リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「CT画像を利用した有限要素法による病的大腿骨の骨折解析」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

CT画像を利用した有限要素法による病的大腿骨の骨折解析

ゾウ, リン, タン LINN HTUN, ZAW 九州大学

2022.09.22

概要

最近、超高齢社会を迎えた我が国において、様々な骨や関節関連の疾患の悪化により引き起こされた寝たきりや要介護が問題となっている。高齢女性に多い骨粗鬆症は、骨が脆弱化し大腿骨の頚部骨折等の骨折を引き起こす。一方、中高年の女性に多い変形性股関節症(OA)は、病状が悪化すると強い痛みのために歩行が困難となり、人工股関節置換術が唯一の治療方法となってしまう。OAほど一般的ではないものの、大腿骨頭において何らかの理由で虚血が生じ骨組織が壊死する大腿骨頭壊死症(AVN)は、厚生労働省の特定疾患に指定されている難病であり、病状が進行すると安静時においても持続的な痛みが生じ、歩行も困難となる。最終的にはOAと同様に人工股関節置換術が実施される。OAやAVNに罹患した高齢女性の場合、骨粗鬆症も併発している可能性が高く、転倒等で外力が作用すると容易に骨折する可能性が高い。それほど骨粗鬆症が進んでいない中高年の患者でも、OAやAVNによる骨頭や頚部の変形、あるいは骨密度の変化が骨折に影響を及ぼすことが考えられる。しかし、OAやAVNが大腿骨の骨折に及ぼす影響については、ほとんど研究が進んでいないのが現状である。

本論文は、北部九州の4つの大学病院から提供してもらった合計73名のOAとAVNの大腿骨CTデータから、130個の大腿骨モデルを作成し、有限要素法を用いて立位の圧縮負荷の条件下での骨強度を評価し、骨頭と頚部の平均的骨密度との相関関係について精査している。さらに、損傷要素の分布状態から、骨折の発生個所と骨折形態について考察し、病気と骨折の関係について検討している。また、転倒状態を模擬した境界条件を設定して解析を行い、転倒に対する骨強度を評価し、平均的骨密度との相関関係を調べている。さらに、骨損傷の分布状態から骨折形態を考察し、ひずみエネルギー密度分布を調べることで骨折のメカニズムについて検討している。3つ目の境界条件として、疲労骨折を模擬した繰り返し荷重の影響について検討している。得られた結果を単調に増加する荷重条件での結果と比較し、骨折メカニズムの差異について考察している。

第1章では、研究の背景と目的について述べている。まず、OAとAVNの特徴と症状について概説している。次に、CT画像を利用した有限要素法(CT-FEM)の基礎的事項について説明し、CT-FEMを利用した骨強度評価法について説明している。本研究は、立位と転倒を模擬した単調増加の荷重条件と、立位での繰り返し荷重条件の異なる2種類の条件下で、正常、OA、AVNの3種類の大腿骨の骨強度を評価することを目的としている。また、要素単位での微視損傷の蓄積として骨折を再現し、骨折メカニズムについて明らかにするとともに、OAやAVN等の疾患が骨折に及ぼす影響について明らかにすることを目的としている。

第2章では、平均的骨密度の増加にともない大腿骨の強度が増加する傾向にあることを見出しており、その相関関係は、正常大腿骨が最も強く、次いでOA、もっとも弱いのがAVNであることが明らかになっている。また骨折は、どのタイプでも頚部において最も頻繁に生じており、骨頭と頚部の両方で骨折が生じる形態も存在することが分かっている。特に、AVNでは、頚部と転子間での骨折が生じることが分かり、AVNの影響が示唆されている。平均的骨密度が同等の3種類の大腿骨モデルを比較したところ、AVNのモデルが最も低い強度を示し、損傷要素が急激に増大することが明らかになっている。また、AVNのモデルでは、頚部において不自然なひずみエネルギー密度の集中が観察され、このような局所的エネルギー集中が頚部骨折の原因となることを明らかにしている。

