リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「M8 class earthquake cycle in the southernmost part of the Kuril subduction zone」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

M8 class earthquake cycle in the southernmost part of the Kuril subduction zone

小林, 広明 東京大学 DOI:10.15083/0002001504

2021.09.08

概要

The earthquake cycle consists of three periods: interseismic, coseismic, and postseismic. It is necessary to examine these three periods to understand the earthquake cycle. However, when we focus on large (Mw ~ 8) to giant (Mw ~ 9) earthquakes in a given region, the interseismic periods are often longer than the instrumental seismic observation periods, which are on the order of 100 years.

In the southernmost part of the Kuril subduction zone, six large to giant interplate earthquakes have occurred in the last 400 years. This includes the two Mw ~ 8 Tokachi-oki earthquakes that occurred in 1952 and 2003. In Hokkaido, instrumental seismic and geodetic observations began in the late 19th to early 20th centuries. Therefore, we are able to investigate more than a single M8 class earthquake cycle there. In this thesis, we examine the interseismic, coseismic, and postseismic periods in the southernmost part of the Kuril subduction zone to estimate slip history and budget in the M8 class earthquake cycle.

First, we investigated the coseismic periods. We performed joint source inversion analyses and examined the similarities and differences between the 1952 and 2003 Tokachi-oki earthquakes. We made two datasets for the 2003 earthquake, and one is nearly the same as that of the 1952 earthquake. The results reveal that in the Tokachi-oki region, the rupture processes, slip area, and slip amounts were similar for the 1952 and 2003 earthquakes. However, there are two differences: the 1952 earthquake was initiated with an Mw 6.1 earthquake, and it extended to the Akkeshi-oki region after the main rupture in the Tokachi-oki region.

Second, we analyzed the interseismic and postseismic periods prior to and after the 2003 earthquake using recent GNSS data. We investigated the crustal deformation rate prior to the 2003 earthquake and obtained the yearly slip deficit/afterslip distribution between 25 September 2000 and 24 September 2010. We confirmed that there was no yearly scale transient phenomenon prior to the 2003 earthquake in the Tokachi-oki region. The obtained slip deficit showed that the large slip deficit regions prior to the 2003 earthquakes were consistent with the main rupture areas of the 1952 and 2003 earthquakes. Moreover, the afterslip of the 2003 earthquake did not reach the Akkeshi-oki region, where a large slip occurred during the 1952 earthquake.

Third, we investigated leveling data and repeating earthquakes during periods that were not covered by the GNSS data. We examined a survey route around Cape Erimo, which has been repeatedly measured without a route change. We also estimated the crustal deformation due to medium-sized (M ≥ 6.5) earthquakes. We next investigated two M5.4 repeating earthquake groups around Cape Erimo using analog seismograms. Together with the groups investigated by previous studies, we estimated the aseismic slip rate around the groups. The results of these investigations reveal that afterslip of the 1952 earthquake may have continued until around 1980. Moreover, in the Tokachi-oki region, the state of the plate interface prior to the 1952 earthquake may be similar to that prior to the 2003 earthquake. We also found that the acceleration of aseismic slip rate in the west of Cape Erimo prior to the 2003 earthquake.

Finally, we summarized the results of the above analyses and examined the slip history in the southernmost part of the Kuril subduction zone. We found that the slip budget is unbalanced in the Tokachi-oki region both in the single earthquake cycle between the 1952 and 2003 earthquakes and in the multiple cycles since 1843. We suggested four possible reasons for the unbalanced slip budget: stress transfer, temporal change of frictional properties, changes of slip deficit rate, and supercycle.

この論文で使われている画像

参考文献

Akaike, H. (1980), Likelihood and the Bayes procedure, Trabajos de Estadistica y de Investigacion Operativa, 31, 143–166, doi:10.1007/BF02888350.

Aoi, S., R. Honda, N. Morikawa, H. Sekiguchi, H. Suzuki, Y. Hayakawa, T. Kunugi, and H. Fujiwara (2008), Three-dimensional finite difference simulation of long-period ground motions for the 2003 Tokachi-oki, Japan, earthquake, J. Geophys. Res., 113, B07302, doi:10.1029/2007JB005452.

Alvarado, P., and S. Beck (2006), Source characterization of the San Juan (Argentina) crustal earthquakes of 15 January 1944 (Mw 7.0) and 11 June 1952 (Mw 6.8), Earth. Planet. Sci. Lett., 243, 615-631, doi:10.1016/j.epsl.2006.01.015.

Baba, T., K. Hirata, T. Hori, and H. Sakaguchi (2006), Offshore geodetic data conducive to the estimation of the afterslip distribution following the 2003 Tokachi-oki earthquake, Earth. Planet. Sci. Lett., 241, 281-292, doi:10.1016/j.epsl.2005.10.019.

