リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「整形外科における生体力学問題に対するCT-FEMと機械学習の応用」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

整形外科における生体力学問題に対するCT-FEMと機械学習の応用

呉, 順 WU, SHUN シュン, ウー 九州大学

2021.09.24

概要

最近、超高齢社会を迎えた我が国において、様々な骨や関節関連の疾患が問題となっている。たとえば、高齢女性に多い骨粗鬆症は、骨が脆弱化し脊椎の椎体骨折や大腿骨の頚部骨折等を引き起こし、治癒状態が悪い場合は寝たきりの状態となってしまう。一方、中高年の女性に多い変形性股関節症は、病状が悪化すると人工股関節置換術(THA)が唯一の方法であり、THA を施さない場合は、やはり寝たきりの状態となり得る疾病である。骨粗鬆症は、測定された大腿骨や脊椎の平均的骨密度及びYAM 値が診断に利用され、骨折危険性についても臨床的指導が行われるが、このような骨密度がどの程度骨折危険性と相関があるのかについては、いまだ明らかになっていない。また、THA については、様々なデザインの人工股関節が臨床で用いられているものの、特に人工股関節ステムの形状が大腿骨に及ぼす生体力学的影響については不明な点が多い。

本論文は、100 名を超えるの患者の脊椎CT データから抽出した椎体CT 画像を用いて3 次元数値モデルを作成し、CT 画像を利用した有限要素法(CT-FEM)を用いて椎体圧縮強度を評価し、強度と骨密度との相関関係について検討している。さらに、骨強度に関連していると考えられる、いくつかの骨構造や骨密度に関連するパラ―メタを選定し、強度との相関について調査している。また、得られた結果を用いて、新しい構造・骨密度パラメータを提案している。さらに、機械学習を用いて、複数のパラメータを入力値として骨折危険性の予測を行う試みを行っている。一方、3 種類の大転子肩部の形状が異なる3 種類のステムを埋入した大腿骨モデルを作成し、CT-FEM で解析することで、ステム形状が固定性に及ぼす影響について考察している。

1章では、研究の背景と目的について述べている。まず、骨粗鬆症と骨粗鬆症に起因する椎体圧迫骨折について概説し、続いて骨密度と圧迫骨折の関係について説明している。次に、CT- FEM を用いた骨強度評価法について説明し、献体実験結果との整合性について述べている。さらに、現在の臨床における骨折危険性の評価法について説明し、機械学習法の臨床医学への応 用について概説している。本研究は、このような背景の下、CT-FEM で評価した椎体の圧縮強度 と骨密度との相関性について明らかにすることを目的としている。さらに椎体強度と強い相関 性を示す新しい構造・骨密度パラメータを見出すことを目的としている。また、機械学習法を 用いて、複数の評価パラメータを総合的に考慮した骨折危険性予測法の構築を目的としている。

2章では、116 名の患者の脊椎CT データから抽出した362 個の椎体CT 画像を用いて3D 椎体モデルを作成し、圧縮強度を評価している。得られた強度データと各患者の骨密度および椎体と大腿骨のYAM 値との相関について調査し、強い相関が得られない原因、ならびにYAM による臨床診断の問題点について説明している。次に、椎体強度と強い相関を示すと考えられるいくつかのパラメータ、たとえば海綿骨平均骨密度、最小断面積、低骨密度域の体積率等を提案し、これらのパラメータが強度と強い相関を示すことを見出している。さらに複数のパラメータを組み合わせることで、より強い相関を示す新しいパラメータの創製を実現している。

3章では、骨温存型として広く使用されている Zweymüller 型ステムと大転子肩部のデザインを変更した2 種類のステム、計3 種類のステムを高齢者CT 画像より作成した大腿骨3 次元モデルに挿入した解析モデルを作成し、応力解析を試みている。その結果、大転子肩部を大幅にとり除いたデザインでも、十分な回旋固定性が得られることが示唆されている。この結果より、従来型では近位部の骨を大きく取り除く必要があるが、変更したデザインのステムを用いることで、骨が温存できる可能性があることが明らかになっている。

4章は総括であり、各解析から得られた重要事項について説明し、本研究のさらなる発展の可能性と今後の展開について説明している。

この論文で使われている画像

参考文献

[1] A. Klibanski, L. Adams-Campbell, T. Bassford, S.N. Blair, S.D. Boden, K. Dickersin, D.R. Gifford, L. Glasse, S.R. Goldring, K. Hruska, Osteoporosis prevention, diagnosis, and therapy, Journal of the American Medical Association 285 (2001) 785–795.

