リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Physical mechanism of volcanic tsunami earthquakes repeating at submarine volcanoes」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Physical mechanism of volcanic tsunami earthquakes repeating at submarine volcanoes

三反畑, 修 東京大学 DOI:10.15083/0002004732

2022.06.22

概要

Anomalous tsunami earthquakes have repeatedly occurred at submarine volcanoes near Torishima Island in Japan and Curtis Island in New Zealand. All centroid moment tensor solutions obtained for these earthquakes were non-double-couple types dominated by vertical compensated-linear-vector-dipole (verticalCLVD) components, indicating an atypical source mechanism of volcanic origin. Despite their intermediateclass seismic magnitudes of Mw 5-6, large amplitude tsunamis with peak amplitudes of tens of centimeters were observed at tide gauges across wide regions after the earthquakes. Considering their volcanic origins and the efficiency of tsunami excitation, these can be regarded as “volcanic tsunami earthquakes.” Previous studies have proposed several possible models for the physical mechanism of such earthquakes based on seismic analysis. However, their shallow source depths and remote locations (far from developed seismic networks) have made it difficult to determine the physical mechanism reliably via seismic data. Although tsunami records have also been used to explore the mechanism, limitations of past tsunami analyses (such as lack of good records and lower computational accuracy) have prevented detailed source modeling. Therefore, the physical mechanism of volcanic tsunami earthquakes has yet to be determined. In this study, I aimed to determine the physical mechanism by constructing kinematic source models of volcanic tsunami earthquakes through an interdisciplinary approach based on tsunami analysis, as well as modeling of long-period seismic waves and crustal deformation.

I first estimated an approximate tsunami source, or initial sea-surface displacement, caused by a volcanic tsunami earthquake near Torishima Island in 2015 (the 2015 Torishima earthquake) with high-quality tsunami records at an array of stations equipped with ocean-bottom pressure gauges. The peak location of the initial sea-surface uplift was constrained over a submarine caldera by comparing tsunami ray-tracing simulations with dispersion properties observed at the array. In order to obtain the profile of the tsunami source, I assumed an axially symmetric profile over the caldera to compute tsunami waveforms at the array. By comparing the synthetic and observed waveforms, I modeled a central uplift > 1 m with a smaller peripherical subsidence surrounding the caldera structure. Synthetic tsunami waveforms showed good agreement to observations at both the array and a tide-gauge station. The estimated tsunami model implied a possible source mechanism related to characteristic structures below the submarine caldera, such as a vertical opening of a shallow horizontal crack that would generate tsunamis efficiently with little release of long-period seismic energy.

Next, I explored a kinematic source model of the 2015 Torishima earthquake that explained observed tsunami and long-period seismic waves. To constrain candidates for fault geometries capable of causing the earthquake, I estimated its detailed initial sea-surface displacement by comparing more accurate synthetic tsunami waveforms with tsunami records from different observation networks (the Dense Oceanfloor Network system for Earthquakes and Tsunamis (DONET) and the Deep Sea Floor Observatory (DSFO) off southwestern Japan and the Deep-ocean Assessment and Reporting of Tsunamis (DART) in the offshore deep ocean), as well as the array. This confirmed that the earthquake generated large uplift concentrated just above the caldera floor and clear outside subsidence along the rim structure. Therefore, I hypothesized a composite fault model consisting of a ring-fault structure and a horizontal fault as a possible source model. Next, I developed an efficient inversion method using tsunami waveforms to estimate fault slips and applied it to multiple assumed fault models with different fault parameters, such as the dip angle and ruptured portion of the ring fault as well as the depth of the horizontal fault. From the slip distributions of the multiple fault models obtained by the inversion of tsunami waveforms, I constructed a point seismic moment tensor source to synthesize long-period seismic waves at regional stations of the Japanese broadband seismic network (F-net) and Global Seismograph Network (GSN). Finally, I obtained a composite source model composed of thrust slip along an inwardly down-dipping ring fault extending along three-quarters of the caldera rim structure along with the instantaneous vertical opening and closing of a horizontal fault at approximately 2 km depth. This slip model sufficiently explained both the tsunami and long-period seismic wave records, confirming its plausibility as a kinematic source model of the 2015 Torishima earthquake.