第3章では、転倒の条件下では、平均的骨密度と大腿骨強度の相関関係は弱いことが示されている。正常大腿骨においてもPersonの相関係数は0.53程度であり、立位の場合の0.71に比べかなり低いことが明らかになっている。転倒下では、骨折は主に大転子で生じており、一部の大腿骨モデルでは、大転子に加えて頚部での骨折も生じることが見出されている。病態の段階が3や4のAVNモデルでは、大転子と転子間において骨折が生じることが明らかになっている。また、同等の平均骨密度を有する3つのモデルで比較したところ、AVNモデルが最も低い強度を示すことが明らかになっている。このAVNモデルでは、大転子部において局所的なひずみエネルギー密度の集中存在し骨折の原因となることが示唆されている。

第4章では、繰り返し荷重の影響を、正常、OA、AVNそれぞれに対して3つの大腿骨モデルで検討し、平均骨強度が、2章で得られた骨強度よりも低いことが明らかにしている。たとえば、ひとつのOAモデルの繰り返し荷重下での強度は1,600Nであったが、単調に増加する荷重下では2,825Nであり、繰り返し荷重下では約57%程度にまで強度が低下することを見出している。また、ひとつのAVNモデルでは、単調増加の荷重条件での骨強度到達時の損傷要素数は1082個であったが、繰り返し荷重条件では350個であり、大幅に少ない損傷要素数で骨強度に到達することを明らかにしている。

第5章は総括であり、各解析から得られた重要事項について説明し、本研究の今後の可能性について論述している。

この論文で使われている画像

参考文献

[1] Chang A, Breeland G, Hubbard JB. Anatomy, Bony Pelvis and Lower Limb, Femur. StatPearls. StatPearls Publishing; 2021.

[2] Standring S, editor. Pelvic Girdle and Lower Limb. In: Gray’s Anatomy:The Anatomical Basis of Clinical Practice. 41st ed. Elsevier; 2016.

[3] Drake R, Vogl AW, Mitchell AWM. Gray’s Anatomy for Students. 1st ed. Churchill Livingstone; 2004.

[4] Oscar Rodrigo Ariza. A Novel Approach to Finite Element Analysis of Hip Fractures Due To Sideways Falls. University of British Columbia; 2014. https://doi.org/10.14288/1.0166898.

[5] Fox KM, Magaziner J, Hebel JR, Kenzora JE, Kashner TM. Intertrochanteric versus femoral neck hip fractures: Differential characteristics, treatment, and sequelae. Journals of Gerontology-Series A, Biological Sciences and Medical Sciences. 1999;54(12):M635-40. https://doi.org/10.1093/gerona/54.12.M635.

[6] Zuckerman JD. Hip Fracture. New England Journal of Medicine. 1996;334(23): 1519–25. https://doi.org/10.1056/NEJM199606063342307.

[7] Courtney AC, Wachtel EF, Myers ER, Hayes WC. Effects of loading rate on strength of the proximal femur. Calcified Tissue International. 1994;55(1):53–8. https://doi.org/10.1007/BF00310169.

[8] Pinilla TP, Boardman KC, Bouxsein ML, Myers ER, Hayes WC. Impact direction from a fall influences the failure load of the proximal femur as much as age-related bone loss. Calcified Tissue International. 1996;58(4):231–5. https://doi.org/ 10.1007/bf02508641.

[9] Cheng XG, Lowet G, Boonen S, Nicholson PHF, Brys P, Nijs J, Dequeker J. Assessment of the strength of proximal femur in vitro: Relationship to femoral bone mineral density and femoral geometry. Bone. 1997;20(3):213–8. https://doi.org/10.1016/S8756-3282(96)00383-3.