[2] Y. Xie, L. Zhang, Q. Xiong, Y. Gao, W. Ge, P. Tang, Bench-to-bedside strategies for osteoporotic fracture: From osteoimmunology to mechanosensation, Bone research 7 (2019) 1–13.

[3] Z. Qi, W. Liu, J. Lu, The mechanisms underlying the beneficial effects of exercise on bone remodeling: roles of bone-derived cytokines and microRNAs, Progress in biophysics and molecular biology 122 (2016) 131–139.

[4] L.G. Raisz, Pathogenesis of osteoporosis: concepts, conflicts, and prospects, The Journal of clinical investigation 115 (2005) 3318–3325.

[5] Y. Chang, B. Cho, S. Kim, J. Kim, Direct conversion of fibroblasts to osteoblasts as a novel strategy for bone regeneration in elderly individuals, Exp. Mol. Med. 51 (2019) 1–8. https://doi.org/10.1038/s12276-019-0251-1.

[6] E.R. Myers, S.E. Wilson, Biomechanics of osteoporosis and vertebral fracture, Spine (Phila Pa. 1976) 22 (1997) 25S-31S.

[7] E. Yaacobi, D. Sanchez, H. Maniar, D.S. Horwitz, Surgical treatment of osteoporotic fractures: an update on the principles of management, Injury 48 (2017) S34-S40.

[8] J.C. van der Linden, H. Weinans, Effects of microarchitecture on bone strength, Current osteoporosis reports 5 (2007) 56–61.

[9] D.L. Glaser, F.S. Kaplan, Osteoporosis: definition and clinical presentation, Spine (Phila Pa. 1976) 22 (1997) 12S-16S.

[10] K.L.B. Erickson, Innovations in Care of the Elderly Hip Fracture Patient; a Nightmare No More, The Nursing clinics of North America 55 (2020) 149–161.

[11] C. Cooper, G. Campion, L.3. Melton, Hip fractures in the elderly: a world-wide projection, Osteoporosis international 2 (1992) 285–289.

[12] T.M. Keaveny, D.L. Kopperdahl, L.J. Melton III, P.F. Hoffmann, S. Amin, B.L. Riggs, S. Khosla, Age‐dependence of femoral strength in white women and men, J. Bone Miner. Res. 25 (2010) 994–1001.

[13] X. Wang, A. Sanyal, P.M. Cawthon, L. Palermo, M. Jekir, J. Christensen, K.E. Ensrud, S.R. Cummings, E. Orwoll, D.M. Black, Prediction of new clinical vertebral fractures in elderly men using finite element analysis of CT scans, J. Bone Miner. Res. 27 (2012) 808–816.

[14] B.J. Roberts, D. Kopperdahl, E. Thrall, J.A. Muller, T.M. Keaveny, M.L. Bouxsein, Prediction of femoral strength in a sideways fall configuration using QCT-based finite element analysis, Bone (2009) S72.

[15] J.H. Keyak, Improved prediction of proximal femoral fracture load using nonlinear finite element models, Medical engineering & physics 23 (2001) 165–173.

[16] R. Crawford, C.E. Cann, T.M. Keaveny, Finite element models predict in vitro vertebral body compressive strength better than quantitative computed tomography, Bone 33 (2003) 744–750. https://doi.org/10.1016/S8756-3282(03)00210-2.

[17] J.M. Crolet, B. Aoubiza, A. Meunier, Compact bone: Numerical simulation of mechanical characteristics, J. Biomech. 26 (1993) 677–687. https://doi.org/10.1016/0021-9290(93)90031-9.

[18] S.J. Hollister, N. Kikuchi, Homogenization theory and digital imaging: A basis for studying the mechanics and design principles of bone tissue, Biotechnol. Bioeng. 43 (1994) 586–596. https://doi.org/10.1002/bit.260430708.

