リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「定量的CTベース有限要素解析の骨折治療への応用」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

定量的CTベース有限要素解析の骨折治療への応用

三又, 秀行 MIMATA, Hideyuki ミマタ, ヒデユキ 九州大学

2022.09.22

概要

骨折の多くは保存的治療が選択されるが、大腿骨のように荷重を支える必要のある骨では、機能障害を防いだり骨片を安定させ骨癒合を促したりするためにインプラントを用いて固定が行われる。しかし固定後も骨癒合が得られずに偽関節に陥る症例も散見される。大腿骨骨幹部骨折に対しては髄内釘挿入術が一般的に行われ、良好な臨床成績が得られている一方で、偽関節症例も3.1-12.5%程度とされている。力学的な刺激の多い大腿骨骨幹部骨折では、生物活性はあるものの力学的不安定性によって生じる肥厚性偽関節症が見られる。その要因としてはスクリュー折損、不適切なdynamization、リーミングなどが挙げられているが、力学的評価方法は確立されておらず、骨癒合の評価方法、髄内釘抜釘に関しても、レントゲン画像やCT画像、臨床症状を参考に医師の主観的判断に頼らざるを得ないのが現状である。また偽関節になるとより高い固定力を得るために髄内釘を交換したり、プレートを追加したりと手術が行われるが、その際も骨癒合への影響が大きいと考えられる力学的な検討はなされていない。

本論文では大腿骨骨幹部骨折受傷後、髄内釘挿入術を施行した症例の術後6、12、15ヶ月のCTデータより定量的CTベース有限要素解析を行うことで、骨癒合状態や骨折部の不安定性、さらには偽関節手術法を定量評価できないか検討を行っている。

第1章では研究背景と目的について記述している。本論文で対象とした大腿骨骨幹部骨折を中心に、固定法、骨癒合過程、偽関節、偽関節手術について、またそれらの力学的な重要性について概説している。これらの診断は画像所見など主観的判断に基づいているのが現状であり、本研究は、定量的CTベース有限要素解析によってそれらを定量評価することを目的としている。

第2章では本研究で用いる有限要素モデル、手法について検証を行っている。解析モデルは骨、仮骨はCTデータから作成し、インプラントデータはモデリングソフトで作成した形状データを用いている。解析メッシュについては、メッシュコンバージェンステストを行い、各メッシュサイズを決定している。骨にはMatsuyamaらの式、仮骨にはSuzukiらの式を用いて不均質な材料特性を設定している。材料非線形解析ではNewton-Raphson法により収束計算によって解を求めている。

第3章では大腿骨骨幹部骨折を受傷し、髄内釘挿入術を施行した症例の術後6、12、15か月のCTデータから骨、仮骨とも不均質材料としたモデルを作成し、有限要素解析を行っている。骨折部仮骨の引張破壊リスクに注目し、引張破壊リスクのある仮骨体積比を引張破壊体積率と定義し評価を行っている。引張破壊体積率は時間経過とともに内側より減少し、画像所見、臨床所見とも一致し、骨癒合状態を定量評価できる可能性を示している。偽関節手術時の術式比較など、相対評価であれば、引張破壊体積率を用いて力学的に最適な手術方法検討に応用できる。また、骨片間の動きからは、骨折部外側にて骨癒合を阻害するとされる引張力が働いていることが分かり、外側へのプレート追加が骨癒合促進に有効となる可能性を示している。

第4章では第3章で解析を行った解析モデルから、仮想的に髄内釘を抜釘し、骨強度評価、また抜釘時期決定に応用できないか検討を行っている。骨強度は時間とともに上昇し、術後15か月では健側の骨強度を超えていることが示されている。また、破壊部位も術後6、12か月では骨折部に生じていたが、術後15か月では健側同様に近位部で生じており、15か月時点で抜釘可能となることを見出している。剛性や仮骨部の応力を見ても上昇し、骨癒合と共に骨が荷重を担うようになるload-sharingへと移行していることを確認している。

第5章では第3章で用いた症例に対し、術後6か月時点で髄内釘交換とプレート追加の偽関節手術を行ったとして、解析モデルを作成し、力学的評価を行っている。引張破壊体積率や骨片の動きの評価では、髄内釘の交換では径を上げることが有効であり、長くするだけでは効果がないことを見出している。外側へプレート追加した場合は髄内釘の径を2mm上げるのと同等の効果があり、近年報告されているプレート追加の臨床成績を力学的にも裏付けることに成功している。

第6章は総括であり、各解析から得られた重要事項について説明し、本研究の臨床への応用と今後の可能性について論述している。

この論文で使われている画像

参考文献

[1] R. J. Weiss, S. M. Montgomery, Z. Al Dabbagh, and K. A. Jansson, "National data of 6409 Swedish inpatients with femoral shaft fractures: stable incidence between 1998 and 2004," (in eng), Injury, vol. 40, no. 3, pp. 304-8, Mar 2009, doi: 10.1016/j.injury.2008.07.017.

[2] R. Vaishya, A. K. Agarwal, N. Gupta, and V. Vijay, "Plate augmentation with retention of intramedullary nail is effective for resistant femoral shaft non-union," (in eng), J Orthop, vol. 13, no. 4, pp. 242-5, Dec 2016, doi: 10.1016/j.jor.2016.06.003.

