リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Analytical determination of adhesive layer deformation for adhesively bonded double cantilever beam test considering elastic–plastic deformation」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Analytical determination of adhesive layer deformation for adhesively bonded double cantilever beam test considering elastic–plastic deformation

Yu Sekiguchi Asuka Hayashi Chiaki Sato 東京工業大学 DOI:https://doi.org/10.1080/00218464.2018.1489799

2020.04.02

概要

The plastic zone at the crack front of an adhesively bonded double cantilever beam (DCB) specimen is analytically expressed considering the deformation of the adhesive layer. The plastic zone length and strain during the crack propagation are obtained, and the effect of the traction–separation profile on the DCB test results is investigated. The fracture energy is given by the area under the traction–separation curve and is not affected by the curve profile. However, the crack length of the DCB specimen is strongly affected by the adhesive deformation, leading to a calculation error in the fracture energy. Therefore, several crack length correction methods have been proposed. An analytical approach to describe the plastic zone at the crack front would help better understand DCB tests for adhesives. In this study, an analytical solution for a DCB test is discussed assuming that the adhesive layer undergoes an elastic–plastic deformation. The elastic zone of the specimen is replaced with a beam on an elastic foundation and the plastic zone with a beam having a uniformly distributed load. Influence of the plastic zone at the crack front in the DCB tests is analytically described by assuming an elastic–perfectly plastic material.

この論文で使われている画像

参考文献

[1] Blackman, B. R. K.; Hadavinia, H.; Kinloch, A. J.; Williams, J. G. The use of a cohesive zone model to study the fracture of fibre composites and adhesively-bonded joints. Int. J. Fract. 2003, 119, 25–46. DOI: 10.1023/A:1023998013255.

[2] Alfano, M.; Furgiuele, F.; Leonardi, A.; Maletta, C.; Paulino, G. H. Mode I fracture of adhesive joints using tailored cohesive zone models. Int. J. Fract. 2009, 157, 193–204. DOI: 10.1007/s10704-008-9293-4.

[3] Matzenmiller, A.; Gerlach, S.; Fiolka, M. A critical analysis of interface constitutive models for the simulation of delamination in composites and failure of adhesive bonds. J. Mech. Mater. Struct. 2010, 5, 185–211. DOI: 10.2140/jomms.2010.5.185.

[4] Chaves, F. J. P.; de Moura, M. F. S. F.; da Silva, L. F. M.; Dillard, D. A. Numerical analysis of the dual actuator load test applied to fracture characterization of bonded joints. Int. J. Solids. Struct. 2011, 48, 1572–1578. DOI: 10.1016/j.ijsolstr.2011.02.006.

[5] Abe, N.; Sekiguchi, Y.; Sato, C. Parameter identification of material model of toughened adhesive polymer for elasto–plastic finite element analysis. J. Adhes. Soc. Jpn. In press 2018.

[6] ISO, Adhesives –Determination of the mode 1 adhesive fracture energy of structural adhesive joints using double cantilever beam and tapered double cantilever beam specimens. ISO Standard, 2009; ISO 25217.

[7] ASTM D3433-99. Standard test method for fracture strength in cleavage of adhesives in bonded metal joints, (American Society for Testing and Materials, West Conshohocken, Re-approved in 2012).

[8] Gilman, J. J. Direct measurements of the surface energies of crystals. J. Appl. Phys. 1960, 31, 2208–2218. DOI: 10.1063/1.1735524.

[9] Gills, P. P.; Gilman, J. J. Double cantilever cleavage mode of crack propagation. J. Appl. Phys. 1964, 35, 647–658. DOI: 10.1063/1.1713430.

[10] Hashemi, S.; Kinloch, A. J.; Williams, J. G. Corrections needed in double-cantilever beam tests for assessing the interlaminar failure of fibre-composites. J. Mater. Sci. Lett. 1989, 8, 125–129. DOI: 10.1007/BF00730701.

[11] Williams, J. G. End corrections for orthotropic DCB specimens. Compos. Sci. Technol. 1989, 35, 367–376. DOI: 10.1016/0266-3538(89)90058-4.

[12] Blackman, B.; Dear, J. P.; Kinloch, A. J.; Osiyemi, S. The calculation of adhesive fracture energies from double-cantilever beam test specimens. J. Mater. Sci. Lett. 1991, 10, 253–256. DOI: 10.1007/BF00735649.

[13] Blackman, B. R. K.; Kinloch, A. J.; Paraschi, M.; Teo, W. S. Measuring the mode I adhesive fracture energy, GIC, of structural adhesive joints: the results of an international round-robin. Int. J. Adhes. Adhes. 2003, 23, 293–305. DOI: 10.1016/S0143-7496(03)00047-2.