Bullen, K. E. (1963), An introduction to the theory of seismology, 381 pp., Cambridge University Press, New York.

Bürgmann, R., M. G. Kogan, G. M. Steblov, G. Hilley, V. E. Levin, and E. Apel (2005), Interseismic coupling and asperity distribution along the Kamchatka subduction zone, J. Geophys. Res., 110, B07405, doi:10.1029/2005JB003648.

Charlier, Ch., and J. M. Van Gils (1953), Liste des stations seismologiques mondiales, 500pp., Observatoire Royal de Belgique, Uccle.

Chlieh, M., J. P. Avouac, K. Sieh, D. H. Natawidjaja, and J. Galezka (2008), Heterogeneous coupling of the Sumatran megathrust constrained by geodetic and paleogeodetic measurements, J. Geophys. Res., 113, B05305, doi: 10.1029/2007JB004981.

Chlieh, M., H. Perfettini, H. Tavera, J.‐P. Avouac, D. Remy, J.‐M. Nocquet, F. Rolandone, F. Bondoux, G. Gabalda, and S. Bonvalot (2011), Interseismic coupling and seismic potential along the Central Andes subduction zone, J. Geophys. Res., 116, B12405, doi:10.1029/2010JB008166.

CMO (1953), A report of the Tokachi earthquake of March 4, 1952, Quarterly Journal of Seismology, 17, 1-130 (in Japanese).

Dambara, T. (1971), Synthetic vertical movements in Japan during the recent 70 years, J. Geod. Soc. Japan., 17, 100-108 (in Japanese with English abstract).

Drewes, H. (2009), The actual plate kinematic and crustal deformation model APKIM2005 as basis for non-rotating ITRF, In: Drewes H. (eds) Geodetic Reference Frames. International Association of Geodesy Symposia, 134, 95-99, Springer, Berlin, Heidelberg, doi: 10.1007/978-3-642-00860-3_15.

Dziewonski, A. M., and D. L. Anderson (1981), Preliminary reference Earth model, Phys. Earth Planet. Inter., 25, 297-356, doi:10.1016/0031-9201(81)90046-7.

Ekström, G., M. Nettles, and A. M. Dziewoński (2012), The global CMT project 2004– 2010: Centroid-moment tensors for 13,017 earthquakes, Phys. Earth Planet. Inter., 200-201, 1–9, doi:10.1016/j.pepi.2012.04.002.

El-Fiky, G. S., and T. Kato (1999), Interplate coupling in the Tohoku district, Japan, deduced from geodetic data inversion, J. Geophys. Res., 104, 361-377, doi:10.1029/1999JB900202.

Estabrook, C. H., K. H. Jacob, and L. R. Sykes (1994), Body wave and surface wave analysis of large and great earthquakes along the Eastern Aleutian Arc, 1923–1993: Implications for future events, J. Geophys. Res., 99, 11643–11662, doi:10.1029/93JB03124.

Furumura, T. (2015), New source image of the Nankai Trough earthquakes, (available at http://www.gensai.nagoya-u.ac.jp/nankai-t/download/nu/9_nu_furumura.pdf ,last accessed on 20 November 2017, in Japanese).

Goldfinger, C., Y. Ikeda, R. S. Yeats, J. Ren (2013), Superquakes and Supercycles, Seismol. Res. Lett., 84, 24–32. doi:10.1785/0220110135.

Hamada, N., and Y. Suzuki (2004), Re-examination of aftershocks of the 1952 Tokachi-oki earthquake and a comparison with those of the 2003 Tokachi-oki earthquake, Earth Planets Space, 56, 341–345, 10.1186/BF03353062.

Hamamatsu, O. (1966), Historical table of seismographs for routine observations in J.M.A Network, Zisin, 19, 286-305, doi:10.4294/zisin1948.19.4_286.

Hanks, T. C., and H. Kanamori (1979), A moment magnitude scale, J. Geophys. Res., 84, 2348-2350, doi:10.1029/JB084iB05p02348.

Hashimoto, C., A. Noda, T. Sagiya, and M. Matsu’ura (2008), Interplate seismogenic zones along the Kuril–Japan trench inferred from GPS data inversion, Nature Geoscience, 2, 141-144, doi:10.1038/ngeo421.

Hashimoto, C., A. Noda, M. Matsu’ura (2012), The Mw 9.0 northeast Japan earthquake: total rupture of a basement asperity, Geophys. J. Int., 189, 1-5, doi:10.1111/j.1365-246X.2011.05368.x.

