yamauchi, M.; Tsukuda, T. Stabilized Gold Clusters: From Isolation Toward Controlled Synthesis. Nanoscale 2012, 4, 4027–4038.

4. Konishi, K. Phosphine-Coordinated Pure-Gold Clusters: Diverse Geometrical Structures and Unique Optical Properties/Responses. Struct. Bond 2014, 161, 49–86.

5. Tsukuda, T.; Häkkinen, H. Protected Metal Clusters: From Fundamentals to Applications, 1st ed.; Elsevier, B. V.: Amsterdam, The Netherlands, 2015.

6. Fernando, A.; Weerawardene, K. L. D.; Karimova, N.; Aikens, C. M. Quantum Mechanical Studies of Large Metal, Metal Oxide, and Metal Chalcogenide Nanoparticles and Clusters. Chem. Rev. 2015, 115, 6112–6216.

7. Jin, R.; Zhen, C.; Zhou, M.; Chen, X. Atomically Precise Colloidal Metal Nanoclusters and Nanoparticles: Fundamentals and Opportunities. Chem. Rev. 2016, 116, 10346–10413.

8. Kurashige, W.; Niihori, Y.; Sharma, S.; Negishi, Y. Precise Synthesis, Functionalization and Application of Thiolate-Protected Gold Clusters. Coord. Chem. Rev. 2016, 320–321, 238– 250.

9. Chakraborty, I.; Pradeep, T. Atomically Precise Clusters of Noble Metals: Emerging Link between Atoms and Nanoparticles. Chem. Rev. 2017, 117, 8208–8271.

10. Chen, Y.; Liu, C.; Tang, Q.; Zeng, C.; Higaki, T.; Das, A.; Jiang, D.; Rosi, L. N.; Jin, R. Isomerism in Au28(SR)20 Nanocluster and Stable Structures. J. Am. Chem. Soc. 2016, 138, 1482–1485.

11. Jensen, K. M. Ø.; Juhas, P.; Tofanelli, M. A.; Heinecke, C. L.; Vaughan, G.; Ackerson, C. J.; Billinge, S. J. L. Polymorphism in Magic-Sized Au144(SR)60 Clusters. Nat. Commun. 2016, 7, 11859.

12. Devadas, M. S.; Bairu, S.; Qian, H.; Sinn, E.; Jin, R.; Ramakrishna, G. Temperature- Dependent Optical Absorption Properties of Monolayer-Protected Au25 and Au38 Clusters. J. Phys. Chem. Lett. 2011, 2, 2752–2758.

13. Yamazoe, S.; Takano, S.; Kurashige, W.; Yokoyama, T.; Nitta, K.; Negishi, Y.; Tsukuda, T. Hierarchy of bond stiffness within icosahedral-based gold clusters protected by thiolates. Nat. Commun. 2016, 5, 10414.

14. Knoppe, S.; Bürgi, T. Chirality in Thiolate-Protected Gold Clusters. Acc. Chem. Res. 2014,47, 1318–1326.

15. Takano, S.; Tsukuda, T. Amplification of Optical Activity of Gold Clusters by the Proximity of BINAP. J. Phys. Chem. Lett. 2016, 7, 4509–4513.

16. Knoppe, S.; Verbiest, T. Resonance Enhancement of Nonlinear Optical Scattering in Monolayer-Protected Gold Clusters. J. Am. Chem. Soc. 2017, 139, 14853–14856.

17. Antonello, S.; Arrigoni, G.; Dainese, T.; Nardi, M. D.; Parisio, G.; Perotti, L.; René, A.; Venzo, A.; Maran, F. Electron Transfer through 3D Monolayers on Au25 Clusters. ACS Nano 2014, 8, 2788–2795.

18. Templeton, A. C.; Wuelfing, W. P.; Murray, R. W. Monolayer-Protected Cluster Molecules.Acc. Chem. Res. 2000 33, 27–36.

19. Angel, L.; Majors, L.; Dharmaratne, A.; Dass, A. Ion Mobility Mass Spectrometry of Au25(SCH2CH2Ph)18 Nanoclusters. ACS Nano 2010, 4, 4691−4700.

20. Baksi, A.; Harvey, S. R.; Natarajan, G.; Wysocki, V. H.; Pradeep, T. Possible Isomers in Ligand Protected Ag11 Cluster Ions Identified by Ion Mobility Mass Spectrometry and Fragmented by Surface Induced Dissociation. Chem. Commun. 2016, 52, 3805–3808.