[3] T. J. Arneson, L. J. Melton, D. G. Lewallen, and W. M. O'Fallon, "Epidemiology of diaphyseal and distal femoral fractures in Rochester, Minnesota, 1965-1984," (in eng), Clin Orthop Relat Res, no. 234, pp. 188-94, Sep 1988.

[4] C. M. Court-Brown, S. Rimmer, U. Prakash, and M. M. McQueen, "The epidemiology of open long bone fractures," (in eng), Injury, vol. 29, no. 7, pp. 529- 34, Sep 1998, doi: 10.1016/s0020-1383(98)00125-9.

[5] M. V. Neumann, N. P. Sü dkamp, and P. C. Strohm, "Management of femoral shaft fractures," (in eng), Acta Chir Orthop Traumatol Cech, vol. 82, no. 1, pp. 22-32, 2015.

[6] M. S. Taljanovic, M. D. Jones, J. T. Ruth, J. B. Benjamin, J. E. Sheppard, and T. B. Hunter, "Fracture fixation," (in eng), Radiographics, vol. 23, no. 6, pp. 1569-90, 2003 Nov-Dec 2003, doi: 10.1148/rg.236035159.

[7] H. C. Pape et al., "Impact of the method of initial stabilization for femoral shaft fractures in patients with multiple injuries at risk for complications (borderline patients)," (in eng), Ann Surg, vol. 246, no. 3, pp. 491-9; discussion 499- 501, Sep 2007, doi: 10.1097/SLA.0b013e3181485750.

[8] C. B. Jones and J. B. Walker, "Diagnosis and Management of Ipsilateral Femoral Neck and Shaft Fractures," (in eng), J Am Acad Orthop Surg, vol. 26, no. 21, pp. e448-e454, Nov 01 2018, doi: 10.5435/JAAOS-D-17-00497.

[9] D. J. Hak, C. Mauffrey, M. Hake, E. M. Hammerberg, and P. F. Stahel, "Ipsilateral femoral neck and shaft fractures: current diagnostic and treatment strategies," (in eng), Orthopedics, vol. 38, no. 4, pp. 247-51, Apr 2015, doi: 10.3928/01477447-20150402-05.

[10] P. Tornetta and D. Tiburzi, "Antegrade or retrograde reamed femoral nailing. A prospective, randomised trial," (in eng), J Bone Joint Surg Br, vol. 82, no. 5, pp. 652-4, Jul 2000, doi: 10.1302/0301-620x.82b5.10038.

[11] N. J. Nahm and H. A. Vallier, "Timing of definitive treatment of femoral shaft fractures in patients with multiple injuries: a systematic review of randomized and nonrandomized trials," (in eng), J Trauma Acute Care Surg, vol. 73, no. 5, pp. 1046-63, Nov 2012, doi: 10.1097/TA.0b013e3182701ded.

[12] W. M. Ricci, C. Bellabarba, B. Evanoff, D. Herscovici, T. DiPasquale, and R. Sanders, "Retrograde versus antegrade nailing of femoral shaft fractures," (in eng), J Orthop Trauma, vol. 15, no. 3, pp. 161-9, 2001 Mar-Apr 2001, doi: 10.1097/00005131-200103000-00003.

[13] H. Schell, G. N. Duda, A. Peters, S. Tsitsilonis, K. A. Johnson, and K. Schmidt-Bleek, "The haematoma and its role in bone healing," (in eng), J Exp Orthop, vol. 4, no. 1, p. 5, Dec 2017, doi: 10.1186/s40634-017-0079-3.

[14] K. D. Hankenson, G. Zimmerman, and R. Marcucio, "Biological perspectives of delayed fracture healing," (in eng), Injury, vol. 45 Suppl 2, pp. S8- S15, Jun 2014, doi: 10.1016/j.injury.2014.04.003.

[15] R. Marsell and T. A. Einhorn, "The biology of fracture healing," (in eng), Injury, vol. 42, no. 6, pp. 551-5, Jun 2011, doi: 10.1016/j.injury.2011.03.031.

[16] L. A. Taitsman, J. R. Lynch, J. Agel, D. P. Barei, and S. E. Nork, "Risk factors for femoral nonunion after femoral shaft fracture," (in eng), J Trauma, vol. 67, no. 6, pp. 1389-92, Dec 2009, doi: 10.1097/TA.0b013e318182afd0.

[17] C. O. T. Society, "Nonunion following intramedullary nailing of the femur with and without reaming. Results of a multicenter randomized clinical trial," (in eng), J Bone Joint Surg Am, vol. 85, no. 11, pp. 2093-6, Nov 2003.

[18] L. Claes, K. Eckert-Hü bner, and P. Augat, "The fracture gap size influences the local vascularization and tissue differentiation in callus healing," (in eng), Langenbecks Arch Surg, vol. 388, no. 5, pp. 316-22, Oct 2003, doi: 10.1007/s00423- 003-0396-0.

[19] Y. Watanabe, N. Takenaka, M. Kobayashi, and T. Matsushita, "Infraisthmal fracture is a risk factor for nonunion after femoral nailing: a case-control study," (in eng), J Orthop Sci, vol. 18, no. 1, pp. 76-80, Jan 2013, doi: 10.1007/s00776-012-0316-7.