Hatori, T. (1975), Tsunami magnitude and wave source regions of historical Sanriku tsunamis in northeast Japan, Bull. Earthq. Res. Inst. Univ. Tokyo, 50, 397-414 (in Japanese with English abstract).

Hayes, G. P., M. W. Herman, W. D. Barnhart, K. P. Furlong, S. Riquelme, H. M. Benz, E. Bergman, S. Barrientos, P. S. Earle, and S. Samsonov (2014), Continuingmegathrust earthquake potential in Chile after the 2014 Iquique earthquake, Nature, 512, 295-298, doi:10.1038/nature13677.

Hertzell, S. H. and T. H. Heaton (1985), Teleseismic time functions for large, shallow subduction zone earthquakes, Bull. Seismol. Soc. Am., 75, 965-1004.

Hikima, K. and K. Koketsu (2005), Rupture process of the 2004 Chuetsu (mid-Niigata prefecture) earthquake, Japan: a series of events in a complex fault system, Geophys. Res. Lett., 32, L18303, doi:10.1029/2005GL023588.

Hikima, K., K. Koketsu, and Y. Tanioka (2005), Source process of the 2003 Tokachi-oki earthquake inferred from strong motions, geodetic data, far-field waveforms and tsunami data, Chikyu Monthly special issue, 49, 47-55 (in Japanese).

Hirata, K., E. Geist, K. Satake, T. Tanioka, and S. Yamaki (2003), Slip distribution of the 1952 Tokachi-Oki earthquake (M 8.1) along the Kuril Trench deduced from tsunami waveform inversion, J. Geophys. Res., 108, 2196, doi:10.1029/2002JB001976, 2003.

Hirata, K., K. Satake, S. Yamaki, Y. Tanioka, Y. Yamanaka, and T. Nishimura (2007), Examination of the northeast edge of the 1952 Tokachi-oki earthquake tsunami source based on eyewitness accounts stated in previously published reports, Zisin, 60, 21-41, doi:10.4294/zisin.60.21, (in Japanese with English abstract).

Hirata, K., Y. Tanioka, K. Satake, S. Yamaki, and E. L. Geist (2004), The tsunami source area of the 2003 Tokachi-oki earthquake estimated from tsunami travel times and its relationship to the 1952 Tokachi-oki earthquake, Earth Planets Space, 56, 367-372, doi:10.1186/BF03353066.

Honda, R., N. Morikawa, H. Sekiguchi, T. Kunugi, and H. Fujiwara (2004), Ground motion and rupture process of the 2003 Tokachi-oki earthquake obtained from strong motion data of K-NET and KiK-net, Earth Planets Space, 56, 317-322, doi:10.1186/BF03353058.

Horikawa, H. (2004), Fault geometry and slip distribution of the 2003 Tokachi-oki earthquake as deduced from teleseismic body waves, Earth Planets Space, 56, 1011-1017, doi:10.1186/BF03352543.

Ichikawa, S. (1971), Reanalyses of mechanism of earthquakes which occurred in and near Japan, and statistical studies on the nodal plane solutions obtained, 1926-1968, Geophy. Mag., 35, 207-274.

Ito, T., and M. Hashimoto (2004), Spatiotemporal distribution of interplate coupling in southwest Japan from inversion of geodetic data, J. Geophys. Res., 109, B02315, doi:10.1029/2002JB002358.

Itoh, Y., and T. Nishimura (2016), Characteristics of postseismic deformation following the 2003 Tokachi‑oki earthquake and estimation of the viscoelastic structure in Hokkaido, northern Japan, Earth Planets Space, 68:156, doi:10.1186/s40623-016-0533-y.

Iwasaki, T., H. Sato, M. Shinohara, T. Ishiyama, and A. Hashima (2015), Fundamental structure model of island arcs and subducted plates in and around Japan, American Geophysical Union Fall Meeting 2015, San Francisco, U.S.A. Dec. 14-18, T31B-2878.

Iwata, T., and K. Asano (2011), Characterization of the heterogeneous source model of intraslab earthquakes toward strong ground motion prediction, Pure Appl. Geophys., 168, 117-124, doi:0.1007/s00024-010-0128-7.

JMA (1957), Seismograms of strong earthquakes in Japan, 1923-1956, Quarterly Journal of Seismology Supplementary Volume, 22, 1-136.

Kasahara, M. (1975), A fault model of the Tokachi-oki earthquake of 1952, Programme and abstracts, the Seismological Society of Japan. (in Japanese).

Kanamori (1977), Seismic and aseismic slip along subduction zones and their tectonic implications, in Island Arcs, Deep Sea Trenches and Back-Arc Basins, edited by M. Talwani and W. C. Pitman, pp. 163–174, AGU, Washington, D. C.

