リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Xanthine oxidase inhibition attenuates doxorubicin-induced cardiotoxicity in mice」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Xanthine oxidase inhibition attenuates doxorubicin-induced cardiotoxicity in mice

田中, 祥朗 東京慈恵会医科大学 DOI:info:doi/10.1016/j.freeradbiomed.2020.10.303

2021.10.22

概要

Accumulating evidence suggests that high serum uric acid (UA) is associated with left ventricular (LV) dysfunction. Although xanthine oxidase (XO) activation is a critical regulatory mechanism of the terminal step in ATP and purine degradation, the pathophysiological role of cardiac tissue XO in LV dysfunction remains unclear. We herein investigated the role and functional significance of tissue XO activity in doxorubicin-induced cardiotoxicity. Either doxorubicin (10 mg/kg) or vehicle was intraperitonially administered in a single injection to mice. Mice were treated with or without oral XO-inhibitors (febuxostat 3 mg/kg/day or topiroxostat 5 mg/kg/ day) for 8 days starting 24 h before doxorubicin injection. Cardiac tissue XO activity measured by a highly sensitive assay with liquid chromatography/mass spectrometry and cardiac UA content were significantly increased in doxorubicin-treated mice at day 7 and dramatically reduced by XO-inhibitors. Accordingly, XOinhibitors substantially improved LV ejection fraction (assessed by echocardiography) and LV developed pressure (assessed by ex vivo Langendorff heart perfusion) impaired by doxorubicin administration. This was associated with an increase in XO-derived hydrogen peroxide production with concomitant upregulation of apoptotic and ferroptotic pathways, all of which were reduced by XO-inhibitors. Furthermore, metabolome analyses revealed enhanced purine metabolism in doxorubicin-treated hearts, and XO-inhibitors suppressed the serial metabolic reaction of hypoxanthine–xanthine–UA, the paths of ATP and purine degradation. In summary, doxorubicin administration induces cardiac tissue XO activation associated with impaired LV function. XOinhibitors attenuate doxorubicin-induced cardiotoxicity through inhibition of XO-derived oxidative stress and cell death signals as well as the maintenance of cardiac energy metabolism associated with modulation of the purine metabolic pathway.

参考文献

[1] S. Masi, N.R. Pugliese, S. Taddei, The difficult relationship between uric acid and cardiovascular disease, Eur. Heart J. 40 (36) (2019) 3055–3057, https://doi.org/10.1093/eurheartj/ehz166.

[2] S.D. Anker, W. Doehner, M. Rauchhaus, R. Sharma, D. Francis, C. Knosalla, C. H. Davos, M. Cicoira, W. Shamim, M. Kemp, R. Segal, K.J. Osterziel, F. Leyva, R. Hetzer, P. Ponikowski, A.J. Coats, Uric acid and survival in chronic heart failure: validation and application in metabolic, functional, and hemodynamic staging, Circulation 107 (15) (2003) 1991–1997, https://doi.org/10.1161/01. CIR.0000065637.10517.A0.

[3] H. Sakai, T. Tsutamoto, T. Tsutsui, T. Tanaka, C. Ishikawa, M. Horie, Serum level of uric acid, partly secreted from the failing heart, is a prognostic marker in patients with congestive heart failure, Circ. J. 70 (8) (2006) 1006–1011, https://doi.org/10.1253/circj.70.1006.

[4] D. Toyoki, S. Shibata, E. Kuribayashi-Okuma, N. Xu, K. Ishizawa, M. Hosoyamada, S. Uchida, Insulin stimulates uric acid reabsorption via regulating urate transporter 1 and ATP-binding cassette subfamily G member 2, Am. J. Physiol. Ren. Physiol. 313 (3) (2017) F826–F834, https://doi.org/10.1152/ajprenal.00012.2017.

[5] S. Hamaguchi, T. Furumoto, M. Tsuchihashi-Makaya, K. Goto, D. Goto, T. Yokota, S. Kinugawa, H. Yokoshiki, A. Takeshita, H. Tsutsui, J.-C. Investigators, Hyperuricemia predicts adverse outcomes in patients with heart failure, Int. J. Cardiol. 151 (2) (2011) 143–147, https://doi.org/10.1016/j.ijcard.2010.05.002.

