リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Tsunami Source Estimation from Transoceanic Waveforms」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Tsunami Source Estimation from Transoceanic Waveforms

何, 東政 東京大学 DOI:10.15083/0002001523

2021.09.08

概要

In the present dissertation, we demonstrate the process of applying transoceanic tsunami waveforms in source inversion. First, we improve the existing phase correction method by incorporating the effects of ocean density stratification, the actual tsunami ray path, and the actual bathymetry. Second, we validate the improved method and the application of far-field tsunami data by the 2011 Tohoku earthquake tsunami. Third, we recover the source of the 1960 Chile earthquake by jointly inverting the near-field geodetic and tsunami data, and the newly available far-field tsunami data.

In Chapter 1, we review the tsunami inversion method and the previous method for phase correction. Due to the arrival time and waveform differences between observations and long-wave simulations after long distance traveling, the far-field data could not be used until the problems were solved by the phase correction method.

In Chapter 2, we further improve the accuracy of the existing phase correction method by adding the effects of ocean density stratification, actual ray path, and actual water depth. In our analysis, the existing method amounts to about 73% correction in our improved method. The new considered effects of ocean density stratification, actual ray path, and actual bathymetry, contribute to about 13%, 4.5%, and 9.5%, respectively.

Chapter 3 demonstrates that the improved method provides a more accurate estimate for the waveform inversion and forward prediction of far-field data. We also clarify the advantage and limit of far-field data. We perform single and multiple time window inversions for the 2011 Tohoku tsunami using far-field data corrected by different methods to investigate the initial sea surface displacement. The inversion results show that Green’s functions corrected by improved method better fit observed waveforms. We also apply the improved method to forward simulation. Our results show good agreements between the observed and computed waveforms at both near-field and far-field tsunami gauges, as well as satellite altimeter data.

In Chapter 4, we recover the source feature of the 1960 Chile earthquake. With the improved phase correction method in Chapter 2 and Chapter 3, we solve the systematic arrival time problem. In addition, we apply the nonlinear inversion NOMAD (Nonlinear Optimization by Mesh Adaptive Direct Search) with the OTA (Optimal Time Alignment) method to correct the random arrival time difference problems caused by the instrumental problem, local effect, or other unknown response. Our results show that a rupture extended about 800 km with a width of about 150 km at the shallow region. Three asperities with slips of 33 m, 29 m, and 33 m appear at north, central, and south area, respectively. The estimated magnitude is about Mw 9.4. Our results also indicate that the south peak contributes to the large uplift of south coasts, e.g. Guamblin Island, and the later high amplitude tsunami wave phase at Honolulu.

Chapter 5 is the summary of this dissertation. Our study may provide a reference for using far-field tsunami data. We hope that the tsunami source research and forecast for transoceanic tsunami may be developed from our study.

この論文で使われている画像

参考文献

Allgeyer, S., & Cummins, P. (2014). Numerical tsunami simulation including elastic loading and seawater density stratification. Geophysical Research Letters, 41(7), 2368-2375. http://doi.org/10.1002/2014GL059348

An, C., & Liu, P. L. (2016). Analytical solutions for estimating tsunami propagation speeds. Coastal Engineering, 117, 44-56.

Audet, C., & Dennis Jr, J. E. (2006). Mesh adaptive direct search algorithms for constrained optimization. SIAM Journal on optimization, 17(1), 188-217.

Audet, C., Le Digabel, S., & Tribes, C. (2009). NOMAD user guide. Technical Report G-2009-37, Les cahiers du GERAD.

Baba, T., Takahashi, N., Kaneda, Y., Ando, K., Matsuoka, D., & Kato, T. (2015). Parallel implementation of dispersive tsunami wave modeling with a nesting algorithm for the 2011 Tohoku tsunami. Pure and Applied Geophysics, 172(12), 3455-3472. http://doi.org/10.1007/s00024-015-1049-2

Barrientos, S. E., & Ward, S. N. (1990). The 1960 Chile earthquake: inversion for slip distribution from surface deformation. Geophysical Journal International, 103(3), 589-598.

Berkman, S. C., & Symons, J. M. (1964). The tsunami of May 22, 1960 as recorded at tide stations, U. S. Department of Commerce, Coast and Geodetic Survey, pp. 79.

Boyer, T. P., & S. Levitus (Ed.) (2009). World Ocean Database 2009., NOAA Atlas NESDIS 66, U.S. Gov. Printing Office, Wash. D.C., 216 pp., DVD.

Cifuentes, I. L., & Silver, P. G. (1989). Low‐frequency source characteristics of the great 1960 Chilean earthquake. Journal of Geophysical Research: Solid Earth, 94(B1), 643-663.