[20] G. M. Calori, W. Albisetti, A. Agus, S. Iori, and L. Tagliabue, "Risk factors contributing to fracture non-unions," (in eng), Injury, vol. 38 Suppl 2, pp. S11-8, May 2007, doi: 10.1016/s0020-1383(07)80004-0.

[21] M. R. Brinker, D. P. O'Connor, Y. T. Monla, and T. P. Earthman, "Metabolic and endocrine abnormalities in patients with nonunions," (in eng), J Orthop Trauma, vol. 21, no. 8, pp. 557-70, Sep 2007, doi: 10.1097/BOT.0b013e31814d4dc6.

[22] R. Zura, S. Mehta, G. J. Della Rocca, and R. G. Steen, "Biological Risk Factors for Nonunion of Bone Fracture," (in eng), JBJS Rev, vol. 4, no. 1, 01 05 2016, doi: 10.2106/JBJS.RVW.O.00008.

[23] M. H. Malik, P. Harwood, P. Diggle, and S. A. Khan, "Factors affecting rates of infection and nonunion in intramedullary nailing," (in eng), J Bone Joint Surg Br, vol. 86, no. 4, pp. 556-60, May 2004.

[24] B. J. Harley, L. A. Beaupre, C. A. Jones, S. K. Dulai, and D. W. Weber, "The effect of time to definitive treatment on the rate of nonunion and infection in open fractures," (in eng), J Orthop Trauma, vol. 16, no. 7, pp. 484-90, Aug 2002, doi: 10.1097/00005131-200208000-00006.

[25] J. A. Scolaro, M. L. Schenker, S. Yannascoli, K. Baldwin, S. Mehta, and J. Ahn, "Cigarette smoking increases complications following fracture: a systematic review," (in eng), J Bone Joint Surg Am, vol. 96, no. 8, pp. 674-81, Apr 16 2014, doi: 10.2106/JBJS.M.00081.

[26] A. Moghaddam, G. Zimmermann, K. Hammer, T. Bruckner, P. A. Grü tzner, and J. von Recum, "Cigarette smoking influences the clinical and occupational outcome of patients with tibial shaft fractures," (in eng), Injury, vol. 42, no. 12, pp. 1435-42, Dec 2011, doi: 10.1016/j.injury.2011.05.011.

[27] H. Nåsell, J. Adami, E. Samnegård, H. Tønnesen, and S. Ponzer, "Effect of smoking cessation intervention on results of acute fracture surgery: a randomized controlled trial," (in eng), J Bone Joint Surg Am, vol. 92, no. 6, pp. 1335-42, Jun 2010, doi: 10.2106/JBJS.I.00627.

[28] G. PV and K. NK, "Non-unions," in Trauma and Orthopaedic Classifications, L. N, K. N, and G. P Eds. London: Springer, 2014, pp. 529–532.

[29] J. D. Thomas and J. L. Kehoe, "Bone Nonunion," in StatPearls [Internet]: StatPearls Publishing LLC., 2022.

[30] A. Naimark, K. Miller, D. Segal, and J. Kossoff, "Nonunion," (in eng), Skeletal Radiol, vol. 6, no. 1, pp. 21-5, 1981, doi: 10.1007/BF00347342.

[31] R. Leighton, J. T. Watson, P. Giannoudis, C. Papakostidis, A. Harrison, and R. G. Steen, "Healing of fracture nonunions treated with low-intensity pulsed ultrasound (LIPUS): A systematic review and meta-analysis," (in eng), Injury, vol. 48, no. 7, pp. 1339-1347, Jul 2017, doi: 10.1016/j.injury.2017.05.016.

[32] A. Harrison and V. Alt, "Low-intensity pulsed ultrasound (LIPUS) for stimulation of bone healing - A narrative review," (in eng), Injury, vol. 52 Suppl 2, pp. S91-S96, Jun 2021, doi: 10.1016/j.injury.2021.05.002.

[33] H. M. Alkhawashki, "Shock wave therapy of fracture nonunion," (in eng), Injury, vol. 46, no. 11, pp. 2248-52, Nov 2015, doi: 10.1016/j.injury.2015.06.035.

[34] A. Willems, O. P. van der Jagt, and D. E. Meuffels, "Extracorporeal Shock Wave Treatment for Delayed Union and Nonunion Fractures: A Systematic Review," (in eng), J Orthop Trauma, vol. 33, no. 2, pp. 97-103, Feb 2019, doi: 10.1097/BOT.0000000000001361.

[35] C. C. Wu and C. H. Shih, "A small effect of weight bearing in promoting fracture healing," (in eng), Arch Orthop Trauma Surg, vol. 112, no. 1, pp. 28-32, 1992, doi: 10.1007/BF00431040.

[36] H. Yokota and S. M. Tanaka, "Osteogenic potentials with joint-loading modality," (in eng), J Bone Miner Metab, vol. 23, no. 4, pp. 302-8, 2005, doi: 10.1007/s00774-005-0603-x.

[37] H. K. Pihlajamäki, S. T. Salminen, and O. M. Böstman, "The treatment of nonunions following intramedullary nailing of femoral shaft fractures," (in eng), J Orthop Trauma, vol. 16, no. 6, pp. 394-402, Jul 2002, doi: 10.1097/00005131- 200207000-00005.