[14] de Moura, M. F. S. F.; Morais, J. J. L.; Dourado, N. A new data reduction scheme for mode I wood fracture characterization using the double cantilever beam test. Eng. Fract. Mech. 2008, 75, 3852–3865. DOI: 10.1016/j.engfracmech.2008.02.006.

[15] Sekiguchi, Y.; Katano, M; Sato, C. Experimental study of the mode I adhesive fracture energy in DCB specimens bonded with a polyurethane adhesive. J. Adhes. 2017, 93, 235–255. DOI: 10.1080/00218464.2015.1070101.

[16] Kanninen, M. F. An augmented double cantilever beam model for studying crack propagation and arrest. Int. J. Fract. 1973, 9, 83–92. DOI: 10.1007/BF00035958.

[17] Penado, F. E. A closed form solution for the energy release rate of the double cantilever beam specimen with an adhesive layer. J. Compos. Mater. 1993, 27, 383–407. DOI: 10.1177/002199839302700403.

[18] Jiang, Z.; Wan, S.; Li, M.; Ma, L. Analytical solution for non-uniformity of energy release rate of orthotropic double cantilever beam specimens with an adhesive layer. Eng. Fract. Mech. 2016, 164, 46–59. DOI: 10.1016/j.engfracmech.2016.07.011.

[19] Budzik, M.; Jumel, J.; Imielinska, K.; Shanahan, M. E. R. Effect of adhesive compliance in the assessment of soft adhesives with the wedge test. J. Adhes. Sci. Technol. 2011, 25, 131–149. DOI: 10.1163/016942410X501133.

[20] Williams, M. L. The fracture threshold for an adhesive interlayer. J. Appl. Poly. Sci. 1970, 14, 1121–1126. DOI: 10.1002/app.1970.070140501.

[21] Williams, J. G.; Hadavinia, H. Analytical solutions for cohesive zone models. J. Mech. Phys. Solids 2002, 50, 809–825. DOI: 10.1016/S0022-5096(01)00095-3.

[22] Yamada, S. E. Elastic/plastic fracture analysis for bonded joints. Eng. Fract. Mech. 1987, 27, 315–328. DOI: 10.1016/0013-7944(87)90149-4.

[23] Yamada, S. E. The J-integral for augmented double cantilever beams and its application to bonded joints. Eng. Fract. Mech. 1988, 29, 673–682. DOI: 10.1016/0013- 7944(88)90169-5.

[24] Erpolat, S.; Ashcroft, I. A.; Crocombe, A. D.; Wahab, M. A. On the analytical determination of strain energy release rate in bonded DCB joints. Eng. Fract. Mech. 2004, 71, 1393–1401. DOI: 10.1016/S0013-7944(03)00163-2.

[25] Plaut, R. H.; Ritchie, J. L. Analytical solutions for peeling using beam-on-foundation model and cohesive zone. J. Adhes. 2004, 80, 313–331. DOI: 10.1080/00218460490445832.

[26] Tvergaard, V.; Hutchinson, J. W. On the toughness of ductile adhesive joints. J. Mech. Phys. Solids 1996, 44, 789–800. DOI: 10.1016/0022-5096(96)00011-7.

[27] Campilho, R. D. S. G.; de Moura, M. F. S. F.; Domingues, J. J. M. S. Using a cohesive damage model to predict the tensile behaviour of CFRP single-strap repairs. Int. J. Solids Struct. 2008, 45, 1497–1512. DOI: 10.1016/j.ijsolstr.2007.10.003.

[28] Blackman, B. K. R.; Kinloch, A. J.; Sanchez, F. S. R.; Teo, W. S.; Williams, J. G. The fracture behaviour of structural adhesives under high rates of testing. Eng. Fract. Mech. 2009, 76, 2868–2889. DOI: 10.1016/j.engfracmech.2009.07.013.

[29] Yamagata, Y.; Sekiguchi, Y.; Sato, C. Experimental investigation of mode I fracture energy of adhesively bonded joints under impact loading conditions. Appl. Adhes. Sci. 2017, 5, 7. DOI: 10.1186/s40563-017-0087-7.

[30] Sekiguchi, Y.; Yamagata, Y.; Sato, C. Mode I fracture energy of adhesive joints bonded with adhesives with different characteristics under quasi-static and impact loading. J. Adhes. Soc. Jpn. 2017, 53, 330–337.

[31] Kawasaki, S; Sekiguchi, Y; Nakajima, G; Haraga, K; Sato, C. Digital image correlation measuring of strain and stress distribution on mixed adhesive joints bonded by honeymoon adhesive using two types of second-generation acrylic adhesives of two components. J. Adhes. Soc. Jpn. 2017, 53, 192-201.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る