[10] Bouxsein ML, Szulc P, Munoz F, Thrall E, Sornay-Rendu E, Delmas PD. Contribution of trochanteric soft tissues to fall force estimates, the factor of risk, and prediction of hip fracture risk. Journal of Bone and Mineral Research. 2007;22(6):825–31. https://doi.org/10.1359/jbmr.070309.

[11] Roberts BJ, Thrall E, Muller JA, Bouxsein ML. Comparison of hip fracture risk prediction by femoral aBMD to experimentally measured factor of risk. Bone. 2010;46(3):742–6. https://doi.org/10.1016/j.bone.2009.10.020.

[12] Nawathe S, Akhlaghpour H, Bouxsein ML, Keaveny TM. Microstructural failure mechanisms in the human proximal femur for sideways fall loading. Journal of Bone and Mineral Research. 2014;29(2):507–15. https://doi.org/10.1002/ jbmr.2033.

[13] Abraham AC, Agarwalla A, Yadavalli A, McAndrew C, Liu JY, Tang SY. Multiscale Predictors of Femoral Neck in Situ Strength in Aging Women: Contributions of BMD, Cortical Porosity, Reference Point Indentation, and Nonenzymatic Glycation. Journal of Bone and Mineral Research. 2015;30(12):2207–14. https://doi.org/10.1002/jbmr.2568.

[14] Johannesdottir F, Thrall E, Muller J, Keaveny TM, Kopperdahl DL, Bouxsein ML. Comparison of non-invasive assessments of strength of the proximal femur. Bone. 2017;105:93–102. https://doi.org/10.1016/j.bone.2017.07.023.

[15] Rezaei A, Giambini H, Rossman T, Carlson KD, Yaszemski MJ, Lu L, DragomirDaescu D. Are DXA/aBMD and QCT/FEA Stiffness and Strength Estimates Sensitive to Sex and Age? Annals of Biomedical Engineering. 2017;45(12):2847– 56. https://doi.org/10.1007/s10439-017-1914-5.

[16] Keaveny TM. Biomechanical computed tomography- Noninvasive bone strength analysis using clinical computed tomography scans. Annals of the New York Academy of Sciences. 2010;1192:57–65. https://doi.org/10.1111/j.1749-6632. 2009.05348.x.

[17] Imai K, Ohnishi I, Bessho M, Nakamura K. Nonlinear finite element model predicts vertebral bone strength and fracture site. Spine. 2006;31(16):1789–94. https://doi.org/10.1097/01.brs.0000225993.57349.df.

[18] Graeff C, Chevalier Y, Charlebois M, Varga P, Pahr D, Nickelsen TN, Morlock MM, Glüer CC, Zysset PK. Improvements in vertebral body strength under teriparatide treatment assessed in vivo by finite element analysis: Results from the EUROFORS study. Journal of Bone and Mineral Research. 2009;24(10):1672–80. https://doi.org/10.1359/jbmr.090416.

[19] Osteoarthritis vs Osteoporosis : Different Diseases , Different Treatments [Internet]. [cited 2022 Jun 8]. Available from: https://www.sonoranspine.com/ article-layout/97-conditions-and-treatments/diseases-and-conditions/1342-osteoar thritis-vs-osteoporosis-different-diseases-different-treatments

[20] Summa Health - 5 Common Types of Arthritis [Internet]. [cited 2022 Jun 8]. Available from: https://www.summahealth.org/flourish/entries/2019/06/5-common -types-of-arthritis

[21] Kloppenburg M, Berenbaum F. Osteoarthritis year in review 2019: epidemiology and therapy. Osteoarthritis and Cartilage. 2020;28(3):242–8. https://doi.org/ 10.1016/j.joca.2020.01.002.

[22] Osteoarthritis Research Society International (OARSI). OA as a Serious DiseaseWhite Paper. 2016.

[23] Vestergaard P, Rejnmark L, Mosekilde L. Osteoarthritis and risk of fractures. Calcified Tissue International. 2009;84(4):249–56. https://doi.org/10.1007/s00223- 009-9224-z.