[38] C. C. Wu, "The effect of dynamization on slowing the healing of femur shaft fractures after interlocking nailing," (in eng), J Trauma, vol. 43, no. 2, pp. 263- 7, Aug 1997, doi: 10.1097/00005373-199708000-00010.

[39] D. J. Hak, S. S. Lee, and J. A. Goulet, "Success of exchange reamed intramedullary nailing for femoral shaft nonunion or delayed union," (in eng), J Orthop Trauma, vol. 14, no. 3, pp. 178-82, 2000 Mar-Apr 2000, doi: 10.1097/00005131-200003000-00005.

[40] J. E. Shroeder, R. Mosheiff, A. Khoury, M. Liebergall, and Y. A. Weil, "The outcome of closed, intramedullary exchange nailing with reamed insertion in the treatment of femoral shaft nonunions," (in eng), J Orthop Trauma, vol. 23, no. 9, pp. 653-7, Oct 2009, doi: 10.1097/BOT.0b013e3181a2a337.

[41] M. K. Sen and T. Miclau, "Autologous iliac crest bone graft: should it still be the gold standard for treating nonunions?," (in eng), Injury, vol. 38 Suppl 1, pp. S75-80, Mar 2007, doi: 10.1016/j.injury.2007.02.012.

[42] P. Megas and M. Panagiotis, "Classification of non-union," (in eng), Injury, vol. 36 Suppl 4, pp. S30-7, Nov 2005, doi: 10.1016/j.injury.2005.10.008.

[43] S. W. Ueng, E. K. Chao, S. S. Lee, and C. H. Shih, "Augmentative plate fixation for the management of femoral nonunion after intramedullary nailing," (in eng), J Trauma, vol. 43, no. 4, pp. 640-4, Oct 1997, doi: 10.1097/00005373- 199710000-00013.

[44] Z. Wang, C. Liu, Q. Zhou, and J. Liu, "Effectiveness of exchange nailing and augmentation plating for femoral shaft nonunion after nailing," (in eng), Int Orthop, vol. 38, no. 11, pp. 2343-7, Nov 2014, doi: 10.1007/s00264-014-2456-1.

[45] A. Krishnan, C. Pamecha, and J. J. Patwa, "Modified Ilizarov technique for infected nonunion of the femur: the principle of distraction-compression osteogenesis," (in eng), J Orthop Surg (Hong Kong), vol. 14, no. 3, pp. 265-72, Dec 2006, doi: 10.1177/230949900601400307.

[46] A. Saridis, E. Panagiotopoulos, M. Tyllianakis, C. Matzaroglou, N. Vandoros, and E. Lambiris, "The use of the Ilizarov method as a salvage procedure in infected nonunion of the distal femur with bone loss," (in eng), J Bone Joint Surg Br, vol. 88, no. 2, pp. 232-7, Feb 2006, doi: 10.1302/0301-620X.88B2.16976.

[47] S. Patil and R. Montgomery, "Management of complex tibial and femoral nonunion using the Ilizarov technique, and its cost implications," (in eng), J Bone Joint Surg Br, vol. 88, no. 7, pp. 928-32, Jul 2006, doi: 10.1302/0301- 620X.88B7.17639.

[48] R. E. Koso, C. Terhoeve, R. G. Steen, and R. Zura, "Healing, nonunion, and re-operation after internal fixation of diaphyseal and distal femoral fractures: a systematic review and meta-analysis," (in eng), Int Orthop, vol. 42, no. 11, pp. 2675- 2683, 11 2018, doi: 10.1007/s00264-018-3864-4.

[49] W. J. Metsemakers, N. Roels, A. Belmans, P. Reynders, and S. Nijs, "Risk factors for nonunion after intramedullary nailing of femoral shaft fractures: Remaining controversies," (in eng), Injury, vol. 46, no. 8, pp. 1601-7, Aug 2015, doi: 10.1016/j.injury.2015.05.007.

[50] H. Burç, T. Atay, D. Demirci, Y. B. Baykal, V. Kirdemir, and H. Yorgancigil, "The Intramedullary Nailing of Adult Femoral Shaft Fracture by the Way of Open Reduction is a Disadvantage or Not?," (in eng), Indian J Surg, vol. 77, no. Suppl 2, pp. 583-8, Dec 2015, doi: 10.1007/s12262-013-0931-3.

[51] G. R. Ortega and B. P. Cunningham, "Femoral Shaft Nonunions," in Nonunions: Diagnosis, Evaluation and Management, A. Agarwal Ed. Boston, MA: Springer US, 2018, pp. 227-242.

[52] S. M. Perren, "Physical and biological aspects of fracture healing with special reference to internal fixation," (in eng), Clin Orthop Relat Res, no. 138, pp. 175-96, 1979 Jan-Feb 1979.

[53] J. Park and K. H. Yang, "Indications and outcomes of augmentation plating with decortication and autogenous bone grafting for femoral shaft nonunions," (in eng), Injury, vol. 44, no. 12, pp. 1820-5, Dec 2013, doi: 10.1016/j.injury.2013.02.021.

