リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Three-dimensional Dirac electrons in Sr3PbO antiperovskite」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Three-dimensional Dirac electrons in Sr3PbO antiperovskite

末次, 祥大 東京大学 DOI:10.15083/0002004690

2022.06.22

概要

Three-dimensional (3D) topological Dirac semimetals (TDSs) with 3D linear dispersion in bulk have been attracting considerable interest. 3D TDS can host topological surface states and can be driven into topologically distinct phases such as a topological insulating or a Weyl semimetallic state by controlling a band gap or breaking symmetry. Because of the possible realization of chiral anomaly, the quantum limit where all carriers reside in the lowest Landau level has been studied with great interest. Nontrivial topology of conduction and valence bands mixing in Dirac semimetals can give rise to giant orbital diamagnetism. To explore such unconventional physics of 3D Dirac electrons, chemically flexible 3D TDS, in which it is easy to break symmetries, to introduce magnetism, and to control band filling and spin-orbit coupling, is highly desirable. Recently, a family of cubic antiperovskite A3TtO (A = Ca, Sr, Ba; Tt = Sn, Pb) was theoretically proposed as a 3D massive Dirac electron system, free from the contribution from other parabolic bands. The antiperovskite family with chemical flexibility is promising for band engineering of 3D Dirac electrons.

In this thesis, we report the magnetotransport, the bulk magnetic susceptibility and the nuclear magnetic resonance (NMR) experiments on Sr3PbO, one of the antiperovskite family. The Hall resistivity and Shubnikov-de Haas oscillation measurements indicate a low density of holes n ~ 1018 cm-3 with an extremely light cyclotron mass of ~ 0.01me, one percent of free electron. A linear magnetoresistance (MR) with a giant MR ratio Δρxx(B) / ρxx(0) ~ 10 was observed similar to other 3D TDS. The temperature dependence of NMR spin lattice relaxation rate T1-1 with the deviation from the Korringa behavior at high temperature reflects a V shaped density of states expected for 3D Dirac electrons. These results are fully consistent with the presence of 3D Dirac electrons in Sr3PbO. The next step is to explore unconventional physics anticipated for the 3D Dirac electrons.

Chiral anomaly has been experimentally explored and expected negative longitudinal MR has been observed in several 3D TDSs. However, current jetting effects, focusing of a current density, raised ongoing discussion about these experiments. We studied the angular dependences of the longitudinal MR and the planar Hall effect in the Sr3PbO antiperovskite. The intrinsic contribution associated with the chiral anomaly may be captured by the negative longitudinal MR and the planar Hall effect at low magnetic field B ~ 0.5 T. The angular dependences at high field B > 0.5 T indicate the predominant effect of the current jetting rather than the chiral anomaly. The detailed experiments will be left for future study to extract clear conclusion.

In Dirac semimetals, the topology of inter-band mixing, represented by inter-band Berry connection, can give rise to a giant orbital diamagnetism which strongly depends on the chemical potential and temperature. The large diamagnetism has been observed, for example, in the bulk magnetic susceptibility of Bi. However, the orbital origin of the large diamagnetism has not been experimentally confirmed owing to the presence of other contributions to the magnetic susceptibility associated with the complicated Fermi surface of Bi. We report the bulk magnetic susceptibility and the 207Pb NMR experiments on Sr3PbO antiperovskite samples with different carrier density from ~1018 to ~1020 cm-3. The magnitude of T1-1 is well scaled by a density of states derived from a band calculation. This enables us to separate spin and orbital contributions of NMR Knight shift by analyzing K, T1-1 and χ with the help of a Korringa relation, which provides the evidence for the presence of the giant orbital diamagnetism in Sr3PbO.

この論文で使われている画像

参考文献

[1] P. A. Dirac, in Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, Vol. 117, 778 (The Royal Society, 1928), pp. 610–624.

[2] K. Novoselov, A. K. Geim, S. Morozov, D. Jiang, M. Katsnelson, I. Grigorieva, S. Dubonos and A. Firsov, Nature 438, 197–200 (2005).

