リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Sodium-glucose cotransporter 2 inhibitors represent a paradigm shift in the prevention of heart failure in type 2 diabetes patients.」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Sodium-glucose cotransporter 2 inhibitors represent a paradigm shift in the prevention of heart failure in type 2 diabetes patients.

KASHIWAGI Atsunori 20127210 0000-0002-6049-3236 ARAKI Shin-ichi 80378455 0000-0002-2933-0316 MAEGAWA Hiroshi 00209363 0000-0002-4611-8149 滋賀医科大学

2020.06.20

概要

Recent major clinical trials of the use of sodium-glucose cotransporter 2 (SGLT2) inhibitors in patients with type 2 diabetes have shown that they reduce three-point major adverse cardiovascular events, cardiovascular death, hospitalization for heart failure (HF) and a composite renal outcome. These beneficial effects of SGLT2 inhibitors are also evident in type 2 diabetes patients with a previous history of atherosclerotic cardiovascular disease or advanced renal disease. HF is a major determinant of the prognosis of diabetes patients. Although HF with low ejection fraction can be effectively treated with antihypertensive drugs, these treatments do not reduce mortality in HF patients with preserved ejection fraction (HFpEF). HFpEF is clinically characterized by left ventricular diastolic dysfunction, perivascular fibrosis and stiffness of cardiomyocytes, defined as "cardiomyopathy". Therefore, HFpEF is considered to be an entirely separate entity to HF with low ejection fraction. Recent studies have suggested that HFpEF might be treatable using SGLT2 inhibitors, which ameliorate visceral adiposity, insulin resistance, hyperglycemia, hyperlipidemia, volume overload, hypertension and cardiac inflammation. In the final part of the present review, we discuss the biochemical and molecular mechanisms of the effects of SGLT2 inhibitors in type 2 diabetes patients with HFpEF. These involve amelioration of the low nitric oxide production and oxidative stress, a reduction in cardiac inflammatory cytokine signaling, inhibition of Ca2+ overload, and an improvement in cardiac energy metabolism as a result of ketone body production. Investigations of the beneficial effects of SGLT2 inhibitors on cardiorenal outcomes, including hospitalization for HF, are now being carried out in preclinical and clinical studies.

この論文で使われている画像

参考文献

1. Lee WS, Kanai Y, Wells RG, et al. The high affinity Na+/

glucose cotransporter. J Biol Chem 1994; 269: 12032–12039.

2. Wright EM, Loo DD, Hirayama BA. Biology of human

sodium glucose transporters. Physiol Rev 2011; 91: 733–794.

3. Bailey CJ. Renal glucose reabsorption inhibitors to treat

diabetes. Trends Pharmacol Sci 2011; 32: 63–71.

4. Abdul-Ghani M, DeFronzo R, Norton L. Novel hypothesis to

explain why SGLT2 inhibitors inhibit only 30–50% of

filtered glucose load in humans. Diabetes 2013; 62: 3324–

3328.

5. Ferrannini E, Muscelli E, Frascerra S, et al. Metabolic

response to sodium-glucose cotransporter 2 inhibition in

type 2 diabetic patients. J Clin Invest 2013; 124: 499–508.

6. Merovci A, Solis-Herrera C, Daniele G, et al. Dapagliflozin

improves muscle insulin sensitivity but enhances

endogenous glucose production. J Clin Invest 2014; 124:

509–514.

7. Cefalu WT. Paradoxical insights into whole body metabolic

adaptations following SGLT2 inhibition. J Clin Invest 2015;

124: 485–487.

8. Polidori D, Mari A, Ferrannini E. Canagliflozin, a sodium

glucose co- transporter 2 inhibitor, improves model-based

indices of beta cell function in patients with type 2

diabetes. Diabetologia 2014; 57: 891–901.

9. Rossetti L, Smith D, Shulman GI, et al. Correction of

hyperglycemia with phlorizin normalizes tissue sensitivity to

insulin. J Clin Invest 1987; 79: 1510–1515.

10. Takahara M, Shiraiwa T, Matsuoka T, et al. Ameliorated

pancreatic b cell dysfunction in type 2 diabetic patients

treated with a sodium-glucose cotransporter 2 inhibitor

ipragliflozin. Endocrine J 2015; 62: 77–86.

11. Leiter LA, Forst T, Polidori D, et al. Effect of canagliflozin on

liver function tests in patients with type 2 diabetes.

Diabetes Metab 2016; 42: 25–32.