Dziewonski, A. M., & Anderson, D. L. (1981). Preliminary reference Earth model. Physics of the earth and planetary interiors, 25(4), 297-356.

Eblé, M. C., Mungov, G. T., & Rabinovich, A. B. (2015). On the leading negative phase of major 2010–2014 tsunamis. Pure and Applied Geophysics, 172(12), 3493- 3508. https://doi.org/10.1007/s00024-015-1127-5

Fujii, Y., & Satake, K. (2013). Slip distribution and seismic moment of the 2010 and 1960 Chilean earthquakes inferred from tsunami waveforms and coastal geodetic data. Pure and Applied Geophysics, 170(9-10), 1493-1509.

Fujii, Y., Satake, K., Sakai, S. I., Shinohara, M., & Kanazawa, T. (2011). Tsunami source of the 2011 off the Pacific coast of Tohoku Earthquake. Earth, planets and space, 63(7), 55. http://doi.org/10.5047/eps.2011.06.010

Gusman, A. R., Murotani, S., Satake, K., Heidarzadeh, M., Gunawan, E., Watada, S., & Schurr, B. (2015). Fault slip distribution of the 2014 Iquique, Chile, earthquake estimated from ocean-wide tsunami waveforms and GPS data. Geophysical Research Letters, 42(4), 1053-1060. http://doi.org/10.1002/2014GL062604

Gusman, A. R., Mulia, I. E., Satake, K., Watada, S., Heidarzadeh, M., & Sheehan, A. F. (2016). Estimate of tsunami source using optimized unit sources and including dispersion effects during tsunami propagation: The 2012 Haida Gwaii earthquake.

Geophysical Research Letters, 43(18), 9819-9828.

Gusman, A. R., Tanioka, Y., Sakai, S., & Tsushima, H. (2012). Source model of the great 2011 Tohoku earthquake estimated from tsunami waveforms and crustal deformation data. Earth and Planetary Science Letters, 341, 234-242. http://doi.org/10.1016/j.epsl.2012.06.006

Ho, T.-C., Satake, K., & Watada, S. (2017). Improved phase corrections for transoceanic tsunami data in spatial and temporal source estimation: Application to the 2011 Tohoku earthquake. Journal of Geophysical Research: Solid Earth, 122, 10,155– 10,175. https://doi.org/10.1002/2017JB015070

Hossen, M. J., Cummins, P. R., Dettmer, J., & Baba, T. (2015). Tsunami waveform inversion for sea surface displacement following the 2011 Tohoku earthquake: Importance of dispersion and source kinematics. Journal of Geophysical Research: Solid Earth, 120(9), 6452-6473. http://doi.org/10.1002/2015JB011942

Ide, S., Baltay, A., & Beroza, G. C. (2011). Shallow dynamic overshoot and energetic deep rupture in the 2011 Mw 9.0 Tohoku-Oki earthquake. Science, 332(6036), 1426-1429.

Imamura, F., Nagano, O., Goto, T., & Shuto, N. (1987). Trans-oceanic tsunami propagation computation for the 1960 Chilean tsunami [in Japanese]. Proc. Coast. Eng., 34, 172–176.

Imamura, F., Shuto, N., & Goto, C. (1990). Study on numerical simulation of the Transoceanic propagation of tsunami Part 2: Characteristics of tsunami propagating over the Pacific [in Japanese]. Zisin, 43, 389–402.

Jacob, K. H. (1970). Three‐dimensional seismic ray tracing in a laterally heterogeneous spherical Earth. Journal of Geophysical Research, 75(32), 6675-6689.

Kanamori, H., & Anderson, D. L. (1975). Amplitude of the Earth's free oscillations and long‐period characteristics of the earthquake source. Journal of Geophysical Research, 80(8), 1075-1078.

Kanamori, H., & Cipar, J. J. (1974). Focal process of the great Chilean earthquake May 22, 1960. Physics of the Earth and Planetary Interiors, 9(2), 128-136.

Kato, T., Terada, Y., Nishimura, H., Nagai, T., & Koshimura, S. I. (2011). Tsunami records due to the 2010 Chile Earthquake observed by GPS buoys established along the Pacific coast of Japan. Earth, Planets and Space, 63(6), e5-e8. http://doi.org/10.5047/eps.2011.05.001

Kawai, H., Satoh, M., Kawaguchi, K., & Seki, K. (2012). Recent tsunamis observed by GPS buoys off the Pacific coast of Japan. Coastal engineering proceedings, 1(33), 1. http://doi.org/10.9753/icce.v33.currents.1

Koketsu, K. (1991). Three-dimensional ray tracing in a subduction zone. Journal of the Seismological Society of Japan, 44, 165-176. In Japanese.