[3] Y. Zhang, Y.-W. Tan, H. L. Stormer and P. Kim, Nature 438, 201–204 (2005).

[4] Y. Xia, D. Qian, D. Hsieh, L. Wray, A. Pal, H. Lin, A. Bansil, D. Grauer, Y. Hor, R. Cava et al., Nature Phys. 5, 398–402 (2009).

[5] Y. Chen, J. Analytis, J.-H. Chu, Z. Liu, S.-K. Mo, X.-L. Qi, H. Zhang, D. Lu, X. Dai, Z. Fang et al., Science 325, 178–181 (2009).

[6] C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 146802 (2005).

[7] L. Fu and C. L. Kane, Phys. Rev. B 74, 195312 (2006).

[8] J. E. Moore and L. Balents, Phys. Rev. B 75, 121306 (2007).

[9] L. Fu, C. L. Kane and E. J. Mele, Phys. Rev. Lett. 98, 106803 (2007).

[10] L. Fu and C. L. Kane, Phys. Rev. B 76, 045302 (2007).

[11] L. Fu, Phys. Rev. Lett. 106, 106802 (2011).

[12] C.-Z. Chang, J. Zhang, X. Feng, J. Shen, Z. Zhang, M. Guo, K. Li, Y. Ou, P. Wei, L.- L. Wang et al., Science 340, 167–170 (2013).

[13] J. Checkelsky, R. Yoshimi, A. Tsukazaki, K. Takahashi, Y. Kozuka, J. Falson, M. Kawasa- ki and Y. Tokura, Nature Phys. 10, 731–736 (2014).

[14] S. M. Young, S. Zaheer, J. C. Y. Teo, C. L. Kane, E. J. Mele and A. M. Rappe, Phys. Rev. Lett. 108, 140405 (2012).

[15] Z. Wang, Y. Sun, X.-Q. Chen, C. Franchini, G. Xu, H. Weng, X. Dai and Z. Fang, Phys. Rev. B 85, 195320 (2012).

[16] Z. Wang, H. Weng, Q. Wu, X. Dai and Z. Fang, Phys. Rev. B 88, 125427 (2013).

[17] Z. Liu, B. Zhou, Y. Zhang, Z. Wang, H. Weng, D. Prabhakaran, S.-K. Mo, Z. Shen, Z. Fang, X. Dai et al., Science 343, 864–867 (2014).

[18] S.-Y. Xu, C. Liu, S. K. Kushwaha, R. Sankar, J. W. Krizan, I. Belopolski, M. Neupane, G. Bian, N. Alidoust, T.-R. Chang et al., Science 347, 294–298 (2015).

[19] M. Neupane, S.-Y. Xu, R. Sankar, N. Alidoust, G. Bian, C. Liu, I. Belopolski, T.-R. Chang, H.-T. Jeng, H. Lin, A. Bansil, F. Chou and M. Z. Hasan, Nature Commun. 5, 3786 (2014).

[20] Z. Liu, J. Jiang, B. Zhou, Z. Wang, Y. Zhang, H. Weng, D. Prabhakaran, S. Mo, H. Peng, P. Dudin et al., Nature Mater. 13, 677 (2014).

[21] S. Borisenko, Q. Gibson, D. Evtushinsky, V. Zabolotnyy, B. Büchner and R. J. Cava, Phys. Rev. Lett. 113, 027603 (2014).

[22] T. Liang, Q. Gibson, M. N. Ali, M. Liu, R. Cava and N. Ong, Nature Mater. 14, 280–284 (2015).

[23] L. P. He, X. C. Hong, J. K. Dong, J. Pan, Z. Zhang, J. Zhang and S. Y. Li, Phys. Rev. Lett. 113, 246402 (2014).

[24] A. Narayanan, M. D. Watson, S. F. Blake, N. Bruyant, L. Drigo, Y. L. Chen, D. Prab- hakaran, B. Yan, C. Felser, T. Kong, P. C. Canfield and A. I. Coldea, Phys. Rev. Lett. 114, 117201 (2015).