12. Bonner C, Kerr-Conte J, Gmyr V, et al. Inhibition of the

glucose transporter SGLT2 with dapagliflozin in pancreatic

alpha cells triggers glucagon secretion. Nat Med 2015; 21:

512–517.

12

J Diabetes Investig Vol.  No.   2020

http://wileyonlinelibrary.com/journal/jdi

13. Chino Y, Samukawa Y, Sakai S, et al. SGLT2 inhibitor lowers

serum uric acid through alteration of uric acid transport

activity in renal tubule by increased glycosuria. Biopharm

Drug Dispos 2014; 35: 391–404.

14. Oliva RV, Bakris GL. Blood pressure effects of sodiumglucose-cotransport 2 (SGLT2) inhibitors. J Am Soc

Hypertens 2014; 8: 330–339.

15. Tikkanen I, Narko K, Zeller C, et al. Empagliflozin reduces

blood pressure in patients with type 2 diabetes and

hypertension. Diabetes Care 2015; 38: 420–428.

16. Kashiwagi A, Yoshida S, Kawamura K, et al. Effects of

ipragliflozin, a selective sodium–glucose co-transporter 2

inhibitor, on blood pressure in Japanese patients with

type 2 diabetes mellitus: a pooled analysis of six

randomized, placebo-controlled clinical trials. Diabetol Int

2017; 8: 76–86.

17. Baker WL, Smyth LR, Riche DM, et al. Effects of sodiumglucose co-transporter 2 inhibitors on blood pressure: a

systematic review and meta-analysis. J Am Soc Hypertens

2014; 8: 262–275.

18. Sha S, Polidori D, Heise T, et al. Effect of the sodium

glucose co-transporter 2 inhibitor canagliflozin on plasma

volume in patients with type 2 diabetes mellitus. Diabetes

Obes Metab 2014; 16: 1087–1095.

19. Bolinder J, Ljunggren O, Kullberg J, et al. Effects of

dapagliflozin on body weight, total fat mass, and regional

adipose tissue distribution in patients with type 2 diabetes

mellitus with inadequate glycemic control on metformin. J

Clin Endocrinol Metab 2012; 97: 1020–1031.

20. Kashiwagi A, Maegawa H. Metabolic and hemodynamic

effects of sodium dependent glucose cotransporter 2

inhibitors on cardio-renal protection in the treatment of

patients with type 2 diabetes mellitus. J Diabetes Investig

2017; 8: 416–427.

21. Kashiwagi A, Sakatani T, Nakamura I, et al. Improved

cardiometabolic risk factors in Japanese patients with type

2 diabetes treated with ipragliflozin: a pooled analysis of

six randomized, placebo-controlled trials. Endocrine J 2018;

65: 691–705.

22. Zimman B, Wanner C, Lachin JM, et al. EMPA-REG

OUTCOME Investigators. Empagliflozin, cardiovascular

outcomes and mortality in type 2 diabetes. N Engl J Med

2015; 373: 2117–2128.

23. Wanner C, Inzucchi SE, Lachin JM, et al. Empagliflozin and

progression of kidney disease in type 2 diabetes. N Engl J

Med 2016; 375: 323–334.

24. Cherney DZ, Zinman B, Inzucchi SE, et al. OUTCOME

Investigators. Effects of empagliflozin on the urinary

albumin-to-creatinine ratio in patients with type 2 diabetes

and established cardiovascular disease: and exploratory

analysis from the EMPA-REG OUTCOME randomized,

placebo-controlled trial. Lancet Diabetes Endocrinol 2017; 5:

610–621.

ª 2020 The Authors. Journal of Diabetes Investigation published by AASD and John Wiley & Sons Australia, Ltd

http://wileyonlinelibrary.com/journal/jdi

25. Neal B, Perkovic V, Mahaffey KW, et al. Canagliflozin and

cardiovascular and renal events in type 2 diabetes. N Engl J

Med 2017; 377: 644–657.

26. Wiviott SD, Bonaca MP, Mosenzon O, et al. Dapagliflozin

and cardiovascular outcomes in type 2 diabetes. N Engl J

Med 2019; 380: 347–357.

27. Perkovic V, Jardine MJ, Neal S, et al. Canagliflozin and renal

outcomes in type 2 diabetes and nephropathy. N Engl J

Med 2019; 380: 2295–2306.

28. Marso SP, Daniels GH, Brown-Frandson K, et al. Liraglutide

and cardiovascular outcomes in type 2 diabetes. New Engl

J Med 2016; 375: 311–322.