[6] H. Huang, B. Huang, Y. Li, Y. Huang, J. Li, H. Yao, X. Jing, J. Chen, J. Wang, Uric acid and risk of heart failure: a systematic review and meta-analysis, Eur. J. Heart Fail. 16 (1) (2014) 15–24, https://doi.org/10.1093/eurjhf/hft132.

[7] Y. Tanaka, T. Nagoshi, M. Kawai, G. Uno, S. Ito, A. Yoshii, H. Kimura, Y. Inoue, K. Ogawa, T.D. Tanaka, K. Minai, T. Ogawa, M. Yoshimura, Close linkage between serum uric acid and cardiac dysfunction in patients with ischemic heart disease according to covariance structure analysis, Sci. Rep. 7 (1) (2017) 2519, https://doi.org/10.1038/s41598-017-02707-y.

[8] Y. Tsushima, H. Nishizawa, Y. Tochino, H. Nakatsuji, R. Sekimoto, H. Nagao, T. Shirakura, K. Kato, K. Imaizumi, H. Takahashi, M. Tamura, N. Maeda, T. Funahashi, I. Shimomura, Uric acid secretion from adipose tissue and its increase in obesity, J. Biol. Chem. 288 (38) (2013) 27138–27149, https://doi.org/10.1074/jbc.M113.485094.

[9] T. Nishino, K. Okamoto, Y. Kawaguchi, H. Hori, T. Matsumura, B.T. Eger, E.F. Pai, T. Nishino, Mechanism of the conversion of xanthine dehydrogenase to xanthine oxidase: identification of the two cysteine disulfide bonds and crystal structure of a non-convertible rat liver xanthine dehydrogenase mutant, J. Biol. Chem. 280 (26) (2005) 24888–24894, https://doi.org/10.1074/jbc.M501830200.

[10] S. Tan, R. Radi, F. Gaudier, R.A. Evans, A. Rivera, K.A. Kirk, D.A. Parks, Physiologic levels of uric acid inhibit xanthine oxidase in human plasma, Pediatr. Res. 34 (3) (1993) 303–307, https://doi.org/10.1203/00006450-199309000-00013.

[11] S.L. Thompson-Gorman, J.L. Zweier, Evaluation of the role of xanthine oxidase in myocardial reperfusion injury, J. Biol. Chem. 265 (12) (1990) 6656–6663.

[12] T. Kusano, D. Ehirchiou, T. Matsumura, V. Chobaz, S. Nasi, M. Castelblanco, A. So, C. Lavanchy, H. Acha-Orbea, T. Nishino, K. Okamoto, N. Busso, Targeted knock-in mice expressing the oxidase-fixed form of xanthine oxidoreductase favor tumor growth, Nat. Commun. 10 (1) (2019) 4904, https://doi.org/10.1038/s41467-019-12565-z.

[13] R. Harrison, Structure and function of xanthine oxidoreductase: where are we now? Free Radic. Biol. Med. 33 (6) (2002) 774–797, https://doi.org/10.1016/ s0891-5849(02)00956-5.

[14] B. Butts, D.A. Calhoun, T.S. Denney Jr., S.G. Lloyd, H. Gupta, K.K. Gaddam, I. Aban, S. Oparil, P.W. Sanders, R. Patel, J.F. Collawn, L.J. Dell’Italia, Plasma xanthine oxidase activity is related to increased sodium and left ventricular hypertrophy in resistant hypertension, Free Radic. Biol. Med. 134 (2019) 343–349, https://doi.org/10.1016/j.freeradbiomed.2019.01.029.

[15] H. Omizo, Y. Tamura, C. Morimoto, M. Ueno, Y. Hayama, E. Kuribayashi-Okuma, S. Uchida, S. Shibata, Cardio-renal protective effect of the xanthine oxidase inhibitor febuxostat in the 5/6 nephrectomy model with hyperuricemia, Sci. Rep. 10 (1) (2020) 9326, https://doi.org/10.1038/s41598-020-65706-6.

