リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Investigating Preconditions for Sustainable Renewable Energy Product–Service Systems in Retail Electricity Markets」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Investigating Preconditions for Sustainable Renewable Energy Product–Service Systems in Retail Electricity Markets

Kusumaningdyah, Widha Tezuka, Tetsuo McLellan, Benjamin 京都大学 DOI:10.3390/en14071877

2021

概要

Energy transitions are complex and involve interrelated changes in the socio-technical dimensions of society. One major barrier to renewable energy transitions is lock-in from the incumbent socio-technical regime. This study evaluates Energy Product–Service Systems (EPSS) as a renewable energy market mechanism. EPSS offer electricity service performance instead of energy products and appliances for household consumers. Through consumers buying the service, the provider company is enabled to choose, manage and control electrical appliances for best-matched service delivery. Given the heterogenous market players and future uncertainties, this study aims to identify the necessary conditions to achieve a sustainable renewable energy market. Simulation-Based Design for EPSS framework is implemented to assess various hypothetical market conditions’ impact on market efficiency in the short term and long term. The results reveal the specific market characteristics that have a higher chance of causing unexpected results. Ultimately, this paper demonstrates the advantage of implementing Simulation-Based Design for EPSS to design retail electricity markets for renewable energy under competing market mechanisms with heterogenous economic agents.

参考文献

1. Chapman, A.J.; McLellan, B.; Tezuka, T. Residential solar PV policy: An analysis of impacts, successes and failures in the Australian case. Renew. Energy 2016, 86, 1265–1279. [CrossRef]

2. Agora Energiewede. 12 Insights on Germany’s Energiewende 12 Insights on Germany’s. 2013. Available online: https://www. agora-energiewende.de/fileadmin2/Projekte/2012/12-Thesen/Agora_12_Insights_on_Germanys_Energiewende_web.pdf (ac- cessed on 15 December 2020).

3. Kusumaningdyah, W.; McLellan, B.; Tezuka, T. Designing and Evaluating Energy Product-Service Systems for Energy Sector (EPSS) in Liberalized Energy Market: A Case Study in Space Heating Services for Japan Household. Challenges 2019, 10, 18. [CrossRef]

4. Allcott, H. Paternalism and Energy Efficiency: An Overview. Paternalism Energy Effic. Overv. 2014, 8, 145–176. [CrossRef]

5. Sovacool, B.K. Contestation, contingency, and justice in the Nordic low-carbon energy transition. Energy Policy 2017, 102, 569–582. [CrossRef]

6. Vadén, T.; Majava, A.; Toivanen, T.; Järvensivu, P.; Hakala, E.; Eronen, J. To continue to burn something? Technological, economic and political path dependencies in district heating in Helsinki, Finland. Energy Res. Soc. Sci. 2019, 58, 101270. [CrossRef]

7. Trencher, G.; Rinscheid, A.; Duygan, M.; Truong, N.; Asuka, J. Revisiting carbon lock-in in energy systems: Explaining the perpetuation of coal power in Japan. Energy Res. Soc. Sci. 2020, 69, 101770. [CrossRef]

8. Bouznit, M.; del Pablo-Romero, M.; Sánchez-Braza, A. Measures to promote renewable energy for electricity generation in Algeria.

Sustainability 2020, 12, 1468. [CrossRef]

9. Lu, Y.; Khan, Z.A.; Alvarez-Alvarado, M.S.; Zhang, Y.; Huang, Z.; Imran, M. A critical review of sustainable energy policies for the promotion of renewable energy sources. Sustainability 2020, 12, 5078. [CrossRef]

10. Li, H.X.; Edwards, D.J.; Hosseini, M.R.; Costin, G.P. A review on renewable energy transition in Australia: An updated depiction.