A similar approach was also applied to another volcanic tsunami earthquake near Curtis Island in 2017 (the 2017 Curtis earthquake). After estimating an approximate tsunami source location from tide-gauge records on the North Island and remote islands of New Zealand, the initial sea-surface displacement was estimated by the inversion of tsunami waveforms. This revealed similar characteristics to the 2015 Torishima earthquake, i.e., large uplift over a caldera-like structure with a clear boundary of the uplifted area along the rim structure. I next inverted tsunami waveforms to estimate slip distributions on different assumed fault geometries, then examined the validities of the slip models by comparing synthetic long-period seismic waveforms with the records at regional stations at New Zealand, Australia, and islands along the Tonga-Kermadec Ridge and in Melanesia. Finally, I obtained a kinematic source model composed of a ring-fault slip on the southwestern part and a horizontal crack opening at < 5 km depth.

These modeling studies revealed that composite slip models of ring-fault and horizontal-crack structures in submarine calderas quantitatively explained both the tsunami and long-period seismic records for the two events. Previous analyses of volcanic tsunami earthquakes have common characteristics to attribute them to thrust slips on a ring fault induced by magmatic pressure inside a horizontal crack at shallow depth below submarine calderas. The mechanism is quite similar to the “trap-door faulting” observed at the Sierra Negra caldera in the Galápagos. The ability of these intermediate-class seismic magnitudes to create large tsunamis can be theoretically and synthetically explained by the atypical mechanism at shallow depth in the crust. Although some elements of the moment tensor of the complex fractures in shallow crust cannot be constrained seismologically, observable elements sensitively reflect ring-fault geometries. These properties enable us to obtain source information from moment tensor analysis using long-period seismic waveforms. Most of the repeating earthquakes showed similarities in these observable elements, implying that their ruptures occurred at almost identical ring-fault structures in the submarine calderas. Through this study, the physical mechanism of volcanic tsunami earthquakes was successfully determined with kinematic source models validated quantitatively by both tsunami and seismic records. The results provide new and specific pictures of peculiar tsunami earthquakes repeatedly occurring in active submarine calderas.

この論文で使われている画像

参考文献

[1] Abe, K. (1981), Physical size of tsunamigenic earthquakes of the northwestern Pacific. Phys. Earth Planet. Inter., 27: 194-205.

[2] Acocella, V., Funiciello, R. (1999), The interaction between regional and local tectonics during resurgent doming: the case of the island of Ischia, Italy. J. Volcanol. Geotherm. Res., 88, 109–123.

[3] Acocella, V., Cifelli, F., Funiciello, R. (2001), The control of overburden thickness on resurgent domes: insights from analogue models. J. Volcanol. Geotherm. Res., 111, 137–153.

[4] Acocella, V., Di Lorenzo, R., Newhall, C., and Scandone, R. (2015), An overview of recent (1988 to 2014) caldera unrest: knowledge and perspectives. Rev. Geophys., 53, 896–955. doi: 10.1002/2015RG000492.

[5] Aki, K., and P. G. Richards (1980), Quantitative Seismology, W.H. Freeman and Company.

[6] Amelung, F., Jónsson, S., Zebker, H., Segall, P. (2000), Widespread uplift and ‘trapdoor’ faulting on Galápagos volcanoes observed with radar interferometry. Nature 407, 993–996.

[7] Amelung, F., Brothelande, E., Mirzaee, S., La Femina, P. C., Ruiz, G., Vajedian, S., Motagh, M., Ruiz, M. C., Mothes, P. A., Hernandez, S., Cesca, S., Dahm, T., Bell, A. F. (2018), Ground Deformation associated with the 2018 eruption of Sierra Negra volcano and the source mechanism of the initial M5.3 earthquake, AGU 2018 Fall Meeting, V31C-07, Washington, D.C.