29. Marso SP, Bain SC, Consoli A, et al. Semaglutide and

cardiovascular outcomes in patients with type 2 diabetes.

New Engl J Med 2016; 375: 1834–1844.

30. Holman RR, Bethel MA, Mentz RJ, et al. Effects of onceweekly exenatide on cardiovascular outcomes in type 2

diabetes. New Engl J Med 2017; 377: 1228–1239.

31. Mann JFE, Orsted DD, Brown-Frandsen K, et al. Liraglutide

and renal outcomes in type 2 diabetes. N Engl J Med 2017;

377: 839–848.

32. Cosentio F, Grant PJ, Aboyans V, et al. 2019 ESC guidelines

on diabetes, pre-diabetes, and cardiovascular diseases

developed in collaboration with EASD. Eur Heart J 2020; 41:

255–323.

33. Kluger AY, Tecson KM, Lee AY, et al. Class effects of SGLT2

inhibitors on cardiorenal outcomes. Cardiovasc Diabetol

2019; 18: 99.

34. Rabizadeh S, Nakhjavani M, Esteghmati A. Cardiovascular

and renal benefits of SGLT2 inhibitors: a narrative review.

Int J Endocrinol Metab 2019; 17: e84353.

35. Verma S, McMurray JJV. SGLT2 inhibitor and mechanisms

of cardiovascular benefit: a state -of-the-art review.

Diabetologia 2018; 61: 2108–2117.

36. Cavender MA, Norhammar A, Birkeland KI, et al. SGLT2

inhibitors and cardiovascular risk: an analysis of CVD-REAL. J

Am Coll Cardiol 2018; 71: 2497–2506.

37. Kosiborod M, Lam CSP, Kohsaka S, et al. Cardiovascular

events associated with SGLT2 inhibitors versus other

glucose-lowering drugs: the CVD-REAL 2 study. J Am Coll

Cardiol 2018; 71: 2628–2639.

38. Heerspink HL, Karasik A, Thuresson M, et al. Kidney

outcomes associated with use of SGLT2 inhibitors in real

world clinical practice (CVD-REAL 3): a multinational

observational cohort study. Lancet Diabetes Endocrinol 2020;

8: 27–35.

39. Ponikowski P, Voors AA, Anker SD, et al. 2016 ESC guideline

for the diagnosis and treatment of acute and chronic heart

failure: the task force for the diagnosis and treatment of

acute and chronic heart failure of the European Society of

cardiology (ESC). Eur Heart J 2016; 37: 2129–2200.

40. Bell DSH. Heart failure: the frequent, forgotten, and often

fetal complication of diabetes. Diabetes Care 2003; 26:

2433–2441.

ª 2020 The Authors. Journal of Diabetes Investigation published by AASD and John Wiley & Sons Australia, Ltd

REVIEW ARTICLE

SGLT2 inhibitors for heart failure prevention

41. Nichols GA, Ephross SA, Gullion CM, et al. The incidence of

congestive heart failure in type 2 diabetes: an update.

Diabetes Care 2004; 27: 1879–1884.

42. Rubler S, Dlugash J, Yuceoglu YZ, et al. New type of

cardiomyopathy associated with diabetic

glomerulosclerosis. Am J Cardiol 1972; 30: 595–602.

43. Bell DSH. Diabetic cardiomyopathy. Diabetes Care 2003; 26:

2949–2951.

44. Seferovic PM, Paulus WJ. Clinical diabetic cardiomyopathy:

a two-faced disease with restrictive and dilated

phenotypes. Eur Heart J 2015; 36: 1718–1727.

45. Shah S, Katz DH, Deo RC. Phenotypic spectrum of heart

failure with preserved ejection fraction. Heart Fail Clin 2014;

10: 407–418.

46. Clarke GD, Molina-Wilkins M, Solis-Herrera C, et al. Impaired

left ventricular diastolic function in T2DM patients is closely

related to glycemic control. Endocrine Diab Metab 2018; 1:

e00014.

47. Triposkiadis F, Giamouzis G, Parrissis J, et al. Reframing the

association and significance of co-morbidities in heart

failure. Eur J Heart Fail 2016; 18: 744–58.

48. McMurray JJV, Ostergren J, Swedberg K, et al. Effects of

candesartan in patients with chronic heart failure and

reduced left-ventricular systolic function taking angiotensinconverting-enzyme inhibitors: the CHARM-Added Trial.