[54] H. Luo, Y. Su, L. Ding, H. Xiao, M. Wu, and F. Xue, "Exchange nailing versus augmentative plating in the treatment of femoral shaft nonunion after intramedullary nailing: a meta-analysis," (in eng), EFORT Open Rev, vol. 4, no. 8, pp. 513-518, Aug 2019, doi: 10.1302/2058-5241.4.180054.

[55] B. Nadkarni, S. Srivastav, V. Mittal, and S. Agarwal, "Use of locking compression plates for long bone nonunions without removing existing intramedullary nail: review of literature and our experience," (in eng), J Trauma, vol. 65, no. 2, pp. 482-6, Aug 2008, doi: 10.1097/TA.0b013e31817c9905.

[56] J. G. Skedros and R. A. Brand, "Biographical sketch: Georg Hermann von Meyer (1815-1892)," (in eng), Clin Orthop Relat Res, vol. 469, no. 11, pp. 3072-6, Nov 2011, doi: 10.1007/s11999-011-2040-6.

[57] W. A. Brekelmans, H. W. Poort, and T. J. Slooff, "A new method to analyse the mechanical behaviour of skeletal parts," (in eng), Acta Orthop Scand, vol. 43, no. 5, pp. 301-17, 1972, doi: 10.3109/17453677208998949.

[58] D. R. Carter and W. C. Hayes, "The compressive behavior of bone as a two-phase porous structure," (in eng), J Bone Joint Surg Am, vol. 59, no. 7, pp. 954- 62, Oct 1977.

[59] T. S. Keller, "Predicting the compressive mechanical behavior of bone," (in eng), J Biomech, vol. 27, no. 9, pp. 1159-68, Sep 1994, doi: 10.1016/0021- 9290(94)90056-6.

[60] J. H. Keyak, I. Y. Lee, and H. B. Skinner, "Correlations between orthogonal mechanical properties and density of trabecular bone: use of different densitometric measures," (in eng), J Biomed Mater Res, vol. 28, no. 11, pp. 1329-36, Nov 1994, doi: 10.1002/jbm.820281111.

[61] C. M. Les, J. H. Keyak, S. M. Stover, K. T. Taylor, and A. J. Kaneps, "Estimation of material properties in the equine metacarpus with use of quantitative computed tomography," (in eng), J Orthop Res, vol. 12, no. 6, pp. 822- 33, Nov 1994, doi: 10.1002/jor.1100120610.

[62] R. W. Goulet, S. A. Goldstein, M. J. Ciarelli, J. L. Kuhn, M. B. Brown, and L. A. Feldkamp, "The relationship between the structural and orthogonal compressive properties of trabecular bone," (in eng), J Biomech, vol. 27, no. 4, pp. 375-89, Apr 1994, doi: 10.1016/0021-9290(94)90014-0.

[63] J. Y. Rho, "An ultrasonic method for measuring the elastic properties of human tibial cortical and cancellous bone," (in eng), Ultrasonics, vol. 34, no. 8, pp. 777-83, Dec 1996, doi: 10.1016/s0041-624x(96)00078-9.

[64] S. M. Snyder and E. Schneider, "Estimation of mechanical properties of cortical bone by computed tomography," (in eng), J Orthop Res, vol. 9, no. 3, pp. 422-31, May 1991, doi: 10.1002/jor.1100090315.

[65] E. F. Morgan and T. M. Keaveny, "Dependence of yield strain of human trabecular bone on anatomic site," (in eng), J Biomech, vol. 34, no. 5, pp. 569-77, May 2001, doi: 10.1016/s0021-9290(01)00011-2.

[66] E. F. Morgan, H. H. Bayraktar, and T. M. Keaveny, "Trabecular bone modulus-density relationships depend on anatomic site," (in eng), J Biomech, vol. 36, no. 7, pp. 897-904, Jul 2003, doi: 10.1016/s0021-9290(03)00071-x.

[67] L. Duchemin et al., "Prediction of mechanical properties of cortical bone by quantitative computed tomography," (in eng), Med Eng Phys, vol. 30, no. 3, pp. 321-8, Apr 2008, doi: 10.1016/j.medengphy.2007.04.008.

[68] Y. Matsuyama et al., "New material property conversion equation for bone strength measurement for CT-based finite element modeling," Chiba medical journal, vol. 96, no. 2, pp. 41-46, 2020/04 2020, doi: info:doi/10.20776/S03035476-96E-2-P41.

[69] D. S. Barker, D. J. Netherway, J. Krishnan, and T. C. Hearn, "Validation of a finite element model of the human metacarpal," (in eng), Med Eng Phys, vol. 27, no. 2, pp. 103-13, Mar 2005, doi: 10.1016/j.medengphy.2004.10.001.

[70] E. Schileo, F. Taddei, A. Malandrino, L. Cristofolini, and M. Viceconti, "Subject-specific finite element models can accurately predict strain levels in long bones," (in eng), J Biomech, vol. 40, no. 13, pp. 2982-9, 2007, doi: 10.1016/j.jbiomech.2007.02.010.

[71] K. Imai, I. Ohnishi, M. Bessho, and K. Nakamura, "Nonlinear finite element model predicts vertebral bone strength and fracture site," (in eng), Spine (Phila Pa 1976), vol. 31, no. 16, pp. 1789-94, Jul 2006, doi: 10.1097/01.brs.0000225993.57349.df.

