リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Complementing regional ground GNSS-STEC computerized ionospheric tomography (CIT) with ionosonde data assimilation」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Complementing regional ground GNSS-STEC computerized ionospheric tomography (CIT) with ionosonde data assimilation

Ssessanga, Nicholas Yamamoto, Mamoru Saito, Susumu Saito, Akinori Nishioka, Michi 京都大学 DOI:10.1007/s10291-021-01133-y

2021.07

概要

A near-real-time computerized ionospheric tomography (CIT) technique was developed over the East Asian sector to specify the 3-D electron density field. The technique is based on a plethora of Global Navigation Satellite System observables within the region of interest which is bounded horizontally 110°–160°E and 10°–60°N and extending from 80 to 25, 000 km in altitude. Prior to deployment, studies validated the CIT results using ionosonde, middle-upper atmosphere radar and occultation data and found the technique to adequately reconstruct the regional ionosphere vertical structure. However, with room for improvement in estimating the peak height and avoiding physically unrealistic negative densities in the final solution, we present preliminary results from a technique that addresses these issues by incorporating CIT results into a data assimilation (DA) technique. The DA technique adds ionosonde bottomside measurements into CIT results, thereby improving the accuracy of the reconstructed bottomside 3-D structure. More specifically, on average CIT NmF2 and hmF2 improve by more than 60%. Further, during analysis, ionospheric electron densities are assumed to be better described by probability log-normal distribution, which introduces the positivity constraint that is mandatory in ionospheric imaging.

この論文で使われている画像

参考文献

Astafyeva E, Zakharenkova I, Förster M (2015) Ionospheric response

to the 2015 St. Patrick’s Day storm: a global multi-instrumental

overview. J Geophys Res Space Phys 120(10):9023–9037. https://​

doi.​org/​10.​1002/​2015J​A0216​29

Bamford RA, Stamper R, Cander LR (2008) A comparison between

the hourly autoscaled and manually scaled characteristics from

the Chilton ionosonde from 1996 to 2004. Radio Sci 43(01):1–1.

https://​doi.​org/​10.​1029/​2005R​S0034​0l

Bartier PM, Keller CP (1996) Multivariate interpolation to incorporate

thematic surface data using inverse distance weighting (IDW).

Comput Geosci 22(7):795–799. https://​doi.​org/​10.​1016/​0098-​

3004(96)​00021-0

Bilitza D, McKinnell LA, Reinisch B, Fuller-Rowell T (2011) The

international reference ionosphere today and in the future. J Geodesy 85(12):909–920. https://​doi.​org/​10.​1007/​s00190-​010-​0427-x

Bilitza D, Altadill D, Truhlik V, Shubin V, Galkin I, Reinisch B, Huang

X (2017) International reference ionosphere (2016) From ionospheric climate to real-time weather predictions. Space Weather

15(2):418–429. https://​doi.​org/​10.​1002/​2016S​W0015​93

Bust GS, Datta-Barua S (2014) Scientific investigations using IDA4D

and EMPIRE. Model Ionosphere-Thermosphere Syst. https://​doi.​

org/​10.​1002/​97811​18704​417.​ch23

Bust GS, Garner TW, Gaussiran TL (2004) Ionospheric data assimilation three-dimensional (IDA3D): a global, multisensor, electron

density specification algorithm. J Geophys Res. https://​doi.​org/​

10.​1029/​2003J​A0102​34

Bust GS, Crowley G, Garner TW, Gaussiran TL, Meggs RW, Mitchell

CN, Spencer PS, Yin P, Zapfe B (2007) Four-dimensional GPS

imaging of space weather storms. Space Weather. https://​doi.​org/​

10.​1029/​2006S​W0002​37

Daley R (1991) Atmospheric data analysis, Cambridge atmospheric

and space science series. pp 809–822, Cambridge University

Press, Cambridge

Daley R, Barker E (2000) The NAVDIS source book 2000: NRL

atmospheric variational data assimilation system, NRL/

PU/7530‐00‐418. Naval Research Laboratory, Monterey, California, p 146)

Dee DP et al (2011) The ERA-interim reanalysis: Configuration and

performance of the data assimilation system. Q J R Meteorol Soc

137(656):553–597. https://​doi.​org/​10.​1002/​qj.​828

Fehmers GC, Kamp LP, Sluijter FW, Spoelstra TA (1998) A modelindependent algorithm for ionospheric tomography: 1. Theory

Tests Radio Sci 33(1):149–163. https://​doi.​org/​10.​1029/​97RS0​

3007

Garner TW, Taylor BT, Gaussiran TL, Coley WR, Hairston MR (2005)

On the distribution of ionospheric electron density observations.