[8] Arnulf, A., Harding, A., and Kent, G. (2018), Three‐dimensional P‐wave velocity structure of axial volcano on the Juan de Fuca ridge (investigators: Adrien F. Arnulf, Alistair Harding, Graham Kent). Palisades, NY: Interdisciplinary Earth Data Alliance (IEDA). https://doi.org/10.1594/IEDA/324420.

[9] Baba, T., Takahashi, N., Kaneda, Y., Ando, K., Matsuoka, D., and Kato, T. (2015), Parallel implementation of dispersive tsunami wave modeling with a nesting algorithm for the 2011 Tohoku tsunami. Pure Appl. Geophys., 172(12), 3455–3472. https://doi.org/10.1007/ s00024-015-1049-2.

[10] Bernard, E., and C. Meinig (2011), History and future of deep-ocean tsunami measurements. In Proceedings of Oceans' 11 MTS/IEEE, Kona, IEEE, Piscataway, NJ, 19–22 September 2011, No. 6106894, 7 pp.

[11] Chadwick, W. W., D. J. Geist, S. Jónsson, M. Poland, D. J. Johnson, and C. M. Meertens (2006), A volcano bursting at the seams: Inflating, faulting, and eruption at Sierra Negra volcano, Galápagos, Geology, 34(12), 1025–1028, doi:10.1130/G22826A.1.

[12] Chadwick, W. W., Nooner, S. L., Butterfield, D. A., and Lilley, M. D. (2012), Seafloor deformation and forecasts of the April 2011 eruption at Axial Seamount. Nature Geoscience, 5(7), 474–477. https://doi.org/10.1038/ngeo1464.

[13] Chouet, B. A. (1996), New methods and future trends in seismological volcano monitoring, in Monitoring and Mitigation of Volcano Hazards, edited by R. Scarpa and R. I. Tilling, pp. 23–97, Springer-Verlag, Berlin.

[14] Chikasada, N. Y. (2019), Short-Wavelength Tsunami Observation Using Deep Ocean Bottom Pressure Gauges, International Society of Offshore and Polar Engineers, https://www.onepetro.org/conferencepaper/ISOPE-I-19-707.

[15] Cole, J.W., Milner, D.M., Spinks, K.D. (2005), Calderas and caldera structures: a review. Earth Science Reviews, 69, 1–96.

[16] Contreras-Arratia, R., and J., W. Neuberg (2019), Complex seismic sources in volcanic environments: Radiation modelling and moment tensor inversions, J. Volcanol. Geotherm. Res., 381, 262-272, https://doi.org/10.1016/j.jvolgeores.2019.06.005.

[17] Dahlen, F.A. and Tromp, J. (1998), Theoretical Global Seismology, Princeton University Press, Princeton, NJ.

[18] De Natale, G., Pingue, F. (1993), Ground deformation in collapsed calderas structures. J. Volcanol. Geotherm. Res., 57, 19–38.

[19] Doyle, A. C., R. J. Singleton, and J. C. Yaldwyn (1979), Volcanic activity and recent uplift on Curtis and Cheeseman Islands, Kermadec Group, Southwest Pacific, J. Royal Soc. New Zealand, 9(1), 123– 140.

[20] Duputel, Z., L., Rivera, H,. Kanamori, and G., Hayes (2012), W phase source inversion for moderate to large earthquakes (1990–2010), Geophys. J. Int., 189 (2), 1125–1147, https://doi.org/10.1111/j.1365-246X.2012.05419.x

[21] Duputel, Z., and L. Rivera (2019), The 2007 Caldera Collapse of Piton de la Fournaise Volcano: Source Process from Very-Long-Period Seismic Signals. Earth Planet. Sci. Lett., v. 527, pp. 115786, https://doi.org/10.1016/j.epsl.2019.115786.

[22] Ekström, G. (2006), Global detection and location of seismic sources by using surface waves, Bull. Seism. Soc. Am., 96(4A), 1201–1212, doi:10.1785/0120050175.

[23] Ekström, G. (1994), Anomalous earthquakes on volcano ring-fault structures, Earth Planet. Sci. Lett., 128, 707–712.