[72] J. M. Buckley, K. Loo, and J. Motherway, "Comparison of quantitative computed tomography-based measures in predicting vertebral compressive strength," (in eng), Bone, vol. 40, no. 3, pp. 767-74, Mar 2007, doi: 10.1016/j.bone.2006.10.025.

[73] A. Cong, J. O. Buijs, and D. Dragomir-Daescu, "In situ parameter identification of optimal density-elastic modulus relationships in subject-specific finite element models of the proximal femur," (in eng), Med Eng Phys, vol. 33, no. 2, pp. 164-73, Mar 2011, doi: 10.1016/j.medengphy.2010.09.018.

[74] D. Dragomir-Daescu et al., "Robust QCT/FEA models of proximal femur stiffness and fracture load during a sideways fall on the hip," (in eng), Ann Biomed Eng, vol. 39, no. 2, pp. 742-55, Feb 2011, doi: 10.1007/s10439-010-0196-y.

[75] N. Trabelsi and Z. Yosibash, "Patient-specific finite-element analyses of the proximal femur with orthotropic material properties validated by experiments," (in eng), J Biomech Eng, vol. 133, no. 6, p. 061001, Jun 2011, doi: 10.1115/1.4004180.

[76] J. E. Koivumäki et al., "Cortical bone finite element models in the estimation of experimentally measured failure loads in the proximal femur," (in eng), Bone, vol. 51, no. 4, pp. 737-40, Oct 2012, doi: 10.1016/j.bone.2012.06.026.

[77] J. E. Koivumäki et al., "Ct-based finite element models can be used to estimate experimentally measured failure loads in the proximal femur," (in eng), Bone, vol. 50, no. 4, pp. 824-9, Apr 2012, doi: 10.1016/j.bone.2012.01.012.

[78] M. Ruess, D. Tal, N. Trabelsi, Z. Yosibash, and E. Rank, "The finite cell method for bone simulations: verification and validation," (in eng), Biomech Model Mechanobiol, vol. 11, no. 3-4, pp. 425-37, Mar 2012, doi: 10.1007/s10237-011- 0322-2.

[79] W. B. Edwards and K. L. Troy, "Finite element prediction of surface strain and fracture strength at the distal radius," (in eng), Med Eng Phys, vol. 34, no. 3, pp. 290-8, Apr 2012, doi: 10.1016/j.medengphy.2011.07.016.

[80] W. B. Edwards, T. J. Schnitzer, and K. L. Troy, "Torsional stiffness and strength of the proximal tibia are better predicted by finite element models than DXA or QCT," (in eng), J Biomech, vol. 46, no. 10, pp. 1655-62, Jun 21 2013, doi: 10.1016/j.jbiomech.2013.04.016.

[81] S. Eberle, M. Gö ttlinger, and P. Augat, "An investigation to determine if a single validated density-elasticity relationship can be used for subject specific finite element analyses of human long bones," (in eng), Med Eng Phys, vol. 35, no. 7, pp. 875-83, Jul 2013, doi: 10.1016/j.medengphy.2012.08.022.

[82] E. Dall'Ara, D. Pahr, P. Varga, F. Kainberger, and P. Zysset, "QCT-based finite element models predict human vertebral strength in vitro significantly better than simulated DEXA," (in eng), Osteoporos Int, vol. 23, no. 2, pp. 563-72, Feb 2012, doi: 10.1007/s00198-011-1568-3.

[83] E. Dall'Ara, P. Varga, D. Pahr, and P. Zysset, "A calibration methodology of QCT BMD for human vertebral body with registered micro-CT images," (in eng), Med Phys, vol. 38, no. 5, pp. 2602-8, May 2011, doi: 10.1118/1.3582946.

[84] K. K. Nishiyama, S. Gilchrist, P. Guy, P. Cripton, and S. K. Boyd, "Proximal femur bone strength estimated by a computationally fast finite element analysis in a sideways fall configuration," (in eng), J Biomech, vol. 46, no. 7, pp. 1231-6, Apr 26 2013, doi: 10.1016/j.jbiomech.2013.02.025.

[85] R. Hambli and S. Allaoui, "A robust 3D finite element simulation of human proximal femur progressive fracture under stance load with experimental validation," (in eng), Ann Biomed Eng, vol. 41, no. 12, pp. 2515-27, Dec 2013, doi: 10.1007/s10439-013-0864-9.

[86] M. Mirzaei, M. Keshavarzian, and V. Naeini, "Analysis of strength and failure pattern of human proximal femur using quantitative computed tomography (QCT)-based finite element method," (in eng), Bone, vol. 64, pp. 108-14, Jul 2014, doi: 10.1016/j.bone.2014.04.007.

[87] B. Varghese, D. Short, R. Penmetsa, T. Goswami, and T. Hangartner, "Computed-tomography-based finite-element models of long bones can accurately capture strain response to bending and torsion," (in eng), J Biomech, vol. 44, no. 7, pp. 1374-9, Apr 29 2011, doi: 10.1016/j.jbiomech.2010.12.028.