[16] H. Nambu, S. Takada, S. Maekawa, J. Matsumoto, N. Kakutani, T. Furihata, R. Shirakawa, T. Katayama, T. Nakajima, K. Yamanashi, Y. Obata, I. Nakano, M. Tsuda, A. Saito, A. Fukushima, T. Yokota, J. Nio-Kobayashi, H. Yasui, K. Higashikawa, Y. Kuge, T. Anzai, H. Sabe, S. Kinugawa, Inhibition of xanthine oxidase in the acute phase of myocardial infarction prevents skeletal muscle abnormalities and exercise intolerance, Cardiovasc. Res. (2020), https://doi.org/10.1093/cvr/cvaa127 in press.

[17] G.A. Hirsch, P.A. Bottomley, G. Gerstenblith, R.G. Weiss, Allopurinol acutely increases adenosine triphospate energy delivery in failing human hearts, J. Am. Coll. Cardiol. 59 (9) (2012) 802–808, https://doi.org/10.1016/j.jacc.2011.10.895.

[18] G. Kamalov, R.A. Ahokas, W. Zhao, A.U. Shahbaz, S.K. Bhattacharya, Y. Sun, I. C. Gerling, K.T. Weber, Temporal responses to intrinsically coupled calcium and zinc dyshomeostasis in cardiac myocytes and mitochondria during aldosteronism, Am. J. Physiol. Heart Circ. Physiol. 298 (2) (2010) H385–H394, https://doi.org/10.1152/ajpheart.00593.2009.

[19] N. Engberding, S. Spiekermann, A. Schaefer, A. Heineke, A. Wiencke, M. Muller, M. Fuchs, D. Hilfiker-Kleiner, B. Hornig, H. Drexler, U. Landmesser, Allopurinol attenuates left ventricular remodeling and dysfunction after experimental myocardial infarction: a new action for an old drug? Circulation 110 (15) (2004) 2175–2179, https://doi.org/10.1161/01.CIR.0000144303.24894.1C.

[20] V. Mellin, M. Isabelle, A. Oudot, C. Vergely-Vandriesse, C. Monteil, B. Di Meglio, J. P. Henry, B. Dautreaux, L. Rochette, C. Thuillez, P. Mulder, Transient reduction in myocardial free oxygen radical levels is involved in the improved cardiac function and structure after long-term allopurinol treatment initiated in established chronic heart failure, Eur. Heart J. 26 (15) (2005) 1544–1550, https://doi.org/10.1093/eurheartj/ehi305.

[21] J.D. Gladden, B.R. Zelickson, C.C. Wei, E. Ulasova, J. Zheng, M.I. Ahmed, Y. Chen, M. Bamman, S. Ballinger, V. Darley-Usmar, L.J. Dell’Italia, Novel insights into interactions between mitochondria and xanthine oxidase in acute cardiac volume overload, Free Radic. Biol. Med. 51 (11) (2011) 1975–1984, https://doi.org/10.1016/j.freeradbiomed.2011.08.022.

[22] G. Jia, J. Habibi, B.P. Bostick, L. Ma, V.G. DeMarco, A.R. Aroor, M.R. Hayden, A. T. Whaley-Connell, J.R. Sowers, Uric acid promotes left ventricular diastolic dysfunction in mice fed a Western diet, Hypertension 65 (3) (2015) 531–539, https://doi.org/10.1161/HYPERTENSIONAHA.114.04737.

[23] A. Namai-Takahashi, A. Sakuyama, T. Nakamura, T. Miura, J. Takahashi, R. Kurosawa, M. Kohzuki, O. Ito, Xanthine oxidase inhibitor, febuxostat ameliorates the high salt intake-induced cardiac hypertrophy and fibrosis in dahl salt-sensitive rats, Am. J. Hypertens. 32 (1) (2019) 26–33, https://doi.org/10.1093/ajh/hpy143.