[24] Ekström, G., Nettles, M., and Dziewoński, A. M. (2012), The global CMT project 2004–2010: Centroid‐moment tensors for 13,017 earthquakes. Phys. Earth Planet. Inter., 200‐201, 1–9. https://doi.org/10.1016/J.PEPI.2012.04.002.

[25] Frohlich, C. (1989), Note concerning possible mechanisms for non-double- couple earthquake sources, Geophys. Res. Lett., 16(6), 523–526.

[26] Frohlich, C. (1990), Note concerning non-double-couple source components from slip along surfaces of revolution, J. Geophys. Res., 95(B5), 6861–6866.

[27] Frohlich, C. (1994), Earthquakes with non-double-couple mechanisms, Science, 264, 804–809.

[28] Frohlich, C. (1995), Characteristics of well-determined non-double-couple earthquakes in the Harvard CMT catalog, Phys. Earth Planet. Inter., 21(4), 213–228, doi:10.1016/0031-9201(95)03031-Q.

[29] Fukao, Y. (1979), Tsunami earthquakes and subduction processes near deep-sea trenches. J. Geophys. Res., 84: 2303–2314.

[30] Fukao, Y., Sandanbata, O., Sugioka, H., Ito, A., Shiobara, H., Watada, S., and Satake, K. (2018), Mechanism of the 2015 volcanic tsunami earthquake near Torishima, Japan. Science Advances, 4(4), eaao0219.

[31] Sandanbata, O., S. Watada, K. Satake, Y. Fukao, H. Sugioka, A. Ito, and H. Shiobara (2018), Ray tracing for dispersive tsunamis and source amplitude estimation based on Green's law: Application to the 2015 volcanic tsunami earthquake near Torishima, south of Japan, Pure Appl. Geophys., 175 4, DOI: 10.1007/s00024-017-1746-0, 1371-1385.

[32] Geist, D. J., K. S. Harpp, T. R. Naumann, M. Poland, W. W. Chadwick, M. Hall, and E. Rader (2008), The 2005 eruption of Sierra Negra volcano, Galápagos, Ecuador, Bull. Volcanol., 70, 655–673, doi:10.1007/s00445- 007-0160-3.

[33] Geshi, N., T. Shimano, T. Chiba, and S. Nakada (2002), Caldera collapse during the 2000 eruption of Miyakejima volcano, Japan, Bull. Volcanol., 64, 55–68.

[34] Geyer, A., and J. Martí, (2014), A short review of our current understanding of the development of ring faults during collapse caldera formation. Front. Earth Sci., 2:22. doi:10.3389/feart.2014.00022.

[35] Global Volcanism Program (2013), Curtis Island (242010) in Volcanoes of the World, v. 4.8.3. Venzke, E (ed.). Smithsonian Institution. Downloaded 08 Nov 2019 (https://volcano.si.edu/volcano.cfm?vn=242010). https://doi.org/10.5479/si.GVP.VOTW4-2013.

[36] Global Volcanism Program (2013), Sumisujima (284080) in Volcanoes of the World, v. 4.8.3. Venzke, E (ed.). Smithsonian Institution. Downloaded 08 Nov 2019 (https://volcano.si.edu/volcano.cfm?vn=284080). https://doi.org/10.5479/si.GVP.VOTW4-2013.

[37] Gregg, P. M., Le Mével, H., Zhan, Y., Dufek, J., Geist, D., and Chadwick, W. W., Jr. (2018), Stress triggering of the 2005 eruption of Sierra Negra volcano, Galápagos. Geophys. Res. Lett., 45, 13,288– 13,297. https://doi.org/ 10.1029/2018GL080393

[38] Gudmundsson, A., Marti, J., Turon, E. (1997), Stress fields generating ring faults in volcanoes. Geophys. Res. Lett., 24, 1559–1562.

[39] Guðmundsson, M. T., et al. (2016), Gradual caldera collapse at Bárðarbunga volcano, Iceland, regulated by lateral magma outflow, Science, 353(6296), aaf8988, doi:10.1126/science.aaf8988.