[88] Y. Matsuura et al., "Specimen-specific nonlinear finite element modeling to predict vertebrae fracture loads after vertebroplasty," (in eng), Spine (Phila Pa 1976), vol. 39, no. 22, pp. E1291-6, Oct 15 2014, doi: 10.1097/BRS.0000000000000540.

[89] Y. Matsuura et al., "Accuracy of specimen-specific nonlinear finite element analysis for evaluation of radial diaphysis strength in cadaver material," (in eng), Comput Methods Biomech Biomed Engin, vol. 18, no. 16, pp. 1811-7, 2015, doi: 10.1080/10255842.2014.974579.

[90] S. J. Shefelbine et al., "Prediction of fracture callus mechanical properties using micro-CT images and voxel-based finite element analysis," (in eng), Bone, vol. 36, no. 3, pp. 480-8, Mar 2005, doi: 10.1016/j.bone.2004.11.007.

[91] P. L. Leong and E. F. Morgan, "Measurement of fracture callus material properties via nanoindentation," (in eng), Acta Biomater, vol. 4, no. 5, pp. 1569-75, Sep 2008, doi: 10.1016/j.actbio.2008.02.030.

[92] T. Suzuki et al., "Biomechanics of callus in the bone healing process, determined by specimen-specific finite element analysis," (in eng), Bone, vol. 132, p. 115212, 03 2020, doi: 10.1016/j.bone.2019.115212.

[93] M. Bessho, I. Ohnishi, J. Matsuyama, T. Matsumoto, K. Imai, and K. Nakamura, "Prediction of strength and strain of the proximal femur by a CT-based finite element method," (in eng), J Biomech, vol. 40, no. 8, pp. 1745-53, 2007, doi: 10.1016/j.jbiomech.2006.08.003.

[94] H. H. Bayraktar, E. F. Morgan, G. L. Niebur, G. E. Morris, E. K. Wong, and T. M. Keaveny, "Comparison of the elastic and yield properties of human femoral trabecular and cortical bone tissue," (in eng), J Biomech, vol. 37, no. 1, pp. 27-35, Jan 2004, doi: 10.1016/s0021-9290(03)00257-4.

[95] D. T. Reilly and A. H. Burstein, "The elastic and ultimate properties of compact bone tissue," (in eng), J Biomech, vol. 8, no. 6, pp. 393-405, 1975, doi: 10.1016/0021-9290(75)90075-5.

[96] T. S. Kaneko, M. R. Pejcic, J. Tehranzadeh, and J. H. Keyak, "Relationships between material properties and CT scan data of cortical bone with and without metastatic lesions," (in eng), Med Eng Phys, vol. 25, no. 6, pp. 445-54, Jul 2003, doi: 10.1016/s1350-4533(03)00030-4.

[97] D. C. Drucker and W. Prager, "Soil mechanics and plastic analysis or limit design," Quart. Appl. Math., vol. 10, pp. 157-165, 1952.

[98] H. B. Kupfer and K. H. Gerstle, "Behavior of concrete under biaxial stresses " Journal of Engeering Mechanics Division, vol. 99, no. 4, pp. 853–866, 1973, doi: https://doi.org/10.1061/JMCEA3.0001789.

[99] M. Bessho et al., "Prediction of the strength and fracture location of the femoral neck by CT-based finite-element method: a preliminary study on patients with hip fracture," (in eng), J Orthop Sci, vol. 9, no. 6, pp. 545-50, 2004, doi: 10.1007/s00776-004-0824-1.

[100] R. W. McCalden, J. A. McGeough, M. B. Barker, and C. M. Court-Brown, "Age-related changes in the tensile properties of cortical bone. The relative importance of changes in porosity, mineralization, and microstructure," (in eng), J Bone Joint Surg Am, vol. 75, no. 8, pp. 1193-205, Aug 1993, doi: 10.2106/00004623-199308000-00009.

[101] R. A. Brand, D. R. Pedersen, D. T. Davy, G. M. Kotzar, K. G. Heiple, and V. M. Goldberg, "Comparison of hip force calculations and measurements in the same patient," (in eng), J Arthroplasty, vol. 9, no. 1, pp. 45-51, Feb 1994, doi: 10.1016/0883-5403(94)90136-8.

[102] G. Bergmann et al., "Hip contact forces and gait patterns from routine activities," (in eng), J Biomech, vol. 34, no. 7, pp. 859-71, Jul 2001, doi: 10.1016/s0021-9290(01)00040-9.

[103] M. O. Heller, G. Bergmann, J. P. Kassi, L. Claes, N. P. Haas, and G. N. Duda, "Determination of muscle loading at the hip joint for use in pre-clinical testing," (in eng), J Biomech, vol. 38, no. 5, pp. 1155-63, May 2005, doi: 10.1016/j.jbiomech.2004.05.022.

[104] L. Claes, N. Meyers, J. Schü lke, S. Reitmaier, S. Klose, and A. Ignatius, "The mode of interfragmentary movement affects bone formation and revascularization after callus distraction," (in eng), PLoS One, vol. 13, no. 8, p. e0202702, 2018, doi: 10.1371/journal.pone.0202702.

[105] D. R. Epari, J. P. Kassi, H. Schell, and G. N. Duda, "Timely fracture-healing requires optimization of axial fixation stability," (in eng), J Bone Joint Surg Am, vol. 89, no. 7, pp. 1575-85, Jul 2007, doi: 10.2106/JBJS.F.00247.