[24] Weintroub S, Papo J, Ashkenazi M, Tardiman R, Weissman SL, Salama R. Osteoarthritis of the hip and fractures of the proximal end of the femur. Acta Orthopaedica. 1982;53(2):261–4. https://doi.org/10.3109/17453678208992213.

[25] Sugano M, Hagiwara S, Nakamura J, Matsuura Y, Suzuki T, Wako Y, Miura M, Kawarai Y, Nawata K, Yoshino K, Konno K, Yoh S, Ohtori S. Comparison study of bone strength of the proximal femur with and without hip osteoarthritis by computed tomography-based finite element analysis. Journal of Biomechanics. 2020;105:109810. https://doi.org/10.1016/j.jbiomech.2020.109810.

[26] Chudyk AM, Ashe MC, Gorman E, Al Tunaiji HO, Crossley KM. Risk of hip fracture with hip or knee osteoarthritis: A systematic review. Clinical Rheumatology. 2012;31(5):749–57. https://doi.org/10.1007/s10067-012-1970-z.

[27] Maluta T, Toso G, Negri S, Samaila EM, Magnan B. Correlation between hip osteoarthritis and proximal femoral fracture site: could it be protective for intracapsular neck fractures? A retrospective study on 320 cases. Osteoporosis International. 2019;30(8):1591–6. https://doi.org/10.1007/s00198-019-05015-5.

[28] Calderazzi F, Groppi G, Ricotta A, Ceccarelli F. Does hip osteoarthritis have a protective effect against proximal femoral fractures? A retrospective study. HIP International. 2014;24(3):231–6. https://doi.org/10.5301/hipint.5000116.

[29] Robstad B, Frihagen F, Nordsletten L. The rate of hip osteoarthritis in patients with proximal femoral fractures versus hip contusion. Osteoporosis International. 2012;23(3):901–5. https://doi.org/10.1007/s00198-011-1628-8.

[30] Dahab KS. Avascular Necrosis [Internet]. Encyclopedia Britannica,. 2022 [cited 2022 Jun 22]. Available from: https://www.britannica.com/science/avascularnecrosis

[31] Mont MA, Jones LC, Hungerford DS. Nontraumatic Osteonecrosis of the Femoral Head: Ten Years Later. The Journal of Bone & Joint Surgery. 2006;88(5):117– 1132.

[32] Yoon BH, Mont MA, Koo KH, Chen CH, Cheng EY, Cui Q, Drescher W, Gangji V, Goodman SB, Ha YC, Hernigou P, Hungerford MW, Iorio R, Jo WL, Jones LC, Khanduja V, Kim HKW, Kim SY, Kim TY, Lee HY, Lee MS, Lee YK, Lee YJ, Nakamura J, Parvizi J, Sakai T, Sugano N, Takao M, Yamamoto T, Zhao DW. The 2019 Revised Version of Association Research Circulation Osseous Staging System of Osteonecrosis of the Femoral Head. Journal of Arthroplasty. 2020;35(4):933–40. https://doi.org/10.1016/j.arth.2019.11.029.

[33] George G, Lane JM. Osteonecrosis of the Femoral Head. Journal of the American Academy of Orthopaedic Surgeons Global research & reviews. 2022;6(5):e21.00176. https://doi.org/10.1302/0301-620x.95b11.32644.

[34] Mont MA, Cherian JJ, Sierra RJ, Jones LC, Lieberman JR. Nontraumatic osteonecrosis of the femoral head: Where do we stand today? A ten-year update. Journal of Bone and Joint Surgery-American Volume. 2014;97(19):1604–27. https://doi.org/10.2106/JBJS.O.00071.

[35] Ikeuchi K, Hasegawa Y, Seki T, Takegami Y, Amano T, Ishiguro N. Epidemiology of nontraumatic osteonecrosis of the femoral head in Japan. Modern Rheumatology. 2015;25(2):278–81. https://doi.org/10.3109/14397595.2014.932 038.