J. Clean. Prod. 2020, 242, 118475. [CrossRef]

11. Poruschi, L.; Ambrey, C.L.; Smart, J.C. Revisiting feed-in tariffs in Australia: A review. Renew. Sustain. Energy Rev. 2018,

82, 260–270. [CrossRef]

12. García-Alvarez, M.T.; Mariz-Pérez, R.M. Analysis of the Success of Feed-in Tariff for Renewable Energy Promotion Mechanism in the EU: Lessons from Germany and Spain. Procedia Soc. Behav. Sci. 2012, 65, 52–57. [CrossRef]

13. Zhang, Q.; Wang, G.; Li, Y.; Li, H.; McLellan, B.; Chen, S. Substitution effect of renewable portfolio standards and renewable energy certificate trading for feed-in tariff. Appl. Energy 2018, 227, 426–435. [CrossRef]

14. REN21. Renewables 2012 Global Status Report; REN21 Secretariat: Paris, France, 2012; pp. 1–172.

15. Dehmer, D. The German Energiewende: The First Year. Electr. J. 2013, 26, 71–78. [CrossRef]

16. Cheung, G.; Davies, P.J.; Bassen, A. In the transition of energy systems: What lessons can be learnt from the German achievement?

Energy Policy 2019, 132, 633–646. [CrossRef]

17. Di Lucia, L.; Ericsson, K. Low-carbon district heating in Sweden—Examining a successful energy transition. Energy Res. Soc. Sci.

2014, 4, 10–20. [CrossRef]

18. Poullikkas, A. A review of net metering mechanism for electricity renewable energy sources. Int. J. Energy Environ. 2013,

4, 975–1002.

19. Schelly, C.; Louie, E.P.; Pearce, J.M. Examining interconnection and net metering policy for distributed generation in the United States. Renew. Energy Focus 2017, 22–23, 10–19. [CrossRef]

20. Christoforidis, G.C.; Panapakidis, I.P.; Papadopoulos, T.A.; Papagiannis, G.K.; Koumparou, I.; Hadjipanayi, M.; Georghiou, G.E. A model for the assessment of different Net-Metering policies. Energies 2016, 9, 262. [CrossRef]

21. Hirsh, R.F.; Jones, C.F. History’s contributions to energy research and policy. Energy Res. Soc. Sci. 2014, 1, 106–111. [CrossRef]

22. Goldthau, A. Rethinking the governance of energy infrastructure: Scale, decentralization and polycentrism. Energy Res. Soc. Sci.

2014, 1, 134–140. [CrossRef]

23. Geels, F.W. From sectoral systems of innovation to socio-technical systems: Insights about dynamics and change from sociology and institutional theory. Res. Policy 2004, 33, 897–920. [CrossRef]

24. Verbong, G.; Geels, F. The ongoing energy transition: Lessons from a socio-technical, multi-level analysis of the Dutch electricity system (1960–2004). Energy Policy 2007, 35, 1025–1037. [CrossRef]

25. IEA. World Energy Outlook 2020—Analysis—IEA 2020. Available online: https://www.iea.org/reports/world-energy-outlook- 2020 (accessed on 18 February 2021).

26. Kraan, O.; Kramer, G.J.; Nikolic, I.; Chappin, E.; Koning, V. Why fully liberalised electricity markets will fail to meet deep decarbonisation targets even with strong carbon pricing. Energy Policy 2019, 131, 99–110. [CrossRef]

27. Engelken, M.; Römer, B.; Drescher, M.; Welpe, I.M.; Picot, A. Comparing drivers, barriers, and opportunities of business models for re-newable energies: A review. Renew Sustain Energy Rev. 2016, 60, 795–809. [CrossRef]

28. Mont, O. Clarifying the concept of product–service system. J. Clean. Prod. 2002, 10, 237–245. [CrossRef]

29. Baines, T.S.; Lightfoot, H.W.; Evans, S.; Neely, A.; Greenough, R.; Peppard, J.; Roy, R.; Shehab, E.; Braganza, A.; Tiwari, A.; et al. State-of-the-art in product-service systems. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2007, 221, 1543–1552. [CrossRef]