Kanamori, H., M. Miyazawa, and J. Mori (2006), Investigation of the earthquake sequence off Miyagi prefecture with historical seismograms, Earth Planets Space, 58, 1533–1541, doi:10.1186/BF03352657.

Kikuchi, M., and H. Kanamori (1991), Inversion of complex body waves—III, B. Seismol. Soc. Am., 81, 2335-2350.

Kitada, M. (1931), A report of the earthquake on 17 February 1931 in Urakawa, Hokkaido, Quarterly Journal of Seismology, 6, 133-154.

Kogan, M. G., N. F. Vasilenko, D. I. Frolov, J. T. Freymueller, G. M. Steblov, B. W. Levin, and A. S. Prytkov (2011), The mechanism of postseismic deformation triggered by the 2006–2007 great Kuril earthquakes, Geophys. Res. Lett., 38, L06304, doi:10.1029/2011GL046855.

Kogan, M. G., N. F. Vasilenko, D. I. Frolov, J. T. Freymueller, G. M. Steblov, A. S. Prytkov, and G. Ekström (2013), Rapid postseismic relaxation after the great 2006– 2007 Kuril earthquakes from GPS observations in 2007–2011, J. Geophys. Res. Solid Earth, 118, 3691–3706, doi:10.1002/jgrb.50245.

Kohketsu, K. (1985), The extended reflectivity method for synthethic near-field seismograms, J. Phys. Earth, 33, 121-131, doi:10.4294/jpe1952.33.121.

Koketsu, K., K. Hikima, S. Miyazaki, and S. Ide (2004), Joint inversion of strong motion and geodetic data for the source process of the 2003 Tokachi-oki, Hokkaido, earthquake, Earth Planets Space, 56, 329-334, doi:10.1186/BF03353060.

Koketsu, K., H. Miyake, H. Fujiwara, and T. Hashimoto (2008), Progress towards a Japan integrated velocity structure model and long-period ground motion hazard map, Proc. 14th World Conf. Earthq. Eng., S10-038.

Koketsu, K., H. Miyake, and H. Suzuki (2012), Japan Integrated Velocity Structure Model Version 1, Proc. 15th World Conf. Earthq. Eng., 1773.

Kumini, T., Y. Takano, M. Suzuki, T. Saitou, T. Narita, and S. Okamura (2001), Vertical crustal movements in Japan estimated from the leveling observations data for the past 100 years, J. Geogr. Surv. Inst., 96, 23-37 (in Japanese).

Larson, K. M., and S. Miyazaki (2008), Resolving static offsets from high-rate GPS data: the 2003 Tokachi-oki earthquake, Earth Planets Space, 60, 801-808, doi:10.1186/BF03352831.

Lindquist, K. G., K. Engle, D. Stahlke, and E. Price (2004), Global Topography and Bathymetry Grid Improves Research Efforts, Eos Trans. AGU, 85, 186-186, doi:10.1029/2004EO190003.

Loveless, J. P., and B. J. Meade (2010), Geodetic imaging of plate motions, slip rates, and partitioning of deformation in Japan, J. Geophys. Res., 115, B02410, doi:10.1029/2008JB006248.

Matsuzawa, T., T. Igarashi, and A. Hasegawa (2002), Characteristic small‐earthquake sequence off Sanriku, northeastern Honshu, Japan, Geophys. Res. Lett., 29, 1543, doi:10.1029/2001Gl014632.

Mavrommatis, A. P., P. Segall, and K. M. Johnson (2014), A decadal ‐ scale deformation transient prior to the 2011 Mw 9.0 Tohoku‐oki earthquake, Geophys. Res. Lett., 41, 4486–4494, doi:10.1002/2014GL060139.

Métois, M., A. Socquet, and C. Vigny (2012), Interseismic coupling, segmentation and mechanical behavior of the central Chile subduction zone, J. Geophys. Res., 117, B03406, doi:10.1029/2011JB008736.

Miura, S, T. Suwa, A. Hasegawa, and T. Nishimura (2004), The 2003 M8.0 Tokachi-Oki earthquake – How much has the great event paid back slip debts?, Geophys. Res. Lett., 31, L05613, doi:10.1029/2003GL019021.

Miyamura, J., and T. Sasatani (1986), Accurate determination of source depths and focal mechanisms of shallow earthquakes occurring at the junction between the Kurile and the Japan trenches, Jour. Fac. Sci. Hokkaido Univ. Ser. VII (Geophysics), 8, 37-63.

Miyazaki, S. and K. M. Larson (2008), Coseismic and early postseismic slip for the 2003 Tokachi-oki earthquake sequence inferred from GPS data, Geophys. Res. Lett., 35, L04302, doi:10.1029/2007GL032309.