[36] Kang JS, Moon KH, Kwon DG, Shin BK, Woo MS. The natural history of asymptomatic osteonecrosis of the femoral head. International orthopaedics. 2013;37:379–84. https://doi.org/10.1007/s00264-013-1775-y.

[37] Chan VWK, Chan PK, Chiu KY, Yan CH, Ng FY. Why do Hong Kong patients need total hip arthroplasty? An analysis of 512 hips from 1998 to 2010. Hong Kong Medical Journal. 2016;22(1):11–5. https://doi.org/10.12809/hkmj144483.

[38] Lai YS, Wei HW, Cheng CK. Incidence of hip replacement among national health insurance enrollees in Taiwan. Journal of Orthopaedic Surgery and Research. 2008;3(42):1–10. https://doi.org/10.1186/1749-799X-3-42.

[39] Lubega N, Mkandawire NC, Sibande GC, Norrish AR, Harrison WJ. Joint replacement in Malawi: Establishment of a national joint registry. Journal of Bone and Joint Surgery-Series B. 2009;91(3):341–3. https://doi.org/10.1302/0301- 620X.91B3.21706.

[40] Mankin HJ. Nontraumatic Necrosis of Bone (Osteonecrosis). New England Journal of Medicine. 1992;326(22):1473–9. https://doi.org/10.1056/nejm 199205283262206.

[41] Ancelin D, Reina N, Cavaignac E, Delclaux S, Chiron P. Total hip arthroplasty survival in femoral head avascular necrosis versus primary hip osteoarthritis: Casecontrol study with a mean 10-year follow-up after anatomical cementless metalon-metal 28-mm replacement. Orthopaedics and Traumatology: Surgery and Research. 2016;102(8):1029–34. https://doi.org/10.1016/j.otsr.2016.08.021.

[42] Conroy JL, Whitehouse SL, Graves SE, Pratt NL, Ryan P, Crawford RW. Risk Factors for Revision for Early Dislocation in Total Hip Arthroplasty. Journal of Arthroplasty. 2008;23(6):867–72. https://doi.org/10.1016/j.arth.2007.07.009.

[43] Singh JA, Chen J, Inacio MCS, Namba RS, Paxton EW. An underlying diagnosis of osteonecrosis of bone is associated with worse outcomes than osteoarthritis after total hip arthroplasty. BMC Musculoskeletal Disorders. 2017;18(8):1–9. https://doi.org/10.1186/s12891-016-1385-0.

[44] Bahk JH, Jo WL, Kim SC, Kwon SY, Lim YW. Lateral pillar is the key in supporting pre-collapse osteonecrosis of the femoral head: a finite element model analysis of propensity-score matched cohorts. Journal of Orthopaedic Surgery and Research. 2021;16(728):1–6. https://doi.org/10.1186/s13018-021-02875-8.

[45] Huang L, Chen F, Wang S, Wei Y, Huang G, Chen J, Shi J, Naidu RK, Xia J, Tao TH. Three-dimensional finite element analysis of silk protein rod implantation after core decompression for osteonecrosis of the femoral head. BMC Musculoskeletal Disorders. 2019;20(544):1–10. https://doi.org/10.1186/s12891- 019-2914-4.

[46] MECHANICAL FINDER: Quantitative CT-based Finite Element Analysis Software [Internet]. 計算力学研究センター. [cited 2022 May 31]. Available from: https://mechanical-finder.com/

[47] MECHANICAL FINDER: the functions required for Quantitative CT-based Finite Element Analysis [Internet]. 計算力学研究センター. [cited 2022 May 31]. Available from: https://mechanical-finder.com/functions/

[48] Keyak JH, Skinner HB, Fleming JA. Effect of force direction on femoral fracture load for two types of loading conditions. Journal of Orthopaedic Research. 2001;19(4):539–44. https://doi.org/10.1016/S0736-0266(00)00046-2.