[25] J. Cao, S. Liang, C. Zhang, Y. Liu, J. Huang, Z. Jin, Z.-G. Chen, Z. Wang, Q. Wang, J. Zhao et al., Nature Commun. 6, 7779 (2015).

[26] J. Feng, Y. Pang, D. Wu, Z. Wang, H. Weng, J. Li, X. Dai, Z. Fang, Y. Shi and L. Lu, Phys. Rev. B 92, 081306 (2015).

[27] Y. Zhao, H. Liu, C. Zhang, H. Wang, J. Wang, Z. Lin, Y. Xing, H. Lu, J. Liu, Y. Wang, S. M. Brombosz, Z. Xiao, S. Jia, X. C. Xie and J. Wang, Phys. Rev. X 5, 031037 (2015).

[28] C.-Z. Li, L.-X. Wang, H. Liu, J. Wang, Z.-M. Liao and D.-P. Yu, Nature Commun. 6, 10137 (2015).

[29] H. Li, H. He, H.-Z. Lu, H. Zhang, H. Liu, R. Ma, Z. Fan, S.-Q. Shen and J. Wang, Nature Commun. 7, 10301 (2016).

[30] Z. Jia, C. Li, X. Li, J. Shi, Z. Liao, D. Yu and X. Wu, Nature Commun. 7, 13013 (2016).

[31] M. Novak, S. Sasaki, K. Segawa and Y. Ando, Phys. Rev. B 91, 041203 (2015).

[32] R. Y. Chen, S. J. Zhang, J. A. Schneeloch, C. Zhang, Q. Li, G. D. Gu and N. L. Wang, Phys. Rev. B 92, 075107 (2015).

[33] Q. Li, D. E. Kharzeev, C. Zhang, Y. Huang, I. Pletikosić, A. V. Fedorov, R. D. Zhong, J. A. Schneeloch, G. D. Gu and T. Valla, Nature Phys. 12, 550 (2016).

[34] G. Zheng, J. Lu, X. Zhu, W. Ning, Y. Han, H. Zhang, J. Zhang, C. Xi, J. Yang, H. Du, K. Yang, Y. Zhang and M. Tian, Phys. Rev. B 93, 115414 (2016).

[35] T. Kariyado and M. Ogata, J. Phys. Soc. Jpn. 80, 083704 (2011).

[36] B.-J. Yang and N. Nagaosa, Nature Commun. 5, 4898 (2014).

[37] S. M. Young and C. L. Kane, Phys. Rev. Lett. 115, 126803 (2015).

[38] X. Wan, A. M. Turner, A. Vishwanath and S. Y. Savrasov, Phys. Rev. B 83, 205101 (2011).

[39] A. A. Burkov and L. Balents, Phys. Rev. Lett. 107, 127205 (2011).

[40] G. B. Halász and L. Balents, Phys. Rev. B 85, 035103 (2012).

[41] A. A. Zyuzin, S. Wu and A. A. Burkov, Phys. Rev. B 85, 165110 (2012).

[42] S.-M. Huang, S.-Y. Xu, I. Belopolski, C.-C. Lee, G. Chang, B. Wang, N. Alidoust, G. Bian, M. Neupane, C. Zhang et al., Nature Commun. 6, 7373 (2015).

[43] H. Weng, C. Fang, Z. Fang, B. A. Bernevig and X. Dai, Phys. Rev. X 5, 011029 (2015).

[44] S.-Y. Xu, I. Belopolski, N. Alidoust, M. Neupane, G. Bian, C. Zhang, R. Sankar, G. Chang, Z. Yuan, C.-C. Lee et al., Science 349, 613–617 (2015).

[45] L. Yang, Z. Liu, Y. Sun, H. Peng, H. Yang, T. Zhang, B. Zhou, Y. Zhang, Y. Guo, M. Rahn et al., Nature Phys. 11, 728–732 (2015).

[46] B. Lv, N. Xu, H. Weng, J. Ma, P. Richard, X. Huang, L. Zhao, G. Chen, C. Matt, F. Bisti et al., Nature Phys. 11, 724–727 (2015).