Miyazaki, S., P. Segall, J. Fukuda, and T. Kato (2004a), Space time distribution of afterslip following the 2003 Tokachi-oki earthquake: Implications for variations in fault zone frictional properties, Geophys. Res. Lett., 31, L06623, doi:10.1029/2003GL019410.

Miyazaki, S., K. M. Larson, K. Choi, K. Hikima, K. Koketsu, P. Bodin, J. Haase, G. Emore, and A. Yamagiwa (2004b), Modeling the rupture process of the 2003 September 25 Tokachi-Oki (Hokkaido) earthquake using 1-Hz GPS data, Geophys. Res. Lett., 31, L21603, doi:10.1029/2004GL021457.

Moreno, M., M. Rosenau, O. Oncken (2010), 2010 Maule earthquake slip correlates with pre-seismic locking of Andean subduction zone, Nature, 467, 198-202, doi: 10.1038/nature09349.

Moriya, T. (1972), Aftershock activity of the Hidaka Mountains Earthquake of January 21, 1970, Zisin, 24, 287-297, doi:10.4294/zisin1948.24.4_287.

Moriya, T., H. Miyamachi, and S. Katoh (1983), Spatial distribution and mechanism solutions for foreshocks, mainshock and aftershocks of the Urakawa-oki earthquake of March 21, 1982, Geophys. Bull. Hokkaido Univ., 42, 191-213, doi:10.14943/gbhu.42.191 (in Japanese with English abstrast).

Murakami, M., and S. Ozawa (2004), Mapped vertical deformation field of Japan derived from continuous GPS measurements and its tectonic implications, Zisin, 57, 209-231, doi:10.4294/zisin1948.57.2_209.

Murotani, S., H. Miyake, and K. Koketsu (2008), Scaling of characterized slip models for plate-boundary earthquakes, Earth Planets Space, 60, 987-991, doi:10.1186/BF03352855.

Nadeau, R. M., and L. R. Johnson (1998), Seismological studies at Parkfield VI: Moment release rates and estimates of source parameters for small repeating earthquakes, 88, 790-814.

Nadeau, R. M., and T. V. McEvilly (1999), Fault slip rates at depth from recurrence intervals of repeating microearthquakes, Science, 285, 718-721, doi:10.1126/science.285.5428.718.

Nagai, R., M. Kikuchi, and Y. Yamanaka (2001), Comparative study on the source processes of recurrent large earthquakes in Sanriku-oki region: the 1968 Tokachi-oki earthquake and the 1994 Sanriku-oki earthquake, Zisin, 54, 267-280, doi:10.4294/zisin1948.54.2_267 (in Japanese with English abstract).

Nakagawa, H., T. Toyofuku, K. Kotani, B. Miyahara, C. Iwashita, S. Kawamoto, Y. Hatanaka, H. Munekane, M. Ishimoto, T. Yustubo, N. Ishikura, and Y. Sugawara (2009), Development and validation of GEONET new analysis strategy (version 4), J. Geogr. Surv. Inst., 118, 1–8 (in Japanese).

Nishimura, T. (2006), Fault model of the 1952 Tokachi-oki eartqhauke induced from geodetic data, Chikyu Monthly, 28, 441-447 (in Japanese).

Nishimura, T., T. Hirasawa, S. Miyazaki, T. Sagiya, T. Tada, S. Miura, and K. Tanaka (2004), Temporal change of interplate coupling in northeastern Japan during 1995– 2002 estimated from continuous GPS observations, Geophys. J. Int., 157, 901-916, doi:10.1111/j.1365-246X.2004.02159.x.

Nocquet, J. M., P. Jarrin, M. Vallée, P. A. Mothes, R. Grandin, F. Rolandone, B. Delouis, H. Yepes, Y. Font, D. Fuentes, M. Régnier, A. Laurendeau, D. Cisneros, S. Hernandez, A. Sladen, J.-C. Singaucho, H. Mora, J. Gomez, L. Montes, and P. Charvis (2017), Supercycle at the Ecuadorian subduction zone revealed after the 2016 Pedernales earthquake, Nat. Geosci., 10, 145-149, doi:10.1038/ngeo2864.

Nozu, A., and K. Irikura (2008), Strong-motion generation areas of a great subduction-zone earthquake: Waveform inversion with empirical Green’s functions for the 2003 Tokachi-oki earthquake, Bull. Seismol. Soc. Am., 98, 180-197, doi:doi.org/10.1785/0120060183.

Okada, Y. (1992), Internal deformation due to shear and tensile faults in a half-space, Bull. Seism. Soc. Am., 82, 1018-1040.