[49] Wu S, Todo M, Umebayashi D, Yamamoto Y. Risk assessment of vertebral compressive fracture using bone mass index and strength predicted by computed tomography image based finite element analysis. Clinical Biomechanics (Bristol, Avon). 2021;85:105365. https://doi.org/10.1016/j.clinbiomech.2021.105365.

[50] Htun ZL, Todo M. Computational Study on Femoral Fracture using CT-Image based Finite Element Method. Proceedings of International Exchange and Innovation Conference on Engineering & Sciences (IEICES). 2021;7:58–63. https://doi.org/10.5109/4738567.

[51] Miura M, Nakamura J, Matsuura Y, Wako Y, Suzuki T, Hagiwara S, Orita S, Inage K, Kawarai Y, Sugano M, Nawata K, Ohtori S. Prediction of fracture load and stiffness of the proximal femur by CT-based specimen specific finite element analysis: Cadaveric validation study. BMC Musculoskeletal Disorders. 2017;18(536):1–8. https://doi.org/10.1186/s12891-017-1898-1.

[52] Nishi K, Endo D, Hasegawa T, Moriuchi T, Ogami-Takamura K, Saiki K, Murai K, Higashi T, Tsurumoto T, Manabe Y, Oyamada J. Similarities and Differences in Bone Mineral Density between Multiple Sites in the Same Individual: An Elderly Cadaveric Study. Du J, editor. BioMed Research International. 2022;2022(Article ID 6094663):1–10. https://doi.org/10.1155/2022/6094663.

[53] Bessho M, Ohnishi I, Matsuyama J, Matsumoto T, Imai K, Nakamura K. Prediction of strength and strain of the proximal femur by a CT-based finite element method. Journal of Biomechanics. 2007;40(8):1745–53. https://doi.org/ 10.1016/j.jbiomech.2006.08.003.

[54] Bessho M, Ohnishi I, Matsumoto T, Ohashi S, Matsuyama J, Tobita K, Kaneko M, Nakamura K. Prediction of proximal femur strength using a CT-based nonlinear finite element method: Differences in predicted fracture load and site with changing load and boundary conditions. Bone. 2009;45(2):226–31. https://doi.org/ 10.1016/j.bone.2009.04.241.

[55] Engelke K, van Rietbergen B, Zysset P. FEA to Measure Bone Strength: A Review. Clinical Reviews in Bone and Mineral Metabolism. 2016;14:26–37. https://doi.org/10.1007/s12018-015-9201-1.

[56] Keaveny TM, Kopperdahl D, Melton L, Hoffmann P, Amin S, Riggs B, Khosla S. Age-Dependence of Femoral Strength in White Women and Men. Journal of Bone and Mineral Research. 2009;25(5):994–1001. https://doi.org/10.1359/jbmr.091033.

[57] Keyak JH, Rossi SA, Jones KA, Skinner HB. Prediction of femoral fracture load using automated finite element modeling. Journal of Biomechanics. 1997;31(2):125–33. https://doi.org/10.1016/S0021-9290(97)00123-1.

[58] Roberts BJ, Kopperdahl D, Thrall E, Muller JA, Keaveny TM, Bouxsein ML. Prediction of femoral strength in a sideways fall configuration using QCT-based finite element analysis. Bone. 2009;44(Supplement 1):S72. https://doi.org/ 10.1016/j.bone.2009.01.158.

[59] Dall’Ara E, Luisier B, Schmidt R, Kainberger F, Zysset P, Pahr D. A nonlinear QCT-based finite element model validation study for the human femur tested in two configurations in vitro. Bone. 2013;52(1):27–38. https://doi.org/ 10.1016/j.bone.2012.09.006.

[60] Dragomir-Daescu D, Salas C, Uthamaraj S, Rossman T. Quantitative computed tomography-based finite element analysis predictions of femoral strength and stiffness depend on computed tomography settings. Journal of Biomechanics. 2015;48(1):153–61. https://doi.org/10.1016/j.jbiomech.2014.09.016.