[19] P.K. Zysset, A. Curnier, A 3D damage model for trabecular bone based on fabric tensors, J. Biomech. 29 (1996) 1549–1558. https://doi.org/10.1016/S0021-9290(96)80006-6.

[20] T.S. Keller, Predicting the compressive mechanical behavior of bone, J. Biomech. 27 (1994) 1159–1168. https://doi.org/10.1016/0021-9290(94)90056-6.

[21] J.H. Keyak, I.Y. Lee, H.B. Skinner, Correlations between orthogonal mechanical properties and density of trabecular bone: use of different densitometric measures, J. Biomed. Mater. Res. 28 (1994) 1329–1336. https://doi.org/10.1002/jbm.820281111.

[22] E. Dall’Ara, R. Schmidt, D. Pahr, P. Varga, Y. Chevalier, J. Patsch, F. Kainberger, P. Zysset, A nonlinear finite element model validation study based on a novel experimental technique for inducing anterior wedge-shape fractures in human vertebral bodies in vitro, J. Biomech. 43 (2010) 2374–2380. https://doi.org/10.1016/j.jbiomech.2010.04.023.

[23] E. Dall’Ara, B. Luisier, R. Schmidt, F. Kainberger, P. Zysset, D. Pahr, A nonlinear QCT-based finite element model validation study for the human femur tested in two configurations in vitro, Bone 52 (2013) 27–38. https://doi.org/10.1016/j.bone.2012.09.006.

[24] J.E.M. Koivumäki, J. Thevenot, P. Pulkkinen, V. Kuhn, T.M. Link, F. Eckstein, T. Jämsä, Ct-based finite element models can be used to estimate experimentally measured failure loads in the proximal femur, Bone 50 (2012) 824–829. https://doi.org/10.1016/j.bone.2012.01.012.

[25] J.H. Keyak, S.A. Rossi, K.A. Jones, H.B. Skinner, Prediction of femoral fracture load using automated finite element modeling, J. Biomech. 31 (1997) 125–133. https://doi.org/10.1016/S0021-9290(97)00123-1.

[26] H. Martin, J. Werner, R. Andresen, H.C. Schober, K.P. Schmitz, Noninvasive assessment of stiffness and failure load of human vertebrae from CT-data, Biomed. Tech. (Berl) 43 (1998) 82–88. https://doi.org/10.1515/bmte.1998.43.4.82.

[27] J.M. Buckley, K. Loo, J. Motherway, Comparison of quantitative computed tomography-based measures in predicting vertebral compressive strength, Bone 40 (2007) 767–774. https://doi.org/10.1016/j.bone.2006.10.025.

[28] K. Imai, I. Ohnishi, M. Bessho, K. Nakamura, Nonlinear finite element model predicts vertebral bone strength and fracture site, Spine (Phila Pa. 1976) 31 (2006) 1789–1794. https://doi.org/10.1097/01.brs.0000225993.57349.df.

[29] P. Zysset, E. Dall’Ara, P. Varga, D.H. Pahr, 2013. Finite element analysis for prediction of bone strength. Bonekey. Rep. 2, 386. https://doi.org/10.1038/bonekey.2013.120.

[30] J.A. Kanis, Diagnosis of osteoporosis and assessment of fracture risk, The Lancet 359 (2002) 1929–1936. https://doi.org/10.1016/S0140-6736(02)08761-5.

[31] K.G. Faulkner, The tale of the T-score: review and perspective, Osteoporos. Int. 16 (2005) 347–352. https://doi.org/10.1007/s00198-004-1779-y.

[32] H. Orimo, T. Nakamura, T. Hosoi, M. Iki, K. Uenishi, N. Endo, H. Ohta, M. Shiraki, T. Sugimoto, T. Suzuki, Japanese 2011 guidelines for prevention and treatment of osteoporosis—executive summary, Arch. Osteoporos. 7 (2012) 3–20. https://doi.org/10.1007/s11657-012-0109-9.

[33] J.A. Kanis, O. Johnell, A. Oden, A. Dawson, C. de Laet, B. Jonsson, Ten year probabilities of osteoporotic fractures according to BMD and diagnostic thresholds, Osteoporos. Int. 12 (2001) 989–995. https://doi.org/10.1007/s001980170006.