[40] Gusman, A. R., Mulia, I. E., and Satake, K. (2018), Optimum sea surface displacement and fault slip distribution of the 2017 Tehuantepec earthquake (Mw 8.2) in Mexico estimated from tsunami waveforms. Geophys. Res. Lett., 45, 646–653. https://doi.org/10.1002/2017GL076070.

[41] Hanks, T.C. and Kanamori, H. (1979), A moment magnitude scale, J. geophys. Res., 84, 2348–2350.

[42] Hatori, T. (1985), Irregular tsunami generated by the Torishima-Kinkai earthquake on June13, 1984 (in Japanese), Bull. Earthquake Res. Inst. Univ. Tokyo, 60, 87-95.

[43] Hayes G.P. Rivera L. Kanamori H. (2009), Source inversion of the W-Phase: real-time implementation and extension to low magnitudes, Seismol. Res. Lett., 80, 817–822.

[44] Herrmann, R.B. (2013), Computer Programs in Seismology: An Evolving Tool for Instruction and Research. Seismol. Res. Lett., 84, 1081–1088.

[45] Ho, T.-C., Satake, K., and Watada, S. (2017), Improved phase corrections for transoceanic tsunami data in spatial and temporal source estimation: Application to the 2011 Tohoku earthquake. J. Geophys. Res., 122, 10,155–10,175. https://doi.org/10.1002/ 2017JB015070.

[46] Hossen, M. J., P. R. Cummins, J. Dettmer, and T. Baba (2015), Time reverse imaging for far-field tsunami forecasting: 2011 Tohoku earthquake case study, Geophys. Res. Lett., 42, 9906–9915, doi:10.1002/2015GL065868.

[47] Hossen, M. J., Gusman, A. R., Satake, K., and Cummins, P. R. (2018), An adjoint sensitivity method applied to time reverse imaging of tsunami source for the 2009 Samoa earthquake. Geophys. Res. Lett., 45, 627– 636. https://doi.org/10.1002/2017GL076031

[48] Japan Meteorological Agency (2015), Analysis of earthquake near Torishima Island on 3 May 2015 (in Japanese), https://www.data.jma.go.jp/svd/eqev/data/studypanel/tsunami/benkyokai13/shiryou4.pdf.

[49] Jónsson, S. (2009), Stress interaction between magma accumulation and trapdoor faulting on Sierra Negra, Galápagos, Tectonophysics, 471, 36–44.

[50] Julian, B. R., A. D. Miller, and G. R. Foulger (1998), Non-double-couple earthquakes 1. Theory, Rev. Geophys., 36(4), 525–549.

[51] Kajiura, K. (1963), The leading wave of a tsunami, Bull. Earthquake Res. Institute, 41, 545–571.

[52] Kanamori H (1972), Mechanism of tsunami earthquakes. Phys. Earth Planet. Inter., 6: 246–259.

[53] Kanamori, H. (1977), The energy release in great earthquakes, J. geophys. Res., 82(20), 2981–2987.

[54] Kanamori, H., and J. W. Given (1981), Use of long-period surface waves for rapid determination of earthquake source parameters, Phys. Earth Planet. Inter., 27, 8–31.

[55] Kanamori, H., G. Ekström, A. Dziewonski, J. S. Barker, and S. A. Sipkin (1993), Seismic radiation by magma injection: An anomalous seismic event near Tori Shima, Japan, J. Geophys. Res., 98(B4), 6511–6522.

[56] Kanamori H. Rivera L. (2008), Source inversion of W phase: speeding up seismic tsunami warning, Geophys. J. Int., 175(1), 222–238.

[57] Kaneda, Y., K. Kawaguchi, E. Araki, H. Matsumoto, T. Nakamura, S. Kamiya, K. Ariyoshi, T. Hori, T. baba and N. Takahashi (2015), Development and application of an advanced ocean floor network system for megathrust earthquakes and tsunamis, Seafloor observatories, In: Favali, P. et al. (eds.), Springer Praxis Books, pp. 643-663.