[61] Crolet JM, Aoubiza B, Meunier A. Compact bone: Numerical simulation of mechanical characteristics. Journal of Biomechanics. 1993;26(6):677–87. https://doi.org/10.1016/0021-9290(93)90031-9.

[62] Hollister SJ, Kikuchi N. Homogenization theory and digital imaging: A basis for studying the mechanics and design principles of bone tissue. Biotechnology and Bioengineering. 1994;43(7):586–96. https://doi.org/10.1002/bit.260430708.

[63] Zysset PK, Curnier A. A 3D damage model for trabecular bone based on fabric tensors. Journal of Biomechanics. 1996;29(12):1549–58. https://doi.org/10.1016/ S0021-9290(96)80006-6.

[64] Keyak JH, Lee IY, Skinner HB. Correlations between orthogonal mechanical properties and density of trabecular bone: Use of different densitometric measures. Journal of Biomedical Materials Research. 1994;28(11):1329–36. https://doi.org/ 10.1002/jbm.820281111.

[65] Keller TS. Predicting the compressive mechanical behavior of bone. Journal of Biomechanics. 1994;27(9):1159–68. https://doi.org/10.1016/0021-9290(94)90056- 6.

[66] Koivumäki JEM, Thevenot J, Pulkkinen P, Kuhn V, Link TM, Eckstein F, Jämsä T. Ct-based finite element models can be used to estimate experimentally measured failure loads in the proximal femur. Bone. 2012;50(4):824–9. https://doi.org/10.1016/j.bone.2012.01.012.

[67] Crawford RP, Cann CE, Keaveny TM. Finite element models predict in vitro vertebral body compressive strength better than quantitative computed tomography. Bone. 2003;33(4):744–50. https://doi.org/10.1016/S8756-3282(03) 00210-2.

[68] Martin H, Werner J, Andresen R, Schober HC, Schmitz KP. Noninvasive Assessment of Stiffness and Failure Load of Human Vertebrae from CT-Data. Biomedical Technique (Berl). 1998;43(4):82–8. https://doi.org/10.1515/bmte. 1998.43.4.82.

[69] Dall’Ara E, Schmidt R, Pahr D, Varga P, Chevalier Y, Patsch J, Kainberger F, Zysset P. A nonlinear finite element model validation study based on a novel experimental technique for inducing anterior wedge-shape fractures in human vertebral bodies in vitro. Journal of Biomechanics. 2010;43(12):2374–80. https://doi.org/10.1016/j.jbiomech.2010.04.023.

[70] Buckley JM, Loo K, Motherway J. Comparison of quantitative computed tomography-based measures in predicting vertebral compressive strength. Bone. 2007;40(3):767–74. https://doi.org/10.1016/j.bone.2006.10.025.

[71] Zysset PK, Dall’Ara E, Varga P, Pahr DH. Finite element analysis for prediction of bone strength. BoneKEy Reports. 2013;2:386. https://doi.org/10.1038/bonekey. 2013.120.

[72] National Institute of Population and Social Security Research 2017 [Internet]. Population projections for Japan (January 2017). [cited 2022 Jun 8]. Available from: https://www.ipss.go.jp/index-e.asp

[73] Lang TF, Keyak JH, Heitz MW, Augat P, Lu Y, Mathur A, Genant HK. Volumetric quantitative computed tomography of the proximal femur: Precision and relation to bone strength. Bone. 1997;21(1):101–8. https://doi.org/10.1016/ S8756-3282(97)00072-0.

[74] Ulrich D, van Rietbergen B, Weinans H, Rüegsegger P. Finite element analysis of trabecular bone structure: A comparison of image-based meshing techniques. Journal of Biomechanics. 1998;31(12):1187–92. https://doi.org/10.1016/S0021- 9290(98)00118-3.

[75] Dalstra M, Huiskes R, van Erning L. Development and validation of a threedimensional finite element model of the pelvic bone. Journal of Biomechanical Engineering. 1995;117(3):272–8. https://doi.org/10.1115/1.2794181.