Koketsu, K., & Sekine, S. (1998). Pseudo-bending method for three-dimensional seismic ray tracing in a spherical earth with discontinuities. Geophysical Journal International, 132(2), 339-346.

Koketsu, K., Yokota, Y., Nishimura, N., Yagi, Y., Miyazaki, S. I., Satake, K., ... & Okada, T. (2011). A unified source model for the 2011 Tohoku earthquake. Earth and Planetary Science Letters, 310(3-4), 480-487.

Lay, T., & Wallace, T. C. (1995). Modern global seismology (Vol. 58). Academic press, San Diego, Calif.

Liu, P. L.‐F. (2009), Tsunami modeling: Propagation, in The Sea, vol. 15, Tsunamis, edited by E. Bernard et al., chap. 3, pp. 295–320, Harvard Univ. Press, Cambridge, Mass.

Le Digabel, S. (2011). Algorithm 909: NOMAD: Nonlinear optimization with the MADS algorithm. ACM Transactions on Mathematical Software (TOMS), 37(4), 44. https://doi.org/10.1145/1916461.1916468

McDougall, T. J., & Barker, P. M. (2011). Getting started with TEOS-10 and the Gibbs Seawater (GSW) oceanographic toolbox. SCOR/IAPSO WG, 127, 1-28, ISBN 978-0-646-55621-5.

Moreno, M. S., Bolte, J., Klotz, J., & Melnick, D. (2009). Impact of megathrust geometry on inversion of coseismic slip from geodetic data: Application to the 1960 Chile earthquake. Geophysical Research Letters, 36(16).

Mori, N., Takahashi, T., Yasuda, T., & Yanagisawa, H. (2011). Survey of 2011 Tohoku earthquake tsunami inundation and run-up. Geophysical research letters, 38(7). http://doi.org/10.1029/2011GL049210

Nishimura, T., Munekane, H., & Yarai, H. (2011). The 2011 off the Pacific coast of Tohoku Earthquake and its aftershocks observed by GEONET. Earth, planets and space, 63(7), 22. http://doi.org/10.5047/eps.2011.06.025

Okada, Y. (1985). Surface deformation due to shear and tensile faults in a half-space. Bulletin of the seismological society of America, 75(4), 1135-1154.

Okal, E. A. (1982). Mode-wave equivalence and other asymptotic problems in tsunami theory. Phys. Earth Planet. Inter., 30, 1–11.

Pereyra, V. W. H. K., Lee, W. H. K., & Keller, H. B. (1980). Solving two-point seismicray tracing problems in a heterogeneous medium: Part 1. A general adaptive finite difference method. Bulletin of the Seismological Society of America, 70(1), 79-99.

Plafker, G., & Savage, J. C. (1970). Mechanism of the Chilean earthquakes of May 21 and 22, 1960. Geological Society of America Bulletin, 81(4), 1001-1030.

Rabinovich, A. B., Titov, V. V., Moore, C. W., & Ebl e, M. C. (2017). The 2004 Sumatra Tsunami in the Southeastern Pacific Ocean: New global insight from observations and modeling. Journal of Geophysical Research: Oceans, 22. https://doi.org/10.1002/2017JC013078

Rabinovich, A. B., Woodworth, P. L., & Titov, V. V. (2011). Deep-sea observations and modeling of the 2004 Sumatra tsunami in Drake Passage. Geophysical Research Letters, 38(16). http://doi.org/10.1029/2011GL048305

Romano, F., Piatanesi, A., Lorito, S., Tolomei, C., Atzori, S., & Murphy, S. (2016). Optimal time alignment of tide‐gauge tsunami waveforms in nonlinear inversions: Application to the 2015 Illapel (Chile) earthquake. Geophysical Research Letters, 43(21). https://doi.org/10.1002/2016GL071310

Saito, T., Matsuzawa, T., Obara, K., & Baba, T. (2010). Dispersive tsunami of the 2010 Chile earthquake recorded by the high-sampling-rate ocean-bottom pressure gauges. Geophysical Research Letters, 37(23).

Saito, T., Satake, K., & Furumura, T. (2010). Tsunami waveform inversion including dispersive waves: the 2004 earthquake off Kii Peninsula, Japan. Journal of Geophysical Research: Solid Earth, 115(B6).

Satake, K. (1987). Inversion of tsunami waveforms for the estimation of a fault heterogeneity: Method and numerical experiments. Journal of Physics of the Earth, 35(3), 241-254. http://doi.org/10.4294/jpe1952.35.241

Satake, K. (1988). Effects of bathymetry on tsunami propagation: Application of ray tracing to tsunamis. Pure and Applied Geophysics, 126(1), 27-36.

Satake, K. (1995). Linear and nonlinear computations of the 1992 Nicaragua earthquake tsunami. Pure and Applied Geophysics, 144(3-4), 455-470.