[58] Kawaguchi, K., S. Kaneko, T. Nishida and T. Komine (2015), Construction of the DONET real-time seafloor observatory for earthquakes and tsunami monitoring, Seafloor Observatories, In: Favali, P. et al. (eds.), Springer Praxis Books, pp. 211-228, doi:10.1007/978-3-642-11374-1_10,

[59] Kawakatsu, H. (1996), Observability of the isotropic component of a moment tensor, Geophys. J. Int., 126, 525–544.

[60] Kawakatsu, H., and M. Yamamoto (2007), Volcano seismology, in Treatise on Geophysics, 4, edited by H. Kanamori, pp. 389–420, Elsevier, Amsterdam, doi:10.1016/B978-044452748-6.00073-0.

[61] Knopoff, L., M. J. Randall (1970), The compensated linear-vector dipole: A possible mechanism for deep earthquakes. J. Geophys. Res., 75, 4957–4963.

[62] Konstantinou, K. I., H. Kao, C. H. Lin, and W.-T. Liang (2003), Analysis of broad-band regional waveforms of the 1996 September 29 earthquake at Bárdarbunga volcano, central Iceland: Investigation of the magma injection hypothesis, Geophys. J. Int., 154, 134–145.

[63] Kumagai, H., T. Ohminato, M. Nakano, M. Ooi, A. Kubo, H. Inoue, and J. Oikawa (2001), Very-longperiod seismic signals and caldera formation at Miyake Island, Japan, Science, 293, 687–690.

[64] Levy, S., Bohnenstiehl, D. R., Sprinkle, P., Boettcher, M. S., Wilcock, W. S. D., Tolstoy, M., and Waldhauser, F. (2018), Mechanics of fault reactivation before, during, and after the 2015 eruption of Axial Seamount. Geology, 46, 447– 450. https://doi.org/10.1130/G39978.1

[65] Maeda, T., Obara, K., Shinohara, M., Kanazawa, T., and Uehira, K. (2015), Successive estimation of a tsunami wavefield without earthquake source data: A data assimilation approach toward real‐time tsunami forecasting. Geophys., Res., Lett., 42, 7923– 7932. https://doi.org/10.1002/2015GL065588

[66] Menke, W. (2012), Geophysical Data Analysis: MATLAB Edition. Elsevier Science.

[67] McTigue DF, Segall P (1988), Displacements and tilts from dip-slip faults and magma chambers beneath irregular surface topography. Geophys, Res, Lett, 15:601–604. doi:10.1029/GL015i006p00601.

[68] Momma, h., N. Fujiwara, K. Kawaguchi, R. Iwase, S. Suzuki and H. Kinoshita (1997), Monitoring system for submarine earthquakes and deep sea environment, Oceans '97. MTS/IEEE Conference Proceedings, Halifax, NS, Canada, pp. 1453-1459 vol.2, doi:10.1109/OCEANS.1997.624211.

[69] Molin, P., Acocella, V. and Funiciello, R. (2003), Structural, seismic and hydrothermal features at the border of an active intermittent resurgent block: Ischia Island (Italy). J. Volcanol. Geotherm. Res., 121, 65–81.

[70] National Research Institute for Earth Science and Disaster Resilience (2019), NIED F-net, National Research Institute for Earth Science and Disaster Resilience, doi: 10.17598/NIED.0005.

[71] National Research Institute for Earth Science and Disaster Resilience (2019), NIED DONET, National Research Institute for Earth Science and Disaster Resilience, doi: 10.17598/NIED.0008.

[72] Neal CA, Brantley SR, Antolik L et al (2018), The 2018 rift eruption and summit collapse of Kīlauea Volcano. Science, 363:367–374. https://doi.org/10.1126/science.aav7046

[73] Nettles, M., and G. Ekström (1998), Faulting mechanism of anomalous earthquakes near Bárdarbunga Volcano, Iceland, J. Geophys. Res., 103(B8), 17,973–17,983.