Lancet 2003; 362: 767–771.

49. Sandesara PB, O’Neal WT, Kelli HM, et al. The prognostic

significance of diabetes and microvascular complications in

patients with heart failure with preserved ejection fraction.

Diabetes Care 2018; 41: 150–155.

50. Tromp J, Lim SL, Toy WT, et al. Microvascular disease in

patients with diabetes with reduced ejection fraction

versus preserved ejection fraction. Diabetes Care 2019; 42:

1792–1799.

51. Packer M, Kitzman DW. Obesity-related heart failure with a

preserved ejection fraction: the mechanistic rationale for

combining inhibitors of aldosterone, neprilysin, and

sodium-glucose cotransporter-2. J Am Coll Cardiol 2018; 6:

633–639.

52. Bakker W, Eringa EC, Sipkema P, et al. Endothelial

dysfunction and diabetes: roles of hyperglycemia, impaired

insulin signaling and obesity. Cell Tissue Res 2009; 335: 165–

189.

53. Sorop O, Heinonen I, van Kranenburg M, et al. Multiple

common comorbidities produce left ventricular diastolic

dysfunction associated with coronary microvascular

dysfunction, oxidative stress, and myocardial stiffening.

Cardiovasc Res 2018; 114: 954–964.

54. Patel VB, Shah S, Verma S, et al. Epicardial adipose tissue as

a metabolic transducer: role in heart failure and coronary

artery disease. Heart Fail Rev 2007; 22: 889–902.

55. Pitt B, Zannad F, Remme WJ, et al. The effect of

spironolactone on morbidity and mortality in patients with

severe heart failure. N Engl J Med 1999; 341: 709–717.

J Diabetes Investig Vol.  No.   2020

13

REVIEW ARTICLE

Kashiwagi et al.

56. Solomon SD, Claggett B, McMurray JJV, et al. Combined

neprilysin and renin-angiotensin system inhibition in heart

failure with reduced ejection fraction: a meta-analysis. Eur J

Heart Fail 2016; 18: 1238–1243.

57. McMurray JJV, Solomon SD, Inzucchi SE, et al. Dapagliflozin

in patients with heart failure and reduced ejection fraction.

N Engl J Med 2019; 381: 1995–2008.

58. Lam CS, Donal E, Kraigher-Krainer E, et al. Epidemiology

and clinical course of heart failure with preserved ejection

fraction. Eur J Heart Fail 2011; 13: 18–28.

59. Solomon SD, McMurray JJV, Anand IS, et al. Angiotensin–

neprilysin inhibition in heart failure with preserved ejection

fraction. N Engl J Med 2019; 381: 1609–1620.

60. Pitt B, Pfeffer MA, Assmann SF, et al. Spironolactone for

heart failure with preserved ejection fraction. N Engl J Med

2014; 370: 1383–1392.

61. Kashiwagi A. A new door opens, but it is essential to

accumulate further clinical evidence to control heart failure

in diabetes with preserved ejection fraction. J Diabetes

Investig 2019; 10: 1145–1147.

62. Soga F, Tanaka H, Tatsumi K, et al. Impact of dapagliflozin

on left ventricular diastolic function of patients with type 2

diabetic mellitus with chronic heart failure. Cardiovasc

Diabetol 2018; 17: 132–140.

63. Pabel S, Wagner S, Bollenberg H, et al. Empagliflozin

directly improves diastolic function in human heart failure.

Eur J Heart Fail 2018; 20: 1690–1700.

64. Figtree GA, Radholm K, Barrett TD, et al. Effects of

canagliflozin on heart failure outcomes associated with

preserved and reduced ejection fraction in type 2 diabetes

mellitus: results from the CAVAS program. Circulation 2019;

139: 2591–2593.

65. Kato ET, Silverman MG, Mosenzon O, et al. Effect of

dapagliflozin on heart failure and mortality in type 2

diabetes mellitus. Circulation 2019; 139: 2528–2536.

66. Milton Packer M, Butler J, Filippatos GS, et al. Evaluation of

the effect of sodium glucose co-transporter 2 inhibition

with empagliflozin on morbidity and mortality of patients

with chronic heart failure and a reduced ejection fraction:

rationale for and design of the EMPEROR-Reduced Trial. Eur

J Heart Fail 2019; 21: 1270–1278.