[34] S.C.E. Schuit, M. van der Klift, A.E.A.M. Weel, C.E.D.H. de Laet, H. Burger, E. Seeman, A. Hofman, A.G. Uitterlinden, J.P.T.M. van Leeuwen, H.A.P. Pols, Fracture incidence and association with bone mineral density in elderly men and women: the Rotterdam Study, Bone 34 (2004) 195–202. https://doi.org/10.1016/j.bone.2003.10.001.

[35] J.A. Kanis, A. Oden, O. Johnell, H. Johansson, C. de Laet, J. Brown, P. Burckhardt, C. Cooper, C. Christiansen, S. Cummings, J.A. Eisman, S. Fujiwara, C. Glüer, D. Goltzman, D. Hans, M.-A. Krieg, A. La Croix, E. McCloskey, D. Mellstrom, L.J. Melton, H. Pols, J. Reeve, K. Sanders, A.-M. Schott, A. Silman, D. Torgerson, T. van Staa, N.B. Watts, N. Yoshimura, The use of clinical risk factors enhances the performance of BMD in the prediction of hip and osteoporotic fractures in men and women, Osteoporos. Int. 18 (2007) 1033–1046. https://doi.org/10.1007/s00198-007- 0343-y.

[36] K. Engelke, B. van Rietbergen, P. Zysset, FEA to Measure Bone Strength: A Review, Clin. Rev. Bone. Miner. Metab. 14 (2016) 26–37. https://doi.org/10.1007/s12018-015-9201-1.

[37] M. Zhang, H. Gong, K. Zhang, Prediction of lumbar vertebral strength of elderly men based on quantitative computed tomography images using machine learning, Osteoporosis international 30 (2019) 2271–2282.

[38] A.S. Cruz, H.C. Lins, R.V.A. Medeiros, M.F. José Filho, S.G. Da Silva, Artificial intelligence on the identification of risk groups for osteoporosis, a general review, Biomedical engineering online 17 (2018) 1–17.

[39] K.P. Murphy, Machine learning: a probabilistic perspective, MIT press, 2012.

[40] M. Taylor, E. Perilli, S. Martelli, Development of a surrogate model based on patient weight, bone mass and geometry to predict femoral neck strains and fracture loads, J. Biomech. 55 (2017) 121–127.

[41] X. Yu, C. Ye, L. Xiang, Application of artificial neural network in the diagnostic system of osteoporosis, Neurocomputing 214 (2016) 376–381.

[42] C.-C. Yang, M.B. Nagarajan, M.B. Huber, J. Carballido-Gamio, J.S. Bauer, T.H. Baum, F. Eckstein, E.-M. Lochmüller, S. Majumdar, T.M. Link, Improving bone strength prediction in human proximal femur specimens through geometrical characterization of trabecular bone microarchitecture and support vector regression, Journal of electronic imaging 23 (2014) 13013.

[43] P. Lafforgue, Pathophysiology and natural history of avascular necrosis of bone, JOINT BONE SPINE 73 (2006) 500–507. https://doi.org/10.1016/j.jbspin.2006.01.025.

[44] E. Guerado, E. Caso, The physiopathology of avascular necrosis of the femoral head: an update, INJURY-INTERNATIONAL JOURNAL OF THE CARE OF THE INJURED 476 (2016) S16-S26. https://doi.org/10.1016/S0020-1383(16)30835-X.

[45] H.S. Khanuja, J.J. Vakil, M.S. Goddard, M.A. Mont, Cementless femoral fixation in total hip arthroplasty, JBJS 93 (2011) 500–509. https://doi.org/10.2106/JBJS.J.00774.

[46] K. Zweymüller, M. Semlitsch, Concept and material properties of a cementless hip prosthesis system with Al 2 O 3 ceramic ball heads and wrought Ti-6Al-4V stems // Concept and material properties of a cementless hip prosthesis system with Al2O3 ceramic ball heads and wrought Ti-6Al-4V stems, Archives of orthopaedic and traumatic surgery 100 (1982) 229–236. https://doi.org/10.1007/BF00381662.