[24] Y. Kinugasa, K. Ogino, Y. Furuse, T. Shiomi, H. Tsutsui, T. Yamamoto, O. Igawa, I. Hisatome, C. Shigemasa, Allopurinol improves cardiac dysfunction after ischemia-reperfusion via reduction of oxidative stress in isolated perfused rat hearts, Circ. J. 67 (9) (2003) 781–787, https://doi.org/10.1253/circj.67.781.

[25] S. Baldus, K. Mullerleile, P. Chumley, D. Steven, V. Rudolph, G.K. Lund, H. J. Staude, A. Stork, R. Koster, J. Kahler, C. Weiss, T. Munzel, T. Meinertz, B. A. Freeman, T. Heitzer, Inhibition of xanthine oxidase improves myocardial contractility in patients with ischemic cardiomyopathy, Free Radic. Biol. Med. 41 (8) (2006) 1282–1288, https://doi.org/10.1016/j.freeradbiomed.2006.07.010.

[26] S. Tanno, K. Yamamoto, Y. Kurata, M. Adachi, Y. Inoue, N. Otani, M. Mishima, Y. Yamamoto, M. Kuwabara, K. Ogino, J. Miake, H. Ninomiya, Y. Shirayoshi, F. Okada, K. Yamamoto, I. Hisatome, Protective effects of topiroxostat on an ischemia-reperfusion model of rat hearts, Circ. J. 82 (4) (2018) 1101–1111, https://doi.org/10.1253/circj.CJ-17-1049.

[27] Y. Zhao, S. Miriyala, L. Miao, M. Mitov, D. Schnell, S.K. Dhar, J. Cai, J.B. Klein, R. Sultana, D.A. Butterfield, M. Vore, I. Batinic-Haberle, S. Bondada, D.K. St Clair, Redox proteomic identification of HNE-bound mitochondrial proteins in cardiac tissues reveals a systemic effect on energy metabolism after doxorubicin treatment, Free Radic. Biol. Med. 72 (2014) 55–65, https://doi.org/10.1016/j. freeradbiomed.2014.03.001.

[28] J.S. Koh, C.O. Yi, R.W. Heo, J.W. Ahn, J.R. Park, J.E. Lee, J.H. Kim, J.Y. Hwang, G. S. Roh, Protective effect of cilostazol against doxorubicin-induced cardiomyopathy in mice, Free Radic. Biol. Med. 89 (2015) 54–61, https://doi.org/10.1016/j. freeradbiomed.2015.07.016.

[29] P. Efentakis, A. Varela, E. Chavdoula, F. Sigala, D. Sanoudou, R. Tenta, K. Gioti, N. Kostomitsopoulos, A. Papapetropoulos, A. Tasouli, D. Farmakis, C.H. Davos, A. Klinakis, T. Suter, D.V. Cokkinos, E.K. Iliodromitis, P. Wenzel, I. Andreadou, Levosimendan prevents doxorubicin-induced cardiotoxicity in time- and dosedependent manner: implications for inotropy, Cardiovasc. Res. 116 (3) (2020) 576–591, https://doi.org/10.1093/cvr/cvz163.

[30] Y. Ichikawa, M. Ghanefar, M. Bayeva, R. Wu, A. Khechaduri, S.V. Naga Prasad, R. K. Mutharasan, T.J. Naik, H. Ardehali, Cardiotoxicity of doxorubicin is mediated through mitochondrial iron accumulation, J. Clin. Invest. 124 (2) (2014) 617–630, https://doi.org/10.1172/JCI72931.

[31] X. Fang, H. Wang, D. Han, E. Xie, X. Yang, J. Wei, S. Gu, F. Gao, N. Zhu, X. Yin, Q. Cheng, P. Zhang, W. Dai, J. Chen, F. Yang, H.T. Yang, A. Linkermann, W. Gu, J. Min, F. Wang, Ferroptosis as a target for protection against cardiomyopathy, Proc. Natl. Acad. Sci. U. S. A. 116 (7) (2019) 2672–2680, https://doi.org/10.1073/pnas.1821022116.