Ozawa, S., M. Kaidzu, M. Murakami, T. Imakiire, and Y. Hatanaka (2004), Coseismic and postseismic crustal deformation after the Mw 8 Tokachi-oki earthquake in Japan, Earth Planets Space, 56, 675-680, doi:10.1186/BF03352530.

Ozawa, S., T. Nishimura, H. Munekane, H. Suito, T. Kobayashi, M. Tobita, and T. Imakiire (2012), Preceding, coseismic, and postseismic slips of the 2011 Tohoku earthquake, Japan, J. Geophys. Res., 117, B07404, doi:10.1029/2011JB009120.

Philibosian, B., K. Sieh, J.‐P. Avouac, D. H. Natawidjaja, H.‐W. Chiang, C.‐C. Wu, H. Perfettini, C.‐C. Shen, M. R. Daryono, and B. W. Suwargadi (2014), Rupture and variable coupling behavior of the Mentawai segment of the Sunda megathrust during the supercycle culmination of 1797 to 1833, J. Geophys. Res., 119, 7258– 7287, doi: 10.1002/2014JB011200.

Robinson, D. P. and L. T. Cheung (2010), Source process of the Mw 8.3, 2003 Tokachi-Oki, Japan earthquake and its aftershocks, Geophys. J. Int., 181, 334-342, doi:10.1111/j.1365-246X.2010.04513.x.

Romano, F., A. Piatanesi, S. Lorito, and K. Hirata (2010), Slip distribution of the 2003 Tokachi‐oki Mw 8.1 earthquake from joint inversion of tsunami waveforms and geodetic data, J. Geophys. Res., 115, B11313, doi:10.1029/2009JB006665.

Sakoi, H., T. Matsuyama, T. Hirayama, I. Yamazaki, T. Yamamoto, M. Ichiyanagi, and H. Takahashi (2012), Moderate repeating earthquakes off Kushiro, eastern Hokkaido, Japan, Zisin, 65, 151-161, doi:10.4294/zisin.65.151.

Satake, K (2017), Great earthquakes in the 17th century along the Kuril and Japan Trenches, Bull. Earthq. Res. Inst. 92, 31-47 (in Japanese with English abstract).

Satake, K, K. Hirata, S. Yamaki, and Y. Tanioka (2006), Re-estimation of tsunami source of the 1952 Tokachi-oki earthquake, Earth Planets Space, 58, 535-542, doi:10.1186/BF03351951.

Sato, K., T. Baba, T. Hori, M. Hyodo, and Y. Kaneda (2010), Afterslip distribution following the 2003 Tokachioki earthquake: An estimation based on the Green’s functions for an inhomogeneous elastic space with subsurface structure, Earth Planets Space, 62:923, doi:10.5047/eps.2010.11.007.

Sasatani, T. (1985), A study of the strong ground motion of the western Hidaka, Hokkaido earthquake, Geophys. Bull. Hokkaido Univ., 46, 69-83, doi:10.14943/gbhu.46.69 (in Japanese with English abstract).

Sapporo District Meteorological Observatory (1987), Report on the earthquake of the northern part of Hidaka mountains, January 14 1987, Quarterly Journal of Seismology, 51, 57-76 (in Japanese).

Savage, J. C. (1983), A dislocation model of strain accumulation and release at a subduction zone, J. Geophys. Res., 88, 4984–4996, doi:10.1029/JB088iB06p04984

Sawai, Y., T. Kamataki, M. Shishikura, H. Nasu, Y. Okamura, K. Satake, K. H. Thomson, D. Matsumoto, Y. Fujii, J. Komatsubara, and Than Thin Aung (2009), (2009), Aperiodic recurrence of geologically recorded tsunamis during the past 5500 years in eastern Hokkaido, Japan, J. Geophys. Res., 114, B01319, doi:10.1029/2007JB005503.

Scholz. C., and J. Campos (2012), The seismic coupling of subduction zones revisited, J. Geophys. Res., 117, B05310, doi:10.1029/2011JB009003.

Seismology and Volcanology Research Departmant of Meteorological Research Insitutite, Seismology and Volcanology Department, Meteorological College,

Sapporo Regional Headquarters, Sendai Regional Headquarters, Osaka Regional Headquarters, Fukuoka Regional Headquarters, and Okinawa Regional Headquarters (2014), Survey of moderate repeating earthquakes in Japan, Tech. Rep. Meteor. Res. Inst., 72, 1-139, doi:10.11483/mritechrepo.72.

Shinohara, M., T. Yamada, T. Kanazawa, N. Hirata, Y. Kaneda, T. Takanami, H. Mikada, K. Suyehiro, S. Sakai, T. Watanabe, K. Uehira, Y. Murai, N. Takahashi, M. Nishino, K. Mochizuki, T. Sato, E. Araki, R. Hino, K. Uhira, H. Shiobara, and H. Shimizu (2004), Aftershock observation of the 2003 Tokachi-oki earthquake by using dense ocean bottom seismometer network, Earth Planets Space, 56, 295-300, doi:10.1186/BF03353054.