[47] H. Sugiyama, L.A. Whiteside, C.A. Engh, H. Sugiyama, L.A. Whiteside, C.A. Engh, Torsional fixation of the femoral component in total hip arthroplasty. The effect of surgical press-fit technique, Clinical orthopaedics and related research (1992) 187– 193.

[48] H. Sugiyama, L.A. Whiteside, A.D. Kaiser, H. Sugiyama, L.A. Whiteside, A.D. Kaiser, Examination of rotational fixation of the femoral component in total hip arthroplasty. A mechanical study of micromovement and acoustic emission, Clinical orthopaedics and related research (1989) 122–128.

[49] T. Shigemura, The Trochanteric Wing of the Zweymüller Femoral Stem does Not Affect Rotational Stability: An Experimental Study Using a Resin Bone Model, IJCEMS 3 (2017) 66. https://doi.org/10.11648/j.ijcems.20170305.13.

[50] M. van der Klift, C.E. de Laet, E.V. Mccloskey, A. Hofman, H.A.P. Pols, The incidence of vertebral fractures in men and women: the Rotterdam Study, J. Bone Miner. Res. 17 (2002) 1051–1056.

[51] M. Bessho, I. Ohnishi, J. Matsuyama, T. Matsumoto, K. Imai, K. Nakamura, Prediction of strength and strain of the proximal femur by a CT-based finite element method, J. Biomech. 40 (2007) 1745–1753. https://doi.org/10.1016/j.jbiomech.2006.08.003.

[52] T.S. Kaneko, M.R. Pejcic, J. Tehranzadeh, J.H. Keyak, Relationships between material properties and CT scan data of cortical bone with and without metastatic lesions, Med. Eng. Phys. 25 (2003) 445–454. https://doi.org/10.1016/S1350-4533(03)00030-4.

[53] L. Røhl, E. Larsen, F. Linde, A. Odgaard, J. Jørgensen, Tensile and compressive properties of cancellous bone, J. Biomech. 24 (1991) 1143–1149. https://doi.org/10.1016/0021-9290(91)90006-9.

[54] A.G. Bruno, K.E. Broe, X. Zhang, E.J. Samelson, C.-A. Meng, R. Manoharan, J. D’Agostino, L.A. Cupples, D.P. Kiel, M.L. Bouxsein, Vertebral size, bone density, and strength in men and women matched for age and areal spine BMD, J. Bone Miner. Res. 29 (2014) 562–569. https://doi.org/10.1002/jbmr.2067.

[55] H.K. Genant, C.Y. Wu, C. van Kuijk, M.C. Nevitt, Vertebral fracture assessment using a semiquantitative technique, J. Bone Miner. Res. 8 (1993) 1137–1148. https://doi.org/10.1002/jbmr.5650080915.

[56] M.L. Bouxsein, L.J. Melton, B.L. Riggs, J. Muller, E.J. Atkinson, A.L. Oberg, R.A. Robb, J.J. Camp, P.A. Rouleau, C.H. McCollough, S. Khosla, Age- and sex-specific differences in the factor of risk for vertebral fracture: a population-based study using QCT, J. Bone Miner. Res. 21 (2006) 1475–1482. https://doi.org/10.1359/jbmr.060606.

[57] M. Suzukawa, H. Shimada, H. Makizako, S. Watanabe, T. Suzuki, S. Watanabe, Incidence of falls and fractures in disabled elderly people utilizing long-term care insurance, Nihon Ronen Igakkai Zasshi 46 (2009) 334–340. https://doi.org/10.3143/geriatrics.46.334.

[58] J.F. Veenland, T.M. Link, W. Konermann, N. Meier, J.L. Grashuis, E.S. Gelsema, Unraveling the role of structure and density in determining vertebral bone strength, Calcif. Tissue Int. 61 (1997) 474–479. https://doi.org/10.1007/s002239900370.

[59] A.J. Silman, The patient with fracture: The risk of subsequent fractures, Am. J. Med. 98 (1995) 12S-16S. https://doi.org/10.1016/S0002-9343(05)80039-7.

[60] P. Ammann, R. Rizzoli, Bone strength and its determinants, Osteoporos. Int. 14 Suppl 3 (2003) S13-8. https://doi.org/10.1007/s00198-002-1345-4.