67. Anker SD, Butler J, Filippatos GS, et al. Evaluation of the

effects of sodium-glucose cotransporter 2 inhibition with

empagliflozin on morbidity and mortality in patients with

chronic heart failure and a preserved ejection fraction:

rationale for and design of the EMPEROR-Preserved Trial.

Eur J Heart Fail 2019; 21: 1279–1287.

68. Jensen J, Omar M, Kistorp C, et al. Empagliflozin in

heart failure patients with reduced ejection fraction:

a randomized clinical trial (Empire HF). Trials 2019;

20: 374.

69. Shinozaki K, Kashiwagi A, Nishio Y, et al. Abnormal

biopterin metabolism is a major cause of impaired

endothelial-dependent relaxation through nitric oxide/O214

J Diabetes Investig Vol.  No.   2020

http://wileyonlinelibrary.com/journal/jdi

70.

71.

72.

73.

74.

75.

76.

77.

78.

79.

80.

81.

82.

83.

84.

imbalance in insulin-resistant rat aorta. Diabetes 1999; 48:

2437–2445.

Kashiwagi A, Shibozaki K, Nishio Y, et al. Free radical

production in endothelial cells as a pathogenetic factor for

vascular dysfunction in the insulin-resistance state. Diabetes

Res Clin Pract 1999; 45: 199–203.

Shinozaki K, Hirayama A, Nishio Y, et al. Coronary

endothelial dysfunction in the insulin-resistant state is

linked to abnormal pteridine metabolism and vascular

oxidative stress. J Am Coll Cardiol 2001; 38: 1821–1828.

Aoyagi T, Matsui T. The cardiomyocytes as a source of

cytokines in cardiac injury. J Cell Sci Ther 2011.

https://doi.org/10.4172/2157-7013.S5-003

Salim HM, Fukuda D, Yagi S, et al. Gylcemic control with

ipragliflozin, a novel selective SGLT2 inhibitor, ameliorated

endothelial dysfunction in streptozotocin-induced diabetic

mouse. Front Cardiovasc Med 2016; 3: 1–9.

Sprague AH, Khalil RA. Inflammatory cytokines in vascular

dysfunction and vascular disease. Biochem Pharmacol 2009;

15: 539–552.

 L, Barroso E, et al. An overview of the

Palomer X, Salvado

crosstalk between inflammatory processes and metabolic

dysregulation during diabetic cardiomyopathy. Int J Cardiol

2013; 168: 3160–3172.

Ansley DM, Wang B. Oxidative stress and myocardial injury

in the diabetic heart”. J Pathol 2013; 229: 232–241.

Balligand J-L, Ungureanu-Longrois D, Simmons WW, et al.

Cytokine-inducible nitric oxide synthase (iNOS) expression

in cardiac myocytes: characterization and regulation of

iNOS expression and detection of iNOS activity in single

cardiac myocytes in vitro. J Biol Chem 1994; 269: 27580–

27588.

Liu T, Zhang L, Joo D, et al. NF-kB signaling in

inflammation. Signal Transduct Target Ther 2017; 2: 17023.

Tahara A, Kurosaki E, Yokono M, et al. Effects of SGLT2

selective inhibitor ipragliflozin on hyperglycemia,

hyperlipidemia, hepatic steatosis, oxidative stress,

inflammation, and obesity in type 2 diabetic mice. Eur J

Pharmacol 2013; 715: 246–255.

Li C, Zhang J, Xue M, et al. SGLT2 inhibition with

empagliflozin attenuates myocardial oxidative stress and

fibrosis in diabetic heart. Cardiovasc Diabetol 2019; 18: 15.

Garvey WT, Gaal LV, Leiter LA, et al. Effects of canagliflozin

versus glimepiride on adipokines and inflammatory

biomarkers in type 2 diabetes. Metabolism 2018; 85: 32–37.

Paulus WJ. Unfolding discoveries in heart failure. New Engl

J Med 2020; 382: 679–682.

Schiattarella GG, Altamirano F, Tong D, et al. Nitrosative

stress drives heart failure with preserved ejection fraction.

Nature 2019; 568: 351–356.

Franssen C, Chen S, Unger A, et al. Myocardial

microvascular inflammatory endothelial activation in heart

failure with preserved ejection fraction. J Am Coll Cardiol

Heart Fail 2016; 4: 312–24.

ª 2020 The Authors. Journal of Diabetes Investigation published by AASD and John Wiley & Sons Australia, Ltd

http://wileyonlinelibrary.com/journal/jdi

85. Karmazyn M, Gan XT, Humphreys RA, et al. The myocardial

Na+-H+ exchange; structure, regulation, and role in heart

disease. Circ Res 1999; 85: 777–786.