[74] Nikkhoo, M., Walter, T.R. (2015), Triangular dislocation: an analytical, artefact-free solution. Geophys. J. Int,. 201, 1119–1141. https://doi.org/10.1093/gji/ggv035.

[75] Nooner, S. L., and Chadwick, W. W. (2016), Inflation‐predictable behavior and co‐eruption deformation captured by cabled instruments at Axial Seamount. Science, 354 (6318), 1399–1403. https://doi.org/10.1126/science.aah4666

[76] Okada, Y. (1992), Internal deformation due to shear and tensile faults in a half-space. Bull. Seismol. Soc. Am., 82, 1018–1040.

[77] Okal, E. A. (1988), Seismic parameters controlling farfield tsunami amplitudes: a review, Natural Hazards, 1, 67-96.

[78] Peregrine, H. (1972), Equations for water waves and the approximations behind them, edited by R. E. Meyer, pp. 95–121, Waves on Beaches and Resulting Sediment Transport, Academic Press, New York.

[79] Persson, P.-O., and G. Strang (2004), A Simple Mesh Generator in MATLAB. SIAM Review, 46 (2), pp. 329-345 (https://popersson.github.io/distmesh/)

[80] Reynolds, R. W., D. Geist, and M. D. Kurz (1995), Physical volcanology and structural development of Sierra Negra volcano, Isabela Island, Galápagos archipelago, Geol. Soc. Am. Bull., 107(12), 1398– 1410, doi:10.1130/ 0016-7606(1995)1072.3.CO;2.

[81] Ronchin, E., Geyer, A. and Martí, J. (2015), Evaluating Topographic Effects on Ground Deformation: Insights from Finite Element Modeling, Surv Geophys, 36, 513. https://doi.org/10.1007/s10712-015- 9325-3

[82] Phillips, W.J. (1974), The dynamic emplacement of cone sheets. Tectonophysics, 24, 69–84.

[83] Riel, B., P. Milillo, M. Simons, P. Lundgren, H. Kanamori and S. Samsonov (2015). The collapse of Bardarbunga caldera, Iceland, Geophys. J. Int., 202, pp. 446-453

[84] Rubin, A. M. (1995), Propagation of magma-filled cracks, Annu. Rev. Earth Planet. Sci., 23, 287–336.

[85] Saito, T., K. Satake, and T. Furumura (2010), Tsunami waveform inversion including dispersive waves: the 2004 earthquake off Kii Peninsula, Japan, J. Geophys. Res., 115, B06303, doi:10.1029/2009JB006884.

[86] Sandanbata, O., S. Watada, K. Satake, Y. Fukao, H. Sugioka, A. Ito, and H. Shiobara (2018), Ray tracing for dispersive tsunamis and source amplitude estimation based on Green's law: Application to the 2015 volcanic tsunami earthquake near Torishima, south of Japan, Pure Appl. Geophys., 175, 4, DOI: 10.1007/s00024-017-1746-0, 1371-1385.

[87] Satake K. (1987), Inversion of tsunami waveforms for the estimation of a fault heterogeneity—Method and numerical experiments, J. Phys. Earth, 35, no. 3, 241–254.

[88] Satake, K., and H. Kanamori (1991), Abnormal tsunami caused by the June 13, 1984, Torishima, Japan, earthquake, J. Geophys. Res., 96(B12), 19,933–19,939.

[89] Satake, K., Tsunamis, Treatise on Geophysics (Second edition) (2015), pp. 477-504.

[90] Satake, K., and A. Gusman, (2015), Abnormal tsunamis from recurrent M~6 Torishima earthquakes (abstract in Japanese), The Seismological Society of Japan, 2015 Fall Meeting (abstract number, S17- 12).

[91] Shuler, A., and G. Ekström (2009), Anomalous earthquakes associated with Nyiragongo Volcano: Observations and potential mechanisms, J. Volcanol. Geotherm. Res., 181(3–4), 219–230, doi:10.1016/j.jvolgeores.2009.01.011.