[32] E. Yamamoto, K. Kataoka, T. Yamashita, Y. Tokutomi, Y.F. Dong, S. Matsuba, H. Ogawa, S. Kim-Mitsuyama, Role of xanthine oxidoreductase in the reversal of diastolic heart failure by candesartan in the salt-sensitive hypertensive rat, Hypertension 50 (4) (2007) 657–662, https://doi.org/10.1161/ HYPERTENSIONAHA.107.095315.

[33] T. Murase, M. Nampei, M. Oka, N. Ashizawa, K. Matsumoto, A. Miyachi, T. Nakamura, Xanthine oxidoreductase activity assay in tissues using stable isotope-labeled substrate and liquid chromatography high-resolution mass spectrometry, J Chromatogr B Analyt Technol Biomed Life Sci 1008 (2016) 189–197, https://doi.org/10.1016/j.jchromb.2015.11.030.

[34] T. Nagoshi, T. Matsui, T. Aoyama, A. Leri, P. Anversa, L. Li, W. Ogawa, F. del Monte, J.K. Gwathmey, L. Grazette, B.A. Hemmings, D.A. Kass, H.C. Champion, A. Rosenzweig, PI3K rescues the detrimental effects of chronic Akt activation in the heart during ischemia/reperfusion injury, J. Clin. Invest. 115 (8) (2005) 2128–2138, https://doi.org/10.1172/JCI23073.

[35] Y. Kashiwagi, T. Nagoshi, T. Yoshino, T.D. Tanaka, K. Ito, T. Harada, H. Takahashi, M. Ikegami, R. Anzawa, M. Yoshimura, Expression of SGLT1 in human hearts and impairment of cardiac glucose uptake by phlorizin during ischemia-reperfusion injury in mice, PloS One 10 (6) (2015), e0130605, https://doi.org/10.1371/ journal.pone.0130605.

[36] A. Yoshii, T. Nagoshi, Y. Kashiwagi, H. Kimura, Y. Tanaka, Y. Oi, K. Ito, T. Yoshino, T.D. Tanaka, M. Yoshimura, Cardiac ischemia-reperfusion injury under insulinresistant conditions: SGLT1 but not SGLT2 plays a compensatory protective role in diet-induced obesity, Cardiovasc. Diabetol. 18 (1) (2019) 85, https://doi.org/ 10.1186/s12933-019-0889-y.

[37] K. Nakai, M.B. Kadiiska, J.J. Jiang, K. Stadler, R.P. Mason, Free radical production requires both inducible nitric oxide synthase and xanthine oxidase in LPS-treated skin, Proc. Natl. Acad. Sci. U. S. A. 103 (12) (2006) 4616–4621, https://doi.org/10.1073/pnas.0510352103.

[38] M. Peleli, C. Zollbrecht, M.F. Montenegro, M. Hezel, J. Zhong, E.G. Persson, R. Holmdahl, E. Weitzberg, J.O. Lundberg, M. Carlstrom, Enhanced XOR activity in eNOS-deficient mice: effects on the nitrate-nitrite-NO pathway and ROS homeostasis, Free Radic. Biol. Med. 99 (2016) 472–484, https://doi.org/10.1016/j.freeradbiomed.2016.09.004.

[39] Y. Ohashi, A. Hirayama, T. Ishikawa, S. Nakamura, K. Shimizu, Y. Ueno, M. Tomita, T. Soga, Depiction of metabolome changes in histidine-starved Escherichia coli by CE-TOFMS, Mol. Biosyst. 4 (2) (2008) 135–147, https://doi.org/10.1039/b714176a.

[40] T. Ooga, H. Sato, A. Nagashima, K. Sasaki, M. Tomita, T. Soga, Y. Ohashi, Metabolomic anatomy of an animal model revealing homeostatic imbalances in dyslipidaemia, Mol. Biosyst. 7 (4) (2011) 1217–1223, https://doi.org/10.1039/c0mb00141d.