21. Baksi, A.; Chakraborty, P.; Bhat, S.; Natarajan, G.; Pradeep, T. Isomerism in Monolayer Protected Silver Cluster Ions: An Ion Mobility-Mass Spectrometry Approach. Chem. Commun. 2016, 52, 8397–8400.

22. Ligare, M. R.; Baker, E. S.; Laskin, J.; Johnson, G. E. Ligand Induced Structural Isomerism in Phosphine Coordinated Gold Clusters Revealed by Ion Mobility Mass Spectrometry. Chem. Commun. 2017, 53, 7389–7392.

23. Hamouda, R.; Bertorelle, F.; Rayane, D.; Antoine, R.; Broyer, M.; Dugourd, P. Glutathione Capped Gold AuN(SG)M Clusters Studied by Isotope-Resolved Mass Spectrometry Int. J. Mass Spectrom. 2013, 335, 1−6.

24. Black, D. M.; Bhattarai, N.; Whetten, R. L.; Bach, S. B. H. Collision-Induced Dissociation of Monolayer Protected Clusters Au144 and Au130 in an Electrospray Time-of-Flight Mass Spectrometer. J. Phys. Chem. A 2014, 118, 10679−10687.

25. Johnson, G. E.; Olivares, A.; Hill, D.; Laskin, J. Cationic Gold Clusters Ligated with Differently Substituted Phosphines: Effect of Substitution on Ligand Reactivity and Binding. Phys. Chem. Chem. Phys. 2015, 17, 14636–14646.

26. Black, D. M.; Crittenden, C. M.; Brodbelt, Whetten, R. L. Ultraviolet Photodissociation of Selected Gold Clusters: Ultraefficient Unstapling and Ligand Stripping of Au25(pMBA)18 and Au36(pMBA)24. J. Phys. Chem. Lett. 2017, 8, 1283–1289.

27. Hamouda, R.; Bellina, B.; Bertorelle, F.; Compagnon, I.; Antoine, R.; Broyer, M.; Rayane, D.; Dugourd, P. Electron Emission of Gas-Phase [Au25(SG)18-6H]7− Gold Cluster and Its Action Spectroscopy. J. Phys. Chem. Lett. 2010, 1, 3189–3194.

28. Schulz-Dobrick, M.; Jansen, M. Supramolecular Intercluster Compounds Consisting of Gold Clusters and Keggin Anions. Eur. J. Inorg. Chem. 2006, 2006, 4498–4502.

29. Wen, F.; Englert, U.; Gutrath, B.; Simon, U. Crystal Structure, Electrochemical and OpticalProperties of [Au9(PPh3)8](NO3)3. Eur. J. Inorg. Chem. 2008, 2008, 106–111.

30. Ito, L. N.; Johnson, B. J.; Mueting, A. M.; Pignolet, L. H. Heterobimetallic Au–Pd Phosphine Cluster Complexes. X-ray Crystal and Molecular Structure of [Au8Pd(PPh3)8](NO3)2. Inorg. Chem. 1989, 28, 2026–2028.

31. Matsuo, S.; Takano, S.; Yamazoe, S.; Koyasu, K.; Tsukuda, T. Selective and High-Yield Synthesis of Oblate Superatom [PdAu8(PPh3)8]2+. ChemElectroChem 2016, 3, 1206–1211.

32. Briant, C. E.; Hall, K. P.; Mingos, D. M. P. Structural Characterisation of Two Crystalline Modifications of [Au9{P(C6H4OMe-p)3}8](NO3)3: The First Example of Skeletal Isomerism in Metal Cluster Chemistry. J. Chem. Soc., Chem. Commun. 1984, 290–291.

33. Yamazoe, S.; Matsuo, S.; Muramatsu, S.; Takano, S.; Nitta, K.; Tsukuda, T. Suppressing Isomerization of Phosphine-Protected Au9 Cluster by Bond Stiffening Induced by a Single Pd Atom Substitution. Inorg. Chem. 2017, 56, 8319–8325.

34. Takano, S.; Hirai, H.; Muramatsu, S.; Tsukuda, T. Hydride-Doped Gold Superatom (Au9H)2+: Synthesis, Structure, and Transformation. J. Am. Chem. Soc. 2018, 140, 8380–8383.

35. Pringle, S. D.; Giles, K.; Wildgoose, J. L.; Williams, J. P.; Slade, S. E.; Thalassinos, K.; Bateman, R. H.; Bowers, M. T.; Scrivens, J. H. An Investigation of the Mobility Separation of Some Peptide and Protein Ions Using a New Hybrid Quadrupole/Travelling Wave IMS/oa- ToF Instrument. Int. J. Mass Spectrom. 2007, 261, 1–12.