Shimazaki, K., and T. Nakata (1980), Time-predictable recurrence model for large earthquakes, Geophys. Res. Lett., 7: 279-282, doi:10.1029/GL007i004p00279.

Sieh, K., D. H. Natawidjaja, A. J. Meltzner, C. C. Chen, H. Cheng, K. S. Li, B. W.

Suwargadi, J. Galetzka, B. Philibosian, and R. L. Edwards (2008), Earthquake supercycles inferred from sea-level changes recorded in the corals of west Sumatra, Science, 322, 1674-1678, doi:10.1126/science.1163589.

Somerville, P., K. Irikura, R. Graves, S. Sawada, D. Wald, N. Abrahamson, Y. Iwasaki, T. Kagawa, N. Smith, and A. Kowada (1999), Characterizing crustal earthquake slip models for the prediction of strong ground motion, Seismol. Res. Lett., 70, 59-80, doi:10.1785/gssrl.70.1.59.

Suito, H., and J. T. Freymueller (2009), A viscoelastic and afterslip postseismic deformation model for the 1964 Alaska earthquake, J. Geophys. Res., 114, B11404, doi:10.1029/2008JB005954.

Sun, T., and K. Wang (2015), Viscoelastic relaxation following subduction earthquakes and its effects on afterslip determination, J. Geophys. Res., 120, 1329-1344, doi:10.1002/2014JB011707.

Suwa, Y., S. Miura, A. Hasegawa, T. Sato, and K. Tachibana (2006), Interplate coupling beneath NE Japan inferred from three-dimensional displacement field, J. Geophys. Res., 111, B04402, doi:10.1029/2004JB003203.

Tada, A. (1987), Fault model of the 1982 Urawaka-oki earthquake and its tectonic significance, Zisin, 40, 27-37, doi:10.4294/zisin1948.40.1_27.

Takeo, M., S. Ide, and Y. Yoshida (1993), The 1993 Kushiro-Oki, Japan, earthquake: A high stress-drop event in a subducting slab, Geophys. Res. Lett., 20, 2607-2610, doi:10.1029/93GL02864.

Tanioka, Y., K. Hirata, R. Hino, and T. Kanazawa (2004a), Slip distribution of the 2003

Tokachi-oki earthquake estimated from tsunami waveform inversion, Earth Planets Space, 56, 373-376, doi:10.1186/BF03353067.

Tanioka, Y., Y. Nishimura, K. Hirakawa, F. Imamura, I. Abe, Y. Abe, K. Shindou, H. Matsutomi, T. Takahashi, K. Imai, K. Harada, Y. Namegawa, Y. Hasegawa, Y. Hayashi, F. Nanayama, T. Kamataki, Y. Kawata, Y. Fukasawa, S. Koshimura, Y. Hada, Y. Azumai, K. Hirata, A. Kamikawa, A. Yoshikawa, T. Shiga, M. Kobayashi, and S. Masaka (2004b), Tsunami run-up heights of the 2003 Tokachi-oki earthquake, Earth Planets Space, 56, 359-365, doi:10.1186/BF03353065.

Tanioka, Y., K. Satake, and K. Hirata (2007), Recurrence of recent large earthquakes along the southernmost Kurile-Kamchatka subduction zone, Geophy. Monograph Series, 172, 145–152, doi:10.1029/172GM13.

Uchida, N., and T. Matsuzawa (2013), Pre- and postseismic slow slip surrounding the 2011 Tohoku-oki earthquake rupture, Earth. Planet. Sci. Lett., 374, 81-91, doi:10.1016/j.epsl.2013.05.021.

Uchida, N., T. Matsuzawa, T. Igarashi, and A. Hasegawa (2003), Interplate quasi-static slip off Sanriku, NE Japan, estimated from repeating earthquakes, Geophys. Res. Lett., 30, 1801, doi:10.1029/2003GL017452.

Ueno, H., S. Hatakeyama, T. Aketagawa, J. Funasaki, and N. Hamada (2002), Improvement of hypocenter determination procedures in the Japan Meteorological Agency, Quarterly Journal of Seismology, 65, 123-134 (in Japanese with English abstract).

Ustu, T. (1982), Catalog of large earthquakes in the region of Japan from 1885 through 1980, Bull. Earthq. Res. Inst., 57, 401-463 (in Japanese with English abstract).

Wald, D. J., and P. G. Somerville (1995), Variable-slip rupture model of the great 1923 Kanto, Japan, earthquake: Geodetic and body-waveform analysis, Bull. Seismol. Soc. Am., 85, 159-177.