[47] B. Q. Lv, H. M. Weng, B. B. Fu, X. P. Wang, H. Miao, J. Ma, P. Richard, X. C. Huang, L. X. Zhao, G. F. Chen, Z. Fang, X. Dai, T. Qian and H. Ding, Phys. Rev. X 5, 031013 (2015).

[48] S. Nakatsuji, N. Kiyohara and T. Higo, Nature 527, 212 (2015).

[49] K. Kuroda, T. Tomita, M.-T. Suzuki, C. Bareille, A. Nugroho, P. Goswami, M. Ochi, M. Ikhlas, M. Nakayama, S. Akebi et al., Nature Mater. 16, 1090 (2017).

[50] H. Yang, Y. Sun, Y. Zhang, W.-J. Shi, S. S. Parkin and B. Yan, New J. Phys. 19, 015008 (2017).

[51] E. Liu, Y. Sun, N. Kumar, L. Muechler, A. Sun, L. Jiao, S.-Y. Yang, D. Liu, A. Liang, Q. Xu et al., Nature Phys. 14, 1125 (2018).

[52] Q. Xu, E. Liu, W. Shi, L. Muechler, J. Gayles, C. Felser and Y. Sun, Phys. Rev. B 97, 235416 (2018).

[53] A. A. Soluyanov, D. Gresch, Z. Wang, Q. Wu, M. Troyer, X. Dai and B. A. Bernevig, Nature 527, 495–498 (2015).

[54] Y. Wu, D. Mou, N. H. Jo, K. Sun, L. Huang, S. L. Bud'ko, P. C. Canfield and A. Kaminski, Phys. Rev. B 94, 121113 (2016).

[55] Y. Sun, S.-C. Wu, M. N. Ali, C. Felser and B. Yan, Phys. Rev. B 92, 161107 (2015).

[56] Z. Wang, D. Gresch, A. A. Soluyanov, W. Xie, S. Kushwaha, X. Dai, M. Troyer, R. J. Cava and B. A. Bernevig, Phys. Rev. Lett. 117, 056805 (2016).

[57] K. Deng, G. Wan, P. Deng, K. Zhang, S. Ding, E. Wang, M. Yan, H. Huang, H. Zhang, Z. Xu, J. Denlinger, A. Fedorov, H. Yang, W. Duan, H. Yao, Y. Wu, S. Fan, H. Zhang, X. Chen and S. Zhou, Nature Phys. 12, 1105–1110 (2016).

[58] A. A. Burkov, M. D. Hook and L. Balents, Phys. Rev. B 84, 235126 (2011).

[59] J.-M. Carter, V. V. Shankar, M. A. Zeb and H.-Y. Kee, Phys. Rev. B 85, 115105 (2012).

[60] C. Fang, Y. Chen, H.-Y. Kee and L. Fu, Phys. Rev. B 92, 081201 (2015).

[61] Y. F. Nie, P. D. C. King, C. H. Kim, M. Uchida, H. I. Wei, B. D. Faeth, J. P. Ruf, J. P. C. Ruff, L. Xie, X. Pan, C. J. Fennie, D. G. Schlom and K. M. Shen, Phys. Rev. Lett. 114, 016401 (2015).

[62] Z. Liu, M. Li, Q. Li, J. Liu, W. Li, H. Yang, Q. Yao, C. Fan, X. Wan, Z. Wang et al., Sci. Rep. 6, 30309 (2016).

[63] J. Fujioka, R. Yamada, M. Kawamura, S. Sakai, M. Hirayama, R. Arita, T. Okawa, D. Hashizume, M. Hoshino and Y. Tokura, Nature Commun. 10, 362 (2019).

[64] M. Negishi, N. Hiraoka, D. Nishio-Hamane and H. Takagi, APL Materials 7, 121101 ( 2019).

[65] L. M. Schoop, M. N. Ali, C. Straßer, A. Topp, A. Varykhalov, D. Marchenko, V. Duppel, S. S. Parkin, B. V. Lotsch and C. R. Ast, Nature Commun. 7, 11696 (2016).