36. Giles, K.; Williams, J. P.; Campuzano, I. Enhancements in Travelling Wave Ion Mobility Resolution. Rapid Commun. Mass Spectrum. 2011, 25, 1559–1566.

37. Shvartsburg, A. A.; Smith, R. D. Fundamentals of Traveling Wave Ion Mobility Spectrometry.Anal. Chem. 2008, 80, 9689–9699.

38. Bush, M. F.; Hall, Z.; Giles, K.; Hoyes, J.; Robinson, C. V.; Ruotolo B. T. Collision Cross Sections of Proteins and Their Complexes: A Calibration Framework and Database for Gas- Phase Structural Biology. Anal. Chem. 2010, 82, 9557–9565.

39. Ruotolo B. T.; Benesch, J. L.P.; Sandercock, A. M.; Hyung, S.; Robinson, C. V. Ion Mobility- Mass Spectrometry Analysis of Large Protein Complexes. Nat. Protoc. 2008, 3, 1139–1152.

40. Jurneczko, E.; Kalapothakis, J.; Campuzano, I. D. G.; Morris, M.; Barran, P. E. Effects of Drift Gas on Collision Cross Sections of a Protein Standard in Linear Drift Tube and Traveling Wave Ion Mobility Mass Spectrometry. Anal. Chem. 2012, 84, 8524–8531.

41. Larriba, C.; Hogan, C. J. Ion Mobilities in Diatomic Gases: Measurement versus Prediction with Non-Specular Scattering Models. J. Phys. Chem. A 2013, 117, 3887–3901.

42. von Helden, G. Hsu, M.; Gotts, N.; Bowers, M. T. Carbon Cluster Cations with up to 84 Atoms: Structures, Formation Mechanism, and Reactivity. J. Phys. Chem. 1993, 97, 8182– 8192.

43. Shvartsburg, A. A.; Jarrold, M. F. An Exact Hard-Spheres Scattering Model for the Mobilitiesof Polyatomic Ions. Chem. Phys. Lett. 1996, 261, 86–91.

44. Larriba-Andaluz, C. Hogan, C. J. Collision cross section calculations for polyatomic ions considering rotating diatomic/linear gas molecules. J. Chem. Phys. 2014, 141, 194107.

Chapter 4

1. Walter, M.; Akola, J.; Lopez-Acevedo, O.; Jadzinsky, P. D.; Calero, G.; Ackerson, C. J.; Whetten, R. L.; Grönbeck, H.; Häkkinen, H. A Unified View of Ligand-Protected Gold Clusters as Superatom Complexes. Proc. Natl. Acad. Sci. 2008, 105, 9157–9162.

2. Negishi, Y.; Kurashige, W.; Kamimura, U. Isolation and Structural Characterization of an Octaselenolate-Protected Au25 Cluster. Langmuir 2011, 27, 12289–12292.

3. Negishi, Y.; Iwai, T.; Ide, M. Continuous Modulation of Electronic Structure of Stable Thiolate-Protected Au25 Cluster by Ag Doping. Chem. Commun. 2010, 46, 4713–4715.

4. Joshi, C. P.; Bootharaju, M. S.; Alhilaly, M. J.; Bakr, O. M. [Ag25(SR)18]−: The “Golden” Silver Nanoparticle. J. Am. Chem. Soc. 2015, 137, 11578–11581.

5. Bootharaju, M. S.; Sinatra, L.; Bakr, O. M. Distinct Metal-Exchange Pathways of Doped Ag25 Nanoclusters. Nanoscale 2016, 8, 17333–17339.

6. Yan, J.; Su, H.; Yang, H.; Malola, S.; Lin, S.; Häkkinen, H.; Zheng, N. Total Structure and Electronic Structure Analysis of Doped Thiolated Silver [MAg24(SR)18]2− (M =Pd, Pt) Clusters. J. Am. Chem. Soc. 2015, 137, 11880–11883.

7. AbdulHalim, L. G.; Bootharaju, M. S.; Tang, Q.; Del Gobbo, S.; AbdulHalim, R. G.; Eddaoudi, M.; Jiang, D.-e.; Bakr, O. M. Ag29(BDT)12(TPP)4: A Tetravalent Nanocluster. Nanoscale 2016, 8, 17333–17339.

8. Desireddy, A.; Conn, B. E.; Guo, J.; Yoon, B.; Barnett, R. N.; Monahan, B. M.; Kirschbaum, K.; Griffith, W. P.; Whetten, R. L.; Landman, U.; Bigioni, T. Ultrastable Silver Nanoparticles. Nature 2013, 501, 399–402.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る