Space Weather. https://​doi.​org/​10.​1029/​2005S​W0001​69

Huang X, Reinisch BW (1996) Vertical electron density profiles from

the digisonde network. Adv Space Res 18(6):121–129. https://d​ oi.​

org/​10.​1016/​0273-​1177(95)​00912-4

Nava B, Coisson P, Radicella SM (2008) A new version of the NeQuick

ionosphere electron density model. J Atmos Solar Terr Phys

70(15):1856–1862. https://​doi.​org/​10.​1016/j.​jastp.​2008.​01.​015

Nava B, Rodríguez-Zuluaga J, Alazo-Cuartas K, Kashcheyev A,

Migoya-Orué Y, Radicella SM, Amory-Mazaudier C, Fleury R

(2016) Middle-and low-latitude ionosphere response to 2015 St.

Patrick’s Day geomagnetic storm. J Geophys Res Space Phys

121(4):3421–3438. https://​doi.​org/​10.​1002/​2015J​A0222​99

Ping JL, Green CJ, Zartman RE, Bronson KF (2004) Exploring spatial

dependence of cotton yield using global and local autocorrelation statistics. Field Crop Res 89(2–3):219–236. https://​doi.​org/​

10.​1016/j.​fcr.​2004.​02.​009

13

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

93 Page 14 of 15

Raymond TD, Franke SJ, Yeh KC (1994) Ionospheric tomography:

its limitations and reconstruction methods. J Atmos Terr Phys

56(5):637–657. https://​doi.​org/​10.​1016/​0021-​9169(94)​90104-X

Reinisch BW, Huang X (2001) Deducing topside profiles and total

electron content from bottomside ionograms. Adv Space Res

27(1):23–30. https://​doi.​org/​10.​1016/​S0273-​1177(00)​00136-8

Reinisch BW, Huang X, Galkin IA, Paznukhov V, Kozlov A (2005)

Recent advances in real-time analysis of ionograms and ionospheric drift measurements with digisondes. J Atmos Solar Terr

Phys 67(12):1054–1062. https://​doi.​org/​10.​1016/j.​jastp.​2005.​01.​

009

Saito S, Suzuki S, Yamamoto M, Saito A, Chen CH (2017) Real-time

ionosphere monitoring by three-dimensional tomography over

Japan. Navigation 64(4):495–504. https://​doi.​org/​10.​1002/​navi.​

213

Saito S, Yamamoto M, Saito A, Chen CH (2019) Real-time 3-D ionospheric tomography and its validation by the MU radar. In 2019

URSI Asia-Pacific radio science conference (AP-RASC). IEEE,

pp 1–1. https://doi.org/https://​doi.​org/​10.​23919/​URSIAP-​RASC.​

2019.​87383​82.

Šauli P, Mošna Z, Boška J, Kouba D, Laštovička J, Altadill D (2007)

Comparison of true-height electron density profiles derived by

POLAN and NHPC methods. Stud Geophys Geod 51(3):449–459.

https://​doi.​org/​10.​1007/​s11200-​007-​0026-3

Seemala GK, Yamamoto M, Saito A, Chen CH (2014) Three-dimensional GPS ionospheric tomography over Japan using constrained

least squares. J Geophys Res Space Physics 119(4):3044–3052.