Wallace, L. M., J. Beavan, R. McCaffrey, and D. Darby (2004), Subduction zone coupling and tectonic block rotations in the North Island, New Zealand, J. Geophys. Res., 109, B12406, doi:10.1029/2004JB003241.

Wang, K., R. Wells, S. Mazzotti, R. D. Hyndmann, and T. Sagiya (2003), A revised dislocation model of interseismic deformation of the Cascadia subduction zone, J. Geophys. Res., 108, 2026, doi: 10.1029/2001JB001227.

Wdowinski, S., Y. Bock, J. Zhang, P. Fang, and J. Genrich (1997), Southern California permanent GPS geodetic array: Spatial filtering of daily positions for estimating coseismic and postseismic displacements induced by the 1992 Landers earthquake, J. Geophys. Res., 102(B8), 18057–18070, doi:10.1029/97JB01378.

Weatherall, P., K. M. Marks, M. Jakobsson, T. Schmitt, S. Tani, J. E. Arndt, M. Rovere, D. Chayes, V. Ferrini, and R. Wigley (2015), A new digital bathymetric model of the world's oceans, Earth and Space Science, 2, 331- 345, doi:10.1002/2015EA000107.

Wessel, P., and W. H. F. Smith (1998), New, improved version of the Generic Mapping Tools released, Eos Trans. AGU, 79, 579, doi:10.1029/98EO00426.

Wesson, R. L., D. Melnick, M. Cisternas, M. Moreno, and L. L. Ely (2015), Vertical deformation through a complete seismic cycle at Isla Santa María, Chile, Nat. Geosci, 8, 547-551, doi:10.1038/ngeo2468.

Yabuki, T., and M. Matsu’ura (1992), Geodetic data inversion using a Bayesian information criterion for spatial distribution of fault slip, Geophys. J. Int., 109, 363-375, doi:10.1111/j.1365-246X.1992.tb00102.x.

Yagi, Y. (2004), Source rupture process of the 2003 Tokachi-oki earthquake determined by joint inversion of teleseismic body wave and strong ground motion data, Earth Planets Space, 56, 311-316, doi:10.1186/BF03353057.

Yamada, T., M. Shinohara, T. Kanazawa, N. Hirata, Y. Kaneda, T. Takanami, H. Mikada, K. Suyehiro, S. Sakai, T. Watanabe, K. Uehira, T. Murai, N. Takahashi, M. Nishino, K. Mochizuki, T. Sato, E. Araki, R. Hino, K. Uhira, H. Shiobara, and H. Shimizu (2005), Aftershock distribution of the 2003 Tokachi-oki earthquake derived from high-dense network of ocean bottom seismographs, Zisin, 57, 281-290, doi:10.4294/zisin1948.57.3_281 (in Japanese with English abstract).

Yamanaka, Y., and M. Kukuchi (2003), Source process of the recurrent Tokachi-oki earthquake on September 26, 2003, inferred from teleseismic body waves, Earth Planets Space, 55, e21-e24, doi:10.1186/BF03352479.

Yokota, Y. (2013), Seismo-geodesy to infer the physical process of the 2011 Tohoku earthquake, Ph-D thesis, The University of Tokyo.

Yokota, Y., T. Ishikawa, S. Watanabe, T. Tashiro, and A. Asada (2016), Seafloor geodetic constraints on interplate coupling of the Nankai Trough megathrust zone, Nature, 534, 374-377, doi:10.1038/nature17632.

Yokota, Y., and K. Koketsu (2015), A very long-term transient event preceding the 2011 Tohoku earthquake, Nature Communications, 6, 5934, doi:10.1038/ncomms6934.

Yoshida, S., K. Koketsu, B. Shibazaki, T. Sagiya, T. Kato, and Y. Yoshida (1996), Joint inversion of near-and far-field waveforms and geodetic data for the rupture process of the 1995 Kobe earthquake, J. Phys. Earth, 44, 437–454, doi:10.4294/jpe1952.44.437.

Yoshioka, S., T. Mikumo, V. Kostoglodov, K. M. Larson, A. R. Lowry, and S. K. Singh (2004), Interplate coupling and a recent aseismic slow slip event in the Guerrero seismic gap of the Mexican subduction zone, as deduced from GPS data inversion using a Bayesian information criterion, Phys. Earth Planet. Inter., 146, 513-530, doi:10.1016/j.pepi.2004.05.006.

Zhu, L., and L. A. Rivera (2002), A note on the dynamic and static displacements from a point source in multilayered media, Geophys. J. Int., 148, 619–627, doi:10.1046-/j.1365-246X.2002.01610.x.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る