[66] M. Neupane, I. Belopolski, M. M. Hosen, D. S. Sanchez, R. Sankar, M. Szlawska, S.-Y. Xu, K. Dimitri, N. Dhakal, P. Maldonado, P. M. Oppeneer, D. Kaczorowski, F. Chou, M. Z. Hasan and T. Durakiewicz, Phys. Rev. B 93, 201104 (2016).

[67] C. Chen, X. Xu, J. Jiang, S.-C. Wu, Y. P. Qi, L. X. Yang, M. X. Wang, Y. Sun, N. B. M. Schröter, H. F. Yang, L. M. Schoop, Y. Y. Lv, J. Zhou, Y. B. Chen, S. H. Yao, M. H. Lu, Y. F. Chen, C. Felser, B. H. Yan, Z. K. Liu and Y. L. Chen, Phys. Rev. B 95, 125126 (2017).

[68] M. R. van Delft, S. Pezzini, T. Khouri, C. S. A. Müßller, M. Breitkreiz, L. M. Schoop, A. Carrington, N. E. Hussey and S. Wiedmann, Phys. Rev. Lett. 121, 256602 (2018).

[69] A. Yamakage, Y. Yamakawa, Y. Tanaka and Y. Okamoto, J. Phys. Soc. Jpn. 85, 013708 ( 2015).

[70] Y. Okamoto, T. Inohara, A. Yamakage, Y. Yamakawa and K. Takenaka, J. Phys. Soc. Jpn. 85, 123701 (2016).

[71] K. Miyagawa, M. Hirayama, M. Tamura and K. Kanoda, J. Phys. Soc. Jpn. 79, 063703 ( 2010).

[72] H. Yasuoka, T. Kubo, Y. Kishimoto, D. Kasinathan, M. Schmidt, B. Yan, Y. Zhang, H. Tou, C. Felser, A. P. Mackenzie and M. Baenitz, Phys. Rev. Lett. 118, 236403 (2017).

[73] S. Kitagawa, K. Ishida, M. Oudah, J. N. Hausmann, A. Ikeda, S. Yonezawa and Y. Maeno, Phys. Rev. B 98, 100503 (2018).

[74] G. P. Mikitik and Y. V. Sharlai, Phys. Rev. Lett. 82, 2147–2150 (1999).

[75] D. Xiao, M.-C. Chang and Q. Niu, Rev. Mod. Phys. 82, 1959–2007 (2010).

[76] H. B. Nielsen and M. Ninomiya, Phys. Lett. B 130, 389–396 (1983).

[77] D. T. Son and B. Z. Spivak, Phys. Rev. B 88, 104412 (2013).

[78] K.-Y. Yang, Y.-M. Lu and Y. Ran, Phys. Rev. B 84, 075129 (2011).

[79] A. A. Burkov, Phys. Rev. B 91, 245157 (2015).

[80] Y. Fuseya, M. Ogata and H. Fukuyama, J. Phys. Soc. Jpn. 84, 012001 (2014).

[81] J. Fuchs, F. Piéchon, M. Goerbig and G. Montambaux, The European Physical Journal B 77, 351–362 (2010).

[82] A. R. Wright and R. H. McKenzie, Phys. Rev. B 87, 085411 (2013).

[83] I. M. Lifshitz and A. M. Kosevich, Zh. Eksp. Teor. Fiz. 29, 730 (1955).

[84] I. A. Luk'yanchuk and Y. Kopelevich, Phys. Rev. Lett. 93, 166402 (2004).

[85] I. A. Luk'yanchuk and Y. Kopelevich, Phys. Rev. Lett. 97, 256801 (2006).

[86] J. Xiong, Y. Luo, Y. Khoo, S. Jia, R. J. Cava and N. P. Ong, Phys. Rev. B 86, 045314 (2012).

[87] 安藤陽一 , トポロジカル絶縁体入門 , (講談社 , 2014).

[88] I. Lifshitz and A. Kosevich, Sov. Phys. JETP 2, 636–645 (1956).

[89] A. A. Abrikosov, Phys. Rev. B 58, 2788–2794 (1998).

[90] S. Suetsugu, K. Hayama, A. W. Rost, J. Nuss, C. Mühle, J. Kim, K. Kitagawa and H. Takagi, Phys. Rev. B 98, 115203 (2018).