[92] Shuler, A., M. Nettles, and G. Ekström (2013a), Global observation of vertical-CLVD earthquakes at active volcanoes, J. Geophys. Res. Solid Earth, 118, 138–164, doi:10.1029/2012JB009721.

[93] Shuler, A., G. Ekström, and M. Nettles (2013b), Physical mechanisms for vertical-CLVD earthquakes at active volcanoes, J. Geophys. Res. Solid Earth, 118, 1569–1586, doi:10.1002/jgrb.50131.

[94] Silver, P.G. and Jordan, T.H. (1982), Optimal estimation of scalar seismic moment, Geophys. J. R. astr. Soc., 70, 755–787.

[95] Smith, I. E. M., R. N. Brothers, F. G. Muiruri, and P. R. L. Browne (1988), The geochemistry of rock and water samples from Curtis Island Volcano, Kermadec Group, Southwest Pacific, J. Volcanol. Geotherm. Res., 34, 233–240.

[96] Sugioka, H., Y. Fukao, T. Kanazawa, and K. Kanjo (2000), Volcanic events associated with an enigmatic submarine earthquake. Geophys. J. Int., 142, 361–370.

[97] Tani, K., Fiske, R.S., Tamura, Y., Kido, Y., Naka, J., Shukuno, H., and Takeuchi, R. (2008), Sumisu volcano, Izu-Bonin arc, Japan: site of a silicic caldera-forming eruption from a small open-ocean island, Bull Volcanol., 70: 547. Doi:10.1007/s00445-007-0153-2.

[98] Tappin DR, Matsumoto T, Watts P, et al. (1999), Sediment slump likely caused 1998, Papua New Guinea tsunami. Eos, Transactions American Geophysical Union. 80: 329, 334, 340.

[99] Tkalcić, H., D. S. Dreger, G. R. Foulger, and B. R. Julian (2009), The puzzle of the 1996 Bárdarbunga, Iceland, earthquake: No volumetric component in the source mechanism, Bull. Seism. Soc. Am., 99(5), 3077–3085.

[100] Wang, Y., Satake, K., Maeda, T., and Gusman, A. R. (2017), Green's function‐based tsunami data assimilation: A fast data assimilation approach toward tsunami early warning. Geophys., Res., Lett., 44, 10,282– 10,289. https://doi.org/10.1002/2017GL075307

[101] Wang, Y., Satake, K., Sandanbata, O., Maeda, T., and Su, H. (2019), Tsunami data assimilation of cabled ocean bottom pressure records for the 2015 Torishima volcanic tsunami earthquake. J. Geophys. Res. Solid Earth, 124, 10,413–10,422. https://doi.org/10.1029/ 2019JB018056.

[102] Watada, S. (2013), Tsunami speed variations in density-stratified compressible global oceans. Geophys., Res., Lett., 40, 4001–4006, https://doi.org/10.1002/grl.50785.

[103] Watada, S., S. Kusumoto, and K. Satake (2014), Traveltime delay and initial phase reversal of distant tsunamis coupled with the self-gravitating elastic Earth, J. Geophys. Res. Solid Earth, 119, 4287–4310, doi:10.1002/2013JB010841.

[104] Ward, S. N. (1980), Relationships of tsunami generation and an earthquake source. Journal of Physics of the Earth 28.5: 441-474.

[105] Ward S.N. (1981), On tsunami nucleation: I. A point source, J. Geophys. Res., 86, 7895, 7900.

[106] Ward, S. N. (1982), Earthquake mechanisms and tsunami generation: the Kurile Islands event of 13 October 1963, Bull. Seism. Soc. Am., 72, 759-777.

[107] Wells, D. L., and Coppersmith, K. J. (1994), New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bulletin of the seismological Society of America, 84(4), 974-1002.

[108] Wilcock, W., Tolstoy, M., Waldhauser, F., Garcia, C., Tan, Y. J., Bohnenstiehl, D. R., et al. (2016), The 2015 eruption of Axial Seamount: Seismic constraints on caldera dynamics. Science, 354(6318), 1395–1399. https://doi.org/10.1126/science.aah5563.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る