[61] X. Banse, J. Devogelaer, E. Munting, C. Delloye, O. Cornu, M. Grynpas, Inhomogeneity of human vertebral cancellous bone: systematic density and structure patterns inside the vertebral body, Bone 28 (2001) 563–571. https://doi.org/10.1016/S8756-3282(01)00425-2.

[62] A. Rezaei, H. Giambini, T. Rossman, K.D. Carlson, M.J. Yaszemski, L. Lu, D. Dragomir-Daescu, H. Giambini, K.D. Carlson, D. Dragomir-Daescu, Are DXA/aBMD and QCT/FEA stiffness and strength estimates sensitive to sex and age? // Are DXA/aBMD and QCT/FEA Stiffness and Strength Estimates Sensitive to Sex and Age?, Ann. Biomed. Eng. 45 (2017) 2847–2856. https://doi.org/10.1007/s10439-017-1914-5.

[63] L.J. Melton, B.L. Riggs, T.M. Keaveny, S.J. Achenbach, P.F. Hoffmann, J.J. Camp, P.A. Rouleau, M.L. Bouxsein, S. Amin, E.J. Atkinson, J.J. Camp, M.L. Bouxsein, E.J. Atkinson, R.A. Robb, S. Khosla, Structural determinants of vertebral fracture risk, J. Bone Miner. Res. 22 (2007) 1885–1892. https://doi.org/10.1359/jbmr.070728.

[64] S. Soen, M. Fukunaga, T. Sugimoto, T. Sone, S. Fujiwara, N. Endo, I. Gorai, M. Shiraki, H. Hagino, T. Hosoi, H. Ohta, T. Yoneda, T. Tomomitsu, Diagnostic criteria for primary osteoporosis: year 2012 revision, Journal of bone and mineral metabolism 31 (2013) 247–257. https://doi.org/10.1007/s00774-013-0447-8.

[65] K. Imai, I. Ohnishi, T. Matsumoto, S. Yamamoto, K. Nakamura, Assessment of vertebral fracture risk and therapeutic effects of alendronate in postmenopausal women using a quantitative computed tomography-based nonlinear finite element method, Osteoporos. Int. 20 (2009) 801–810. https://doi.org/10.1007/s00198-008-0750-8.

[66] K.L. Stone, D.G. Seeley, L.Y. Lui, J.A. Cauley, K.E. Ensrud, W.S. Browner, M.C. Nevitt, S.R. Cummings, L.-Y. Lui, J.A. Cauley, K. Ensrud, W.S. Browner, S.R. Cummings, BMD at multiple sites and risk of fracture of multiple types: long‐term results from the Study of Osteoporotic Fractures // BMD at multiple sites and risk of fracture of multiple types: long-term results from the Study of Osteoporotic Fractures, J. Bone Miner. Res. 18 (2003) 1947–1954. https://doi.org/10.1359/jbmr.2003.18.11.1947.

[67] J.T. Schousboe, C.R. DeBold, C. Bowles, S. Glickstein, R.K. Rubino, C.R. DeBold, C. Bowles, Prevalence of vertebral compression fracture deformity by X-ray absorptiometry of lateral thoracic and lumbar spines in a population referred for bone densitometry // Prevalence of Vertebral Compression Fracture Deformity by X-ray Absorptiometry of Lateral Thoracic and Lumbar Spines in a Population Referred for Bone Densitometry, J.Clin. Densitom. 5 (2002) 239–246. https://doi.org/10.1385/JCD:5:3:239.

[68] K.M. Whealan, S.D. Kwak, J.R. Tedrow, K. Inoue, B.D. Snyder, Noninvasive imaging predicts failure load of the spine with simulated osteolytic defects, JBJS 82 (2000) 1240.

[69] D.R. Carter, W.C. Hayes, Bone compressive strength: the influence of density and strain rate, Science 194 (1976) 1174–1176. https://doi.org/10.1126/science.996549.

[70] T.M. Keaveny, E.F. Wachtel, C.M. Ford, W.C. Hayes, Differences between the tensile and compressive strengths of bovine tibial trabecular bone depend on modulus, J. Biomech. 27 (1994) 1137–1146. https://doi.org/10.1016/0021-9290(94)90054-X.