[41] M. Sugimoto, D.T. Wong, A. Hirayama, T. Soga, M. Tomita, Capillary electrophoresis mass spectrometry-based saliva metabolomics identified oral, breast and pancreatic cancer-specific profiles, Metabolomics 6 (1) (2010) 78–95, https://doi.org/10.1007/s11306-009-0178-y.

[42] B.H. Junker, C. Klukas, F. Schreiber, VANTED: a system for advanced data analysis and visualization in the context of biological networks, BMC Bioinf. 7 (2006) 109, https://doi.org/10.1186/1471-2105-7-109.

[43] A. Webb, R. Bond, P. McLean, R. Uppal, N. Benjamin, A. Ahluwalia, Reduction of nitrite to nitric oxide during ischemia protects against myocardial ischemiareperfusion damage, Proc. Natl. Acad. Sci. U. S. A. 101 (37) (2004) 13683–13688, https://doi.org/10.1073/pnas.0402927101.

[44] P.K. Mishra, A. Adameova, J.A. Hill, C.P. Baines, P.M. Kang, J.M. Downey, J. Narula, M. Takahashi, A. Abbate, H.C. Piristine, S. Kar, S. Su, J.K. Higa, N. K. Kawasaki, T. Matsui, Guidelines for evaluating myocardial cell death, Am. J. Physiol. Heart Circ. Physiol. 317 (5) (2019) H891–H922, https://doi.org/10.1152/ ajpheart.00259.2019.

[45] F. Ursini, M. Maiorino, Lipid peroxidation and ferroptosis: the role of GSH and GPx4, Free Radic. Biol. Med. 152 (2020) 175–185, https://doi.org/10.1016/j. freeradbiomed.2020.02.027.

[46] H. Kouzu, T. Miki, M. Tanno, A. Kuno, T. Yano, T. Itoh, T. Sato, D. Sunaga, H. Murase, T. Tobisawa, M. Ogasawara, S. Ishikawa, T. Miura, Excessive degradation of adenine nucleotides by up-regulated AMP deaminase underlies afterload-induced diastolic dysfunction in the type 2 diabetic heart, J. Mol. Cell. Cardiol. 80 (2015) 136–145, https://doi.org/10.1016/j.yjmcc.2015.01.004.

[47] B. Krishnamurthy, N. Rani, S. Bharti, M. Golechha, J. Bhatia, T.C. Nag, R. Ray, S. Arava, D.S. Arya, Febuxostat ameliorates doxorubicin-induced cardiotoxicity in rats, Chem. Biol. Interact. 237 (2015) 96–103, https://doi.org/10.1016/j. cbi.2015.05.013.

[48] H.E. Cingolani, J.A. Plastino, E.M. Escudero, B. Mangal, J. Brown, N.G. Perez, The effect of xanthine oxidase inhibition upon ejection fraction in heart failure patients: La Plata Study, J. Card. Fail. 12 (7) (2006) 491–498, https://doi.org/10.1016/j. cardfail.2006.05.005.

[49] K. Ogino, M. Kato, Y. Furuse, Y. Kinugasa, K. Ishida, S. Osaki, T. Kinugawa, O. Igawa, I. Hisatome, C. Shigemasa, S.D. Anker, W. Doehner, Uric acid-lowering treatment with benzbromarone in patients with heart failure: a double-blind placebo-controlled crossover preliminary study, Circ Heart Fail 3 (1) (2010) 73–81, https://doi.org/10.1161/CIRCHEARTFAILURE.109.868604.

[50] Y. Otaki, T. Watanabe, D. Kinoshita, M. Yokoyama, T. Takahashi, T. Toshima, T. Sugai, T. Murase, T. Nakamura, S. Nishiyama, H. Takahashi, T. Arimoto, T. Shishido, T. Miyamoto, I. Kubota, Association of plasma xanthine oxidoreductase activity with severity and clinical outcome in patients with chronic heart failure, Int. J. Cardiol. 228 (2017) 151–157, https://doi.org/10.1016/j. ijcard.2016.11.077.