30. Ost Scherer, J.; Kloeckner, A.P.; Ribeiro, J.L.D.; Pezzotta, G.; Pirola, F. Product-Service System (PSS) design: Using Design Thinking and Business Analytics to improve PSS Design. Procedia Cirp 2016, 47, 341–346. [CrossRef]

31. Van Ostaeyen, J.; Van Horenbeek, A.; Pintelon, L.; Duflou, J.R. A refined typology of product–service systems based on functional hierarchy modeling. J. Clean Prod. 2013, 51, 261–276. [CrossRef]

32. Tukker, A.; Tischner, U. New Business for Old Europe: Product-Service Development, Competitiveness and Sustainability, 1st ed.; Greenleaf Publishing Ltd.: Sheffield, UK, 2006; 479p.

33. Lindkvist, L.; Sundin, E. The role of Product-service Systems Regarding Information Feedback Transfer in the Product Life-cycle Including Remanufacturing. Procedia Cirp 2016, 47, 311–316. [CrossRef]

34. Joskow, P.L. Lessons Learned from Electricity Market Liberalization. Energy J. 2008, 29, 9–42. [CrossRef]

35. Council of European Energy Regulators (CEER). CEER Report on Commercial Barriers to Supplier Switching in EU Retail Energy Markets. 2016. Ref: C15-CEM-80-04. Available online: https://www.ceer.eu/documents/104400/-/-/bd226e4b-5542-f12c-c21e- 4d5a078c765d (accessed on 7 May 2018).

36. Joskow, P.L. Deregulation and Regulatory Reform in the U.S. Electric Power Sector; Center of Energy and Environmental Policy Research: Cambridge, MA, USA, 2000.

37. AEMC. 2017 AEMC Retail Energy Competition Review. Sydney, Australia. 2017. Available online: https://www.aemc.gov.au/ sites/default/files/content/006ad951-7c42-4058-9724-51fe114cabb6/2017-AEMC-Retail-Energy-Competition-Review-FINAL. pdf (accessed on 7 May 2018).

38. Morey, M.J.; Kirsch, L.D. Retail Choice in Electricity: What Have We Learned in 20 Years? 2016. Available online: https:

//hepg.hks.harvard.edu/files/hepg/files/retail_choice_in_electricity_for_emrf_final.pdf (accessed on 7 May 2018).

39. Von Der Fehr, N.H.M.; Hansen, P.V. Electricity Retailing in Norway. 2008, pp. 1–41. Available online: http://idei.fr/sites/default/ files/medias/doc/conf/eem/papers_2008/vonderfehr.pdf (accessed on 9 December 2020).

40. Defeuilley, C. Retail competition in electricity markets. Energy Policy 2009, 37, 377–386. [CrossRef]

41. Hortaçsu, A.; Madanizadeh, S.A.; Puller, S.L. Power to Choose? An Analysis of Consumer Inertia in the Residential Electricity Market. Am. Econ. J. Econ. Policy 2017, 9, 192–226. [CrossRef]

42. Simon, H.A. Models of Bounded Rationality; The MIT Press: Cambridge, MS, USA, 1997; Volume 3.

43. Gigerenzer, G.; Selton, R. Bounded Rationality: The Adaptive Toolbox; Gigerenzer, G., Selton, R., Eds.; The MIT Press: Cambridge, MA, USA, 2002.

44. OECD. Using behavioural insights to increase energy conservation and energy efficiency. In Tackling Environmental Problems with the Help of Behavioural Insight; OECD Publishing: Paris, France, 2017; pp. 45–89.