[76] Hirata Y, Inaba Y, Kobayashi N, Ike H, Yukizawa Y, Fujimaki H, Tezuka T, Tateishi U, Inoue T, Saito T. Correlation between mechanical stress by finite element analysis and 18f-fluoride pet uptake in hip osteoarthritis patients. Journal of Orthopaedic Research. 2015;33(1):78–83. https://doi.org/10.1002/jor.22717.

[77] Miyamura S, Oka K, Abe S, Shigi A, Tanaka H, Sugamoto K, Yoshikawa H, Murase T. Altered bone density and stress distribution patterns in long-standing cubitus varus deformity and their effect during early osteoarthritis of the elbow. Osteoarthritis and Cartilage. 2018;26(1):72–83. https://doi.org/10.1016/j.joca. 2017.10.004.

[78] Kitamura K, Fujii M, Utsunomiya T, Iwamoto M, Ikemura S, Hamai S, Motomura G, Todo M, Nakashima Y. Effect of sagittal pelvic tilt on joint stress distribution in hip dysplasia: A finite element analysis. Clinical Biomechanics. 2020;74:34–41. https://doi.org/10.1016/j.clinbiomech.2020.02.011.

[79] Abdullah AH, Todo M, Nakashima Y. Prediction of damage formation in hip arthroplasties by finite element analysis using computed tomography images. Medical Engineering and Physics. 2017;44:8–15. https://doi.org/10.1016/ j.medengphy.2017.03.006.

[80] Sato T, Yonezawa I, Todo M, Takano H, Kaneko K. Biomechanical Effects of Implant Materials on Posterior Lumbar Interbody Fusion: Comparison of Polyetheretherketone and Titanium Spacers Using Finite Element Analysis and Considering Bone Density. Journal of Biomedical Science and Engineering. 2018;11(04):45–59. https://doi.org/10.4236/jbise.2018.114005.

[81] Oba M, Kobayashi N, Inaba Y, Choe H, Ike H, Kubota S, Saito T. Mechanical Strength of the Proximal Femur After Arthroscopic Osteochondroplasty for Femoroacetabular Impingement: Finite Element Analysis and 3-Dimensional Image Analysis. Arthroscopy - Journal of Arthroscopic and Related Surgery. 2018;34(8):2377–86. https://doi.org/10.1016/j.arthro.2018.03.036.

[82] Murphey MD, Roberts CC, Bencardino JT, Appel M, Arnold E, Chang EY, Dempsey ME, Fox MG, Fries IB, Greenspan BS, Hochman MG, Jacobson JA, Mintz DN, Newman JS, Rosenberg ZS, Rubin DA, Small KM, Weissman BN. ACR Appropriateness Criteria Osteonecrosis of the Hip. Journal of the American College of Radiology. 2016;13(2):147–55. https://doi.org/10.1016/ j.jacr.2015.10.033.

[83] Grisso JA, Kelsey JL, Strom BL, Ghiu GY, Maislin G, O’Brien LA, Hoffman S, Kaplan F. Risk Factors for Falls as a Cause of Hip Fracture in Women. New England Journal of Medicine. 1991;324(19):1326–31. https://doi.org/10.1056/nejm 199105093241905.

[84] Nevitt MC, Cummings SR, Kidd S, Black D. Risk Factors for Recurrent Nonsyncopal Falls: A Prospective Study. JAMA: The Journal of the American Medical Association. 1989;261(18):2663–8. https://doi.org/10.1001/jama.1989. 03420180087036.

[85] Abdullah AH, Todo M, Nakashima Y, Iwamoto Y. Risk of Femoral Bone Fractures in Hip Arthroplasties during Sideway Falls. International Journal of Applied Physics and Mathematics. 2014;4(4):286–9. https://doi.org/10.7763/ ijapm.2014.v4.300.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る