[71] J. Homminga, B.R. Mccreadie, H. Weinans, R. Huiskes, The dependence of the elastic properties of osteoporotic cancellous bone on volume fraction and fabric, J. Biomech. 36 (2003) 1461–1467. https://doi.org/10.1016/S0021-9290(03)00125-8.

[72] C. Hernandez, G. Beaupré, T. Keller, D. Carter, The influence of bone volume fraction and ash fraction on bone strength and modulus, Bone 29 (2001) 74–78. https://doi.org/10.1016/S8756-3282(01)00467-7.

[73] M.B. Schaffler, D.B. Burr, Stiffness of compact bone: Effects of porosity and density, J. Biomech. 21 (1988) 13–16. https://doi.org/10.1016/0021-9290(88)90186-8.

[74] A. Nazarian, D. von Stechow, D. Zurakowski, R. Müller, B.D. Snyder, Bone volume fraction explains the variation in strength and stiffness of cancellous bone affected by metastatic cancer and osteoporosis, Calcif. Tissue Int. 83 (2008) 368–379. https://doi.org/10.1007/s00223-008-9174-x.

[75] N.K. Knowles, J.M. Reeves, L.M. Ferreira, Quantitative Computed Tomography (QCT) derived Bone Mineral Density (BMD) in finite element studies: a review of the literature, J. Exp. Orthop. 3 (2016) 36. https://doi.org/10.1186/s40634-016-0072-2.

[76] D.W. Hosmer Jr, S. Lemeshow, R.X. Sturdivant, Applied logistic regression, John Wiley & Sons, 2013.

[77] Y.-Y. Song, Y. Lu, Decision tree methods: applications for classification and prediction, Shanghai Arch. Psychiatry 27 (2015) 130–135. https://doi.org/10.11919/j.issn.1002-0829.215044.

[78] A. Géron, Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow: Concepts, tools, and techniques to build intelligent systems, O’Reilly Media, 2019.

[79] b. org, CBP_nbt1206_Noble.indd.

[80] L. Breiman, Rejoinder: Arcing classifiers, The Annals of Statistics 26 (1998) 841–849.

[81] D. Berrar, Bayes’ theorem and naive Bayes classifier, Encyclopedia of Bioinformatics and Computational Biology: ABC of Bioinformatics; Elsevier Science Publisher: Amsterdam, The Netherlands (2018) 403–412.

[82] T. Hastie, R. Tibshirani, J. Friedman, The elements of statistical learning: data mining, inference, and prediction, Springer Science & Business Media, 2009.

[83] W.D. Leslie, L.M. Lix, Comparison between various fracture risk assessment tools, Osteoporosis international 25 (2014) 1–21.

[84] G. Bergmann, A. Bender, J. Dymke, G. Duda, P. Damm, Standardized Loads Acting in Hip Implants, PLOS ONE 11 (2016) e0155612. https://doi.org/10.1371/journal.pone.0155612}.

[85] H. Effenberger, A. Heiland, T. Ramsauer, W. Plitz, U. Dorn, A model for assessing the rotational stability of uncemented femoral implants, Archives of Orthopaedic and Trauma Surgery 121 (2001) 60–64. https://doi.org/10.1007/s004020000215}.

[86] M.P. Flury, W. Schmoelz, U. Schreiber, J. Goldhahn, Biomechanical testing of rectangular humeral shaft prosthesis: higher torsional stability without increased fracture risk, Archives of Orthopaedic and Trauma Surgery 131 (2011) 267–273. https://doi.org/10.1007/s00402-010-1170-8}.

[87] M. Viceconti, R. Muccini, M. Bernakiewicz, M. Baleani, L. Cristofolini, M. Viceconti, R. Muccini, M. Bernakiewicz, M. Baleani, L. Cristofolini, Large-sliding contact elements accurately predict levels of bone-implant micromotion relevant to osseointegration // Large-sliding contact elements accurately predict levels of bone– implant micromotion relevant to osseointegration, J. Biomech. 33 (2000) 1611–1618. https://doi.org/10.1016/S0021-9290(00)00140-8.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る