45. Simon, H.A. A Behavioral Model of Rational Choice. Q. J. Econ. 1955, 69, 99–118. [CrossRef]

46. Simon, H.A. Rational choice and the structure of the environment. Psychol. Rev. 1956, 63, 129–138. [CrossRef]

47. Cramton, P. Electricity market design. Oxf. Rev. Econ. Policy 2017, 33, 589–612. [CrossRef]

48. Waechter, S.; Sütterlin, B.; Siegrist, M. Desired and Undesired Effects of Energy Labels—An Eye-Tracking Study. PLoS ONE 2015,

10, e0134132. [CrossRef]

49. Hlaváˇcek, I.; Chleboun, J.; Babuška, I. Uncertain Input Data Problems and the Worst Scenario Method, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2004.

50. Kraan, O.; Kramer, G.; Nikolic, I. Investment in the future electricity system—An agent-based modelling approach. Energy 2018,

151, 569–580. [CrossRef]

51. Barazza, E.; Strachan, N. The impact of heterogeneous market players with bounded-rationality on the electricity sector low- carbon transition. Energy Policy 2020, 138. [CrossRef]

52. Kraan, O.; Dalderop, S.; Kramer, G.J.; Nikolic, I. Jumping to a better world: An agent-based exploration of criticality in low-carbon energy transitions. Energy Res. Soc. Sci. 2019, 47, 156–165. [CrossRef]

53. Kwakkel, J.H.; Yücel, G. An Exploratory Analysis of the Dutch Electricity System in Transition. J. Knowl. Econ. 2012, 5, 670–685. [CrossRef]

54. Yücel, G.; van Daalen, C. A simulation-based analysis of transition pathways for the Dutch electricity system. Energy Policy 2012,

42, 557–568. [CrossRef]

55. Mefteh, W. Simulation-Based Design: Overview about related works. Math. Comput. Simul. 2018, 152, 81–97. [CrossRef]

56. Bossak, A.M. Simulation based design. J. Mater. Process. Technol. 1998, 76, 8–11. [CrossRef]

57. Shephard, M.S.; Beall, M.W.; O’Bara, R.M.E.; Webster, B. Toward simulation-based design. Finite Elem. Anal. Des. 2004,

40, 1575–1598. [CrossRef]

58. Masad, D.; Kazil, J. Mesa: An Agent-Based Modeling Framework. In Proceedings of the 14th Python in Science Conference (SciPy 2015), Austin, TX, USA, 6–12 July 2015; pp. 51–58.

59. Wieringa, J.E.; Verhoef, P.C. Understanding Customer Switching Behavior in a Liberalizing Service Market. J. Serv. Res. 2007,

10, 174–186. [CrossRef]

60. Yang, Y. Understanding household switching behavior in the retail electricity market. Energy Policy 2014, 69, 406–414. [CrossRef]

61. Frederiks, E.R.; Stenner, K.; Hobman, E.V. Household energy use: Applying behavioural economics to understand consumer deci-sion-making and behaviour. Renew. Sustain. Energy Rev. 2015, 41, 1385–1394. [CrossRef]

62. Zeng, Y.; Zhang, J.; He, K. Effects of conformity tendencies on households’ willingness to adopt energy utilization of crop straw: Evi-dence from biogas in rural China. Renew. Energy 2019, 138, 573–584. [CrossRef]

63. Du, F.; Zhang, J.; Li, H.; Yan, J.; Galloway, S.; Lo, K.L. Modelling the impact of social network on energy savings. Appl. Energy

2016, 178, 56–65. [CrossRef]

64. Fenaughty, K.; Parker, D. Evaluation of Air Conditioning Performance Degradation: Opportunities from Diagnostic Methods. 2018 ACEEE Summer Study on Energy Efficiency in Buildings. 2018. Available online: http://publications.energyresearch.ucf. edu/wp-content/uploads/2018/09/FSEC-PF-474-18.pdf (accessed on 27 August 2019).

65. Bertoldi, P.; Ricci, A.; Huenges Wajer, B. (Eds.) Energy Efficiency in Household Appliances. Energy Efficiency in House- hold Appliances. In Proceedings of the First International Conference on Energy Efficiency in Household Appliances, Florence, Italy, 10–12 November 1997; Springer: Berlin/Heidelberg, Germany, 1999.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る