[91] M. Parish and P. Littlewood, Nature 426, 162–165 (2003).

[92] M. M. Parish and P. B. Littlewood, Phys. Rev. B 72, 094417 (2005).

[93] J. Hu, M. M. Parish and T. F. Rosenbaum, Phys. Rev. B 75, 214203 (2007).

[94] T. Khouri, U. Zeitler, C. Reichl, W. Wegscheider, N. E. Hussey, S. Wiedmann and J. C. Maan, Phys. Rev. Lett. 117, 256601 (2016).

[95] S. L. Adler, Phys. Rev. 177, 2426–2438 (1969).

[96] J. S. Bell and R. Jackiw, Il Nuovo Cimento A 60, 47–61 (1969).

[97] M. E. Peskin and D. V. Schroeder, An Introduction to Quantum Field Theory, (Westview Press, 2002).

[98] J. Xiong, S. K. Kushwaha, T. Liang, J. W. Krizan, M. Hirschberger, W. Wang, R. Cava and N. Ong, Science 350, 413–416 (2015).

[99] X. Huang, L. Zhao, Y. Long, P. Wang, D. Chen, Z. Yang, H. Liang, M. Xue, H. Weng, Z. Fang, X. Dai and G. Chen, Phys. Rev. X 5, 031023 (2015).

[100] C.-L. Zhang, S.-Y. Xu, I. Belopolski, Z. Yuan, Z. Lin, B. Tong, G. Bian, N. Alidoust, C.-C. Lee, S.-M. Huang et al., Nature Commun. 7, 10735 (2016).

[101] Z. Wang, Y. Zheng, Z. Shen, Y. Lu, H. Fang, F. Sheng, Y. Zhou, X. Yang, Y. Li, C. Feng and Z.-A. Xu, Phys. Rev. B 93, 121112 (2016).

[102] M. Hirschberger, S. Kushwaha, Z. Wang, Q. Gibson, C. A. Belvin, B. Bernevig, R. Cava and N. Ong, Nature Mater. 15, 1161–1165 (2016).

[103] F. Arnold, C. Shekhar, S.-C. Wu, Y. Sun, R. D. dos Reis, N. Kumar, M. Naumann, M. O. Ajeesh, M. Schmidt, A. G. Grushin et al., Nature Commun. 7, 11615 (2016).

[104] R. Dos, M. Ajeesh, N. Kumar, F. Arnold, C. Shekhar, M. Naumann, M. Schmidt, M. Nicklas and E. Hassinger, New J. Phys. 18, 085006 (2016).

[105] S. Liang, J. Lin, S. Kushwaha, J. Xing, N. Ni, R. J. Cava and N. P. Ong, Phys. Rev. X 8, 031002 (2018).

[106] A. A. Burkov, Phys. Rev. B 96, 041110 (2017).

[107] S. Nandy, G. Sharma, A. Taraphder and S. Tewari, Phys. Rev. Lett. 119, 176804 (2017).

[108] N. Kumar, S. N. Guin, C. Felser and C. Shekhar, Phys. Rev. B 98, 041103 (2018).

[109] H. Li, H.-W. Wang, H. He, J. Wang and S.-Q. Shen, Phys. Rev. B 97, 201110 (2018).

[110] M. Ogata and H. Fukuyama, J. Phys. Soc. Jpn. 84, 124708 (2015).

[111] H. Fukuyama and R. Kubo, J. Phys. Soc. Jpn. 28, 570–581 (1970).

[112] A. Goetz and A. B. Focke, Phys. Rev. 45, 170–199 (1934).

[113] D. Shoenberg and M. Z. Uddin, Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 156, 687–701 (1936).

[114] L. Wehrli, Physik der kondensierten Materie 8, 87–128 (1968).

[115] F. Orbanić, M. Novak, M. Baćani and I. Kokanović, Phys. Rev. B 95, 035208 (2017).

[116] A. Pariari and P. Mandal, Sci. Rep. 7, 40327 (2017).