https://​doi.​org/​10.​1002/​2013J​A0195​82

Shubin VN (2015) Global median model of the F2-layer peak height

based on ionospheric radio-occultation and ground-based Digisonde observations. Adv Space Res 56(5):916–928. https://​doi.​

org/​10.​1016/j.​asr.​2015.​05.​029

Shubin VN, Karpachev AT, Tsybulya KG (2013) Global model of the

F2 layer peak height for low solar activity based on GPS radiooccultation data. J Atmos Solar Terr Phys 104:106–115. https://​

doi.​org/​10.​1016/j.​jastp.​2013.​08.​024

Ssessanga N, Kim YH, Choi B, Chung JK (2018) The 4D-var estimation of North Korean rocket exhaust emissions into the ionosphere. J Geophys Res Space Phys 123(3):2315–2326. https://d​ oi.​

org/​10.​1002/​2017J​A0245​96

Ssessanga N, Kim YH, Habarulema JB, Kwak YS (2019) On Imaging South African Regional Ionosphere Using 4D-var Technique.

Space Weather 17(11):1584–1604. https://d​ oi.o​ rg/1​ 0.1​ 029/2​ 019S​

W0023​21

Stankov S, Jodogne JC, Kutiev I, Stegen K, Warnant R (2012) Evaluation of the automatic ionogram scaling for use in real-time ionospheric density profile specification: Dourbes DGS-256/ARTIST-4 performance. Ann Geophys 55(2):283–291. https://​doi.​

org/​10.​4401/​ag-​4976

Thompson DC, Scherliess L, Sojka JJ, Schunk RW (2006) The Utah

state university Gauss–Markov Kalman filter of the ionosphere:

The effect of slant TEC and electron density profile data on model

fidelity. J Atmos Solar Terr Phys 68(9):947–958. https://​doi.​org/​

10.​1016/j.​jastp.​2005.​10.​011

Titheridge JE (1985) Ionogram analysis with the generalised program

POLAN. UAG Report-93, 1985 (http://​www.​ips.​gov.​au/​IPSHo​

sted/​INAG/​uag_​93/​uag_​93.​html)

Yeh KC, Raymund TD (1991) Limitations of ionospheric imaging by

tomography. Radio Sci 26(06):1361–1380. https://​doi.​org/​10.​

1029/​91RS0​1873

13

GPS Solutions (2021) 25:93

Zou X, Vandenberghe F, Pondeca M, Kuo YH (1997) Introduction to

adjoint techniques and the MM5 adjoint modeling system. NCAR

Technical note NCAR/TN-435 1STR. https://doi.org/https://​doi.​

org/​10.​5065/​D6F18​WNM.

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Ssessanga Nicholas is a JSPS

(Japan Society for the Promotion

of Science) research fellow at

Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto, Japan. His

current research includes studies

of the ionospheric structures and

the development of monitoring

techniques using tomography

and data assimilation.

Mamoru Yamamoto is a professor at Research Institute for Sustainable Humanosphere, Kyoto

University Uji, Kyoto, Japan. His

current research includes studies

of the ionospheric structures and

waves based on the total electron

content measurement from

GNSS and/or satellite-ground

beacon experiments.

Susumu Saito is a principal

researcher of Electronic Navigation Research Institute, National

Institute of Maritime, Port, and

Aviation Technology, Tokyo,

Japan. His current research topics include ionospheric effects

on GNSS, development of GNSS

ground-based augmentation system suitable for the low latitude

region, and ionospheric sciences

using GNSS tomography, radars,

and optical instruments.

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Page 15 of 15 93

GPS Solutions (2021) 25:93 Akinori Saito is an associate professor at the Department of Geophysics, Graduate School of Science, Kyoto University, Japan.

His recent research interests are

focused on the disturbances in

the Ionosphere and the Mesosphere using radio and optical

imaging observations from

ground and space, including

ionospheric observations by

ground-based GNSS-receiver

arrays.

Michi Nishioka is a Space Environment Laboratory researcher

in the National Institute of Information and Communications

Technology, Tokyo, Japan. Her

current research topics include

developing techniques to monitor ionospheric conditions using

ionosonde and GNSS-TEC

observation for space weather

purposes. She also works on the

development of forecasting ionospheric conditions using

machine learning techniques.

13

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る