[51] H. Cai, D.G. Harrison, Endothelial dysfunction in cardiovascular diseases: the role of oxidant stress, Circ. Res. 87 (10) (2000) 840–844.

[52] J.O. Lundberg, M.T. Gladwin, A. Ahluwalia, N. Benjamin, N.S. Bryan, A. Butler, P. Cabrales, A. Fago, M. Feelisch, P.C. Ford, B.A. Freeman, M. Frenneaux, J. Friedman, M. Kelm, C.G. Kevil, D.B. Kim-Shapiro, A.V. Kozlov, J.R. Lancaster Jr., D.J. Lefer, K. McColl, K. McCurry, R.P. Patel, J. Petersson, T. Rassaf, V.P. Reutov, G.B. Richter-Addo, A. Schechter, S. Shiva, K. Tsuchiya, E.E. van Faassen, A. J. Webb, B.S. Zuckerbraun, J.L. Zweier, E. Weitzberg, Nitrate and nitrite in biology, nutrition and therapeutics, Nat. Chem. Biol. 5 (12) (2009) 865–869, https://doi.org/10.1038/nchembio.260.

[53] A.Z. Luu, B. Chowdhury, M. Al-Omran, H. Teoh, D.A. Hess, S. Verma, Role of endothelium in doxorubicin-induced cardiomyopathy, JACC Basic Transl Sci 3 (6) (2018) 861–870, https://doi.org/10.1016/j.jacbts.2018.06.005.

[54] L.H. Opie, Allopurinol for heart failure: novel mechanisms, J. Am. Coll. Cardiol. 59 (9) (2012) 809–812, https://doi.org/10.1016/j.jacc.2011.09.072.

[55] P.A. Bottomley, G.S. Panjrath, S. Lai, G.A. Hirsch, K. Wu, S.S. Najjar, A. Steinberg, G. Gerstenblith, R.G. Weiss, Metabolic rates of ATP transfer through creatine kinase (CK flux) predict clinical heart failure events and death, Sci. Transl. Med. 5 (215) (2013) 215re3, https://doi.org/10.1126/scitranslmed.3007328.

[56] W. Doehner, E.A. Jankowska, J. Springer, M. Lainscak, S.D. Anker, Uric acid and xanthine oxidase in heart failure - emerging data and therapeutic implications, Int. J. Cardiol. 213 (2016) 15–19, https://doi.org/10.1016/j.ijcard.2015.08.089.

[57] K. Fujii, A. Kubo, K. Miyashita, M. Sato, A. Hagiwara, H. Inoue, M. Ryuzaki, M. Tamaki, T. Hishiki, N. Hayakawa, Y. Kabe, H. Itoh, M. Suematsu, Xanthine oxidase inhibitor ameliorates postischemic renal injury in mice by promoting resynthesis of adenine nucleotides, JCI Insight 4 (22) (2019), https://doi.org/ 10.1172/jci.insight.124816.

[58] T. Tani, K. Okamoto, M. Fujiwara, A. Katayama, S. Tsuruoka, Metabolomics analysis elucidates unique influences on purine/pyrimidine metabolism by xanthine oxidoreductase inhibitors in a rat model of renal ischemia-reperfusion injury, Mol Med 25 (1) (2019) 40, https://doi.org/10.1186/s10020-019-0109-y.

[59] R. Radi, S. Tan, E. Prodanov, R.A. Evans, D.A. Parks, Inhibition of xanthine oxidase by uric acid and its influence on superoxide radical production, Biochim. Biophys. Acta 1122 (2) (1992) 178–182, https://doi.org/10.1016/0167-4838(92)90321-4.

[60] M.P. Cole, L. Chaiswing, T.D. Oberley, S.E. Edelmann, M.T. Piascik, S.M. Lin, K. K. Kiningham, D.K. St Clair, The protective roles of nitric oxide and superoxide dismutase in adriamycin-induced cardiotoxicity, Cardiovasc. Res. 69 (1) (2006) 186–197, https://doi.org/10.1016/j.cardiores.2005.07.012.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る