86. Packer M, Anker SD, Butler J, et al. Effects of sodiumglucose cotransporter 2 inhibitors for the treatment of

patients with heart failure: proposal of a novel mechanism

of action. JAMA Cardiol 2017; 2: 1025–1029.

87. Hamouda NN, Sydorenko V, Qureshi MA, et al.

Dapagliflozin reduces the amplitude of shortening and

Ca2+ transient in ventricular myocytes from streptozotocininduced diabetic rats. Mol Cell Biochem 2014; 400: 57–68.

88. Baartscheer A, Schumacher CA, Wust RCI, et al.

Empagliflozin decreases myocardial cytoplasmic Na+

through inhibition of the cardiac Na+/H+ exchanger in rats

and rabbits. Diabetologia 2017; 60: 568–573.

89. Uthman L, Baartscheer A, Bleijlevens B, et al. Class effects of

SGLT2 inhibitors in mouse cardiomyocytes and hearts;

inhibition of Na+/H+ exchange, lowering of cytosolic Na+

and vasodilation. Diabetologia 2018; 61: 722–726.

90. Gallo LA, Wright EM, Vallon V. Probing SGLT2 as a

therapeutic target for diabetes: basic physiology and

consequences. Diab Vasc Dis Res 2015; 12: 78–89.

91. Goldberg IJ, Trent CM, Schulze C. Lipid metabolism and

toxicity in the heart. Cell Metab 2012; 15: 805–812.

92. Mizuno Y, Harada E, Nakagawa H, et al. The diabetic heart

utilizes ketone bodies as an energy source. Metabolism

2017; 77: 65–72.

93. Sato K, Kashiwaya Y, Keon CA, et al. Insulin, ketone bodies,

and mitochondrial energy transduction. FASEB J 1995; 9: 651–

658.

94. Shimazu T, Hirschey MD, Newman J, et al. Suppression of

oxidative stress by b-hydroxybutyrate, an endogenous

histone decarboxylase inhibitor. Science 2013; 339: 211–214.

ª 2020 The Authors. Journal of Diabetes Investigation published by AASD and John Wiley & Sons Australia, Ltd

REVIEW ARTICLE

SGLT2 inhibitors for heart failure prevention

95. Kolwicz SC, Airhart S, Tian R, et al. Ketones step to the

plate: a game changer for metabolic remodeling in heart

failure? Circulation 2016; 133: 689–691.

96. Ferrannini E, Mark M, Mayoux E, et al. CV protection in the

EMPA-REG OUTCOME Trial: a “thrifty substrate” hypothesis.

Diabetes Care 2016; 39: 1108–1114.

97. Aubert G, Martin OJ, Horton JL, et al. The failing heart relies

on ketone bodies as a fuel. Circulation 2016; 133: 698–705.

98. Pachalska P, Crawford PA. Multi-dimensional roles of

ketone bodies in fuel metabolism, signaling, and

therapeutics. Cell Metab 2017; 25: 262–284.

99. Taylor SI, Blau JE, Rother KI. SGLT2 inhibitors may

predispose to ketoacidosis. J Clin Endocrinol Metab 2015;

100: 2849–2852.

100. Ferrannini E, Baldi S, Frascerra S, et al. Shift to fatty substrate

utilization in response to sodium-glucose cotransporter 2

inhibition in subjects without diabetes and patients with

type 2 diabetes. Diabetes 2016; 65: 1190–1195.

101. Mudaliar S, Alloju S, Henry RR. Can a shift in fuel

energetics explain the beneficial cardiorenal outcomes in

the EMPA-REG OUTCOME study? A unifying hypothesis.

Diabetes Care 2016; 39: 1115–1122.

102. Kaku K, Watada H, Iwamoto Y, et al. Efficacy and safety of

monotherapy with the novel sodium/glucose

cotransporter-2 inhibitor tofogliflozin in Japanese patients

with type 2 diabetes mellitus: a combined Phase 2 and 3

randomized, placebo-controlled, double-blind, parallelgroup comparative study. Cardiovasc Diabetol 2014; 13:

65–80.

103. Nielsen R, Moller N, Gormsen LC, et al. Cardiovascular

effects of treatment with ketone body 3-hydroxybutyrate

in chronic heart failure patients. Circulation 2019; 139:

2129–2141.

J Diabetes Investig Vol.  No.   2020

15

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る