Satake, K., Baba, T., Hirata, K., Iwasaki, S. I., Kato, T., Koshimura, S., ... & Terada, Y. (2005). Tsunami source of the 2004 off the Kii Peninsula earthquakes inferred from offshore tsunami and coastal tide gauges. Earth, planets and space, 57(3), 173-178. http://doi.org/10.1186/BF03351811

Satake, K., Fujii, Y., Harada, T., & Namegaya, Y. (2013). Time and space distribution of coseismic slip of the 2011 Tohoku earthquake as inferred from tsunami waveform data. Bulletin of the seismological society of America, 103(2B), 1473-1492. http://doi.org/10.1785/0120120122

Shao, G., Li, X., Ji, C., & Maeda, T. (2011). Focal mechanism and slip history of the 2011 M w 9.1 off the Pacific coast of Tohoku Earthquake, constrained with teleseismic body and surface waves. Earth, planets and space, 63(7), 9.

Simons, M., Minson, S. E., Sladen, A., Ortega, F., Jiang, J., Owen, S. E., ... & Helmberger, D. V. (2011). The 2011 magnitude 9.0 Tohoku-Oki earthquake: Mosaicking the megathrust from seconds to centuries. science, 332(6036), 1421-1425. http://doi.org/10.1126/science.1206731

Song, Y. T., Fukumori, I., Shum, C. K., & Yi, Y. (2012). Merging tsunamis of the 2011

Tohoku-Oki earthquake detected over the open ocean. Geophysical Research Letters, 39(5). http://doi.org/10.1029/2011GL050767

Talley, L. D., G. L. Pickard, W. J. Emery, and J. H. Swift (2011), Descriptive Physical Oceanography: An Introduction, 6th ed., Academic Press, London.

Tang, L., Titov, V. V., Bernard, E. N., Wei, Y., Chamberlin, C. D., Newman, J. C., ... & Uslu, B. (2012). Direct energy estimation of the 2011 Japan tsunami using deep- ocean pressure measurements. Journal of Geophysical Research: Oceans, 117(C8). http://doi.org/10.1029/2011JC007635

Tappin, D. R., Grilli, S. T., Harris, J. C., Geller, R. J., Masterlark, T., Kirby, J. T., ... & Mai, P. M. (2014). Did a submarine landslide contribute to the 2011 Tohoku tsunami?. Marine Geology, 357, 344-361.

Tsai, V. C., Ampuero, J. P., Kanamori, H., & Stevenson, D. J. (2013). Estimating the effect of Earth elasticity and variable water density on tsunami speeds. Geophysical Research Letters, 40(3), 492-496. http://doi.org/10.1002/grl.50147

Um, J., & Thurber, C. (1987). A fast algorithm for two-point seismic ray tracing. Bulletin of the Seismological Society of America, 77(3), 972-986. Yoshimoto, M., Watada, S., Fujii, Y., & Satake, K. (2016). Source estimate and tsunami forecast from far-field deep-ocean tsunami waveforms—The 27 February 2010 Mw 8.8 Maule earthquake. Geophysical Research Letters, 43(2), 659-665. http://doi.org/10.1002/2015GL067181

Tsushima, H., Hino, R., Tanioka, Y., Imamura, F., & Fujimoto, H. (2012). Tsunami waveform inversion incorporating permanent seafloor deformation and its application to tsunami forecasting. Journal of Geophysical Research: Solid Earth, 117(B3). http://doi.org/10.1029/2011JB008877

Watada, S. (2013). Tsunami speed variations in density-stratified compressible global oceans. Geophysical Research Letters, 40(15), 4001-4006.

Watada, S., & Kanamori, H. (2010). Acoustic resonant oscillations between the atmosphere and the solid earth during the 1991 Mt. Pinatubo eruption. Journal of Geophysical Research: Solid Earth, 115(B12).

Watada, S., Kusumoto, S., & Satake, K. (2014). Traveltime delay and initial phase reversal of distant tsunamis coupled with the self-gravitating elastic Earth. Journal of Geophysical Research: Solid Earth, 119(5), 4287-4310.

Weatherall, P., Marks, K. M., Jakobsson, M., Schmitt, T., Tani, S., Arndt, J. E., ... & Wigley, R. (2015). A new digital bathymetric model of the world's oceans. Earth and Space Science, 2(8), 331-345. http://doi.org/10.1002/2015EA000107

Woods, M. T., & Okal, E. A. (1987). Effect of variable bathymetry on the amplitude of teleseismic tsunamis: A ray‐tracing experiment. Geophysical Research Letters, 14(7), 765-768. https://doi.org/10.1029/GL014i007p00765

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る