[117] N. L. Nair, P. T. Dumitrescu, S. Channa, S. M. Griffin, J. B. Neaton, A. C. Potter and

J. G. Analytis, Phys. Rev. B 97, 041111 (2018).

[118] A. Abragam, The Principles of Nuclear Magnetism, (Clarendon Press, 1961).

[119] 朝山邦輔 , 遍歴電子系の核磁気共鳴 - 金属磁性と超伝導 -, (裳華房 , 2002).

[120] T. Kariyado, Three-Dimensional Dirac Electron Systems in the Family of Inverse-Perovs- kite Material 𝐶𝑎3𝑃𝑏𝑂, Ph.D. thesis, Univ. of Tokyo (2012).

[121] H. Maebashi, M. Ogata and H. Fukuyama, J. Phys. Soc. Jpn. 86, 083702 (2017).

[122] H. Maebashi, T. Hirosawa, M. Ogata and H. Fukuyama, Journal of Physics and Chemistry of Solids 128, 138–143 (2019).

[123] 久保亮吾 , 大学演習 熱学・統計力学 , (裳華房 , 1961).

[124] G. C. Carter, L. H. Bennett and D. J. Kahan, Metallic shifts in NMR, Part I, (Pergamon Oxford, 1977).

[125] T. Kariyado and M. Ogata, J. Phys. Soc. Jpn. 81, 064701 (2012).

[126] T. H. Hsieh, J. Liu and L. Fu, Phys. Rev. B 90, 081112 (2014).

[127] C.-K. Chiu, Y.-H. Chan, X. Li, Y. Nohara and A. P. Schnyder, Phys. Rev. B 95, 035151 (2017).

[128] P. Dziawa, B. Kowalski, K. Dybko, R. Buczko, A. Szczerbakow, M. Szot, E. Łusakowska, T. Balasubramanian, B. M. Wojek, M. Berntsen et al., Nature Mater. 11, 1023–1027 ( 2012).

[129] T. Liang, Q. Gibson, J. Xiong, M. Hirschberger, S. P. Koduvayur, R. Cava and N. Ong, Nature Commun. 4, 2696 (2013).

[130] F. Schindler, A. M. Cook, M. G. Vergniory, Z. Wang, S. S. Parkin, B. A. Bernevig and T. Neupert, Sci. Adv. 4, eaat0346 (2018).

[131] Y. Obata, R. Yukawa, K. Horiba, H. Kumigashira, Y. Toda, S. Matsuishi and H. Hosono, Phys. Rev. B 96, 155109 (2017).

[132] S. Suetsugu, Electromagnetic response of three-dimensional Dirac electrons in anti-per- ovskites, Masters thesis, Univ. of Tokyo (2017).

[133] M. Oudah, A. Ikeda, J. N. Hausmann, S. Yonezawa, T. Fukumoto, S. Kobayashi, M. Sato and Y. Maeno, Nature Commun. 7, 13617 (2016).

[134] H. Nakamura, J. Merz, E. Khalaf, P. Ostrovsky, A. Yaresko, D. Samal and H. Takagi, arXiv preprint arXiv:1806.08712 (2018).

[135] D. Huang, H. Nakamura, K. Küster, A. Yaresko, D. Samal, N. B. M. Schröter, V. N. Strocov, U. Starke and H. Takagi, Phys. Rev. Materials 3, 124203 (2019).

[136] J. Nuss, C. Mühle, K. Hayama, V. Abdolazimi and H. Takagi, Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials 71, 300–312 (2015).

[137] A. W. Rost, J. Kim, S. Suetsugu, V. Abdolazimi, K. Hayama, J. Bruin, C. Mühle, K. Kitagawa, A. Yaresko, J. Nuss and H. Takagi, APL Materials (to be published).

[138] S. Jeon, B. B. Zhou, A. Gyenis, B. E. Feldman, I. Kimchi, A. C. Potter, Q. D. Gibson, R. J. Cava, A. Vishwanath and A. Yazdani, Nature Mater. 13, 851 (2014).

[139] T. Sato, K. Segawa, K. Kosaka, S. Souma, K. Nakayama, K. Eto, T. Minami, Y. Ando and T. Takahashi, Nature Phys. 7, 840–844 (2011).

[140] S.-Y. Xu, Y. Xia, L. Wray, S. Jia, F. Meier, J. Dil, J. Osterwalder, B. Slomski, A. Bansil, H. Lin et al., Science 332, 560–564 (2011).

[141] H. Weng, X. Dai and Z. Fang, Phys. Rev. X 4, 011002 (2014).

[142] G. Manzoni, L. Gragnaniello, G. Autès, T. Kuhn, A. Sterzi, F. Cilento, M. Zacchigna, V. Enenkel, I. Vobornik, L. Barba, F. Bisti, P. Bugnon, A. Magrez, V. N. Strocov, H. Berger, O. V. Yazyev, M. Fonin, F. Parmigiani and A. Crepaldi, Phys. Rev. Lett. 117, 237601 ( 2016).

[143] Y. Liu and R. E. Allen, Phys. Rev. B 52, 1566–1577 (1995).

[144] B. F. Williams and R. R. Hewitt, Phys. Rev. 146, 286–290 (1966).

[145] F. N. Gygax, A. Schenck, A. J. van Wal and S. Barth, Phys. Rev. Lett. 56, 2842–2845 ( 1986).

[146] E. Lippelt, P. Birrer, F. Gygax, B. Hitti, A. Schenck and M. Weber, Zeitschrift für Physik B Condensed Matter 86, 367–374 (1992).

[147] A. Berger, H. Bertschat, H.-E. Mahnke, B. Spellmeyer and W. Shen, Hyperfine Interac- tions 34, 547–551 (1987).

[148] W. Shen, A. Berger, H. Bertschat, H.-E. Mahnke and B. Spellmeyer, Phys. Lett. A 125, 489–492 (1987).

[149] W. A. MacFarlane, C. B. L. Tschense, T. Buck, K. H. Chow, D. L. Cortie, A. N. Hariwal, R. F. Kiefl, D. Koumoulis, C. D. P. Levy, I. McKenzie, F. H. McGee, G. D. Morris, M. R. Pearson, Q. Song, D. Wang, Y. S. Hor and R. J. Cava, Phys. Rev. B 90, 214422 (2014).

[150] J. Kim, Synthesis, structure, and physical properties of 𝑀2𝑇𝑡 and 𝑀3𝑇𝑡𝑂 compounds (M = Ca, Sr, Ba; Tt = Sn, Pb), Masters thesis, Univ. of Stuttgart (2015).

[151] N. P. Butch, P. Syers, K. Kirshenbaum, A. P. Hope and J. Paglione, Phys. Rev. B 84, 220504 (2011).

[152] W. Wang, Y. Du, G. Xu, X. Zhang, E. Liu, Z. Liu, Y. Shi, J. Chen, G. Wu and X.-x. Zhang, Sci. Rep. 3, 2181 (2013).

[153] O. Pavlosiuk, D. Kaczorowski and P. Wiśniewsk, Sci. Rep. 5, 9158 (2015).

[154] A. A. Taskin and Y. Ando, Phys. Rev. B 84, 035301 (2011).

[155] A. Alexandradinata and L. Glazman, Phys. Rev. B 97, 144422 (2018).

[156] G. Vignale, Phys. Rev. Lett. 67, 358–361 (1991).

[157] T. Hirosawa, H. Maebashi and M. Ogata, J. Phys. Soc. Jpn. 86, 063705 (2017).

[158] A. Lurio and D. A. Landman, Journal of the Optical Society of America 60, 759–763 ( 1970).

[159] C. R. Hewes, M. S. Adler and S. D. Senturia, Phys. Rev. B 7, 5195–5212 (1973).

[160] L. Tterlikkis, S. D. Mahanti and T. P. Das, Phys. Rev. B 1, 2041–2047 (1970).

[161] X. Zhang, Z. Hou, Y. Wang, G. Xu, C. Shi, E. Liu, X. Xi, W. Wang, G. Wu and X.- x. Zhang, Sci. Rep. 6, 23172 (2016).

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る