[106] R. Montanini and V. Filardi, "In vitro biomechanical evaluation of antegrade femoral nailing at early and late postoperative stages," (in eng), Med Eng Phys, vol. 32, no. 8, pp. 889-97, Oct 2010, doi: 10.1016/j.medengphy.2010.06.005.

[107] P. Augat, E. Bliven, and S. Hackl, "Biomechanics of Femoral Neck Fractures and Implications for Fixation," (in eng), J Orthop Trauma, vol. 33 Suppl 1, pp. S27-S32, Jan 2019, doi: 10.1097/BOT.0000000000001365.

[108] M. Arazi, T. C. Oğü n, M. N. Oktar, R. Memik, and A. Kutlu, "Early weightbearing after statically locked reamed intramedullary nailing of comminuted femoral fractures: is it a safe procedure?," (in eng), J Trauma, vol. 50, no. 4, pp. 711- 6, Apr 2001, doi: 10.1097/00005373-200104000-00019.

[109] M. V. Paterno, M. T. Archdeacon, K. R. Ford, D. Galvin, and T. E. Hewett, "Early rehabilitation following surgical fixation of a femoral shaft fracture," (in eng), Phys Ther, vol. 86, no. 4, pp. 558-72, Apr 2006.

[110] R. J. Brumback, T. R. Toal, M. S. Murphy-Zane, V. P. Novak, and S. M. Belkoff, "Immediate weight-bearing after treatment of a comminuted fracture of the femoral shaft with a statically locked intramedullary nail," (in eng), J Bone Joint Surg Am, vol. 81, no. 11, pp. 1538-44, Nov 1999, doi: 10.2106/00004623- 199911000-00005.

[111] G. Testa et al., "Definitive Treatment of Femoral Shaft Fractures: Comparison between Anterograde Intramedullary Nailing and Monoaxial External Fixation," (in eng), J Clin Med, vol. 8, no. 8, Jul 28 2019, doi: 10.3390/jcm8081119.

[112] G. Medlock, I. M. Stevenson, and A. J. Johnstone, "Uniting the un-united: should established non-unions of femoral shaft fractures initially treated with IM nails be treated by plate augmentation instead of exchange IM nailing? A systematic review," (in eng), Strategies Trauma Limb Reconstr, vol. 13, no. 3, pp. 119-128, Nov 2018, doi: 10.1007/s11751-018-0323-0.

[113] G. Reith et al., "Metal implant removal: benefits and drawbacks--a patient survey," (in eng), BMC Surg, vol. 15, p. 96, Aug 07 2015, doi: 10.1186/s12893-015- 0081-6.

[114] C. G. Finkemeier and M. W. Chapman, "Treatment of femoral diaphyseal nonunions," (in eng), Clin Orthop Relat Res, no. 398, pp. 223-34, May 2002, doi: 10.1097/00003086-200205000-00031.

[115] M. Rupp, C. Biehl, M. Budak, U. Thormann, C. Heiss, and V. Alt, "Diaphyseal long bone nonunions - types, aetiology, economics, and treatment recommendations," (in eng), Int Orthop, vol. 42, no. 2, pp. 247-258, 02 2018, doi: 10.1007/s00264-017-3734-5.

[116] I. D. Gelalis et al., "Diagnostic and treatment modalities in nonunions of the femoral shaft: a review," (in eng), Injury, vol. 43, no. 7, pp. 980-8, Jul 2012, doi: 10.1016/j.injury.2011.06.030.

[117] K. D. Gao et al., "Management of femoral diaphyseal nonunion after nailing with augmentative locked plating and bone graft," (in eng), Orthop Surg, vol. 3, no. 2, pp. 83-7, May 2011, doi: 10.1111/j.1757-7861.2011.00124.x.

[118] D. K. Menon, T. W. Dougall, R. D. Pool, and R. B. Simonis, "Augmentative Ilizarov external fixation after failure of diaphyseal union with intramedullary nailing," (in eng), J Orthop Trauma, vol. 16, no. 7, pp. 491-7, Aug 2002, doi: 10.1097/00005131-200208000-00007.

[119] C. Bellabarba, W. M. Ricci, and B. R. Bolhofner, "Results of indirect reduction and plating of femoral shaft nonunions after intramedullary nailing," (in eng), J Orthop Trauma, vol. 15, no. 4, pp. 254-63, May 2001, doi: 10.1097/00005131-200105000-00004.

[120] R. Serrano et al., "Effect of Nail Size, Insertion, and Δ Canal-Nail on the Development of a Nonunion After Intramedullary Nailing of Femoral Shaft Fractures," (in eng), J Orthop Trauma, vol. 33, no. 11, pp. 559-563, Nov 2019, doi: 10.1097/BOT.0000000000001585.

[121] M. A. Mohamed, H. H. Noaman, Y. O. Soroor, and M. Elsayed, "Plate augmentation and bone grafting in treatment of femoral shaft nonunion initially fixed by intramedullary nail," (in eng), SICOT J, vol. 8, p. 19, 2022, doi: 10.1051/sicotj/2022020.

[122] W. M. Hakeos, J. E. Richards, and W. T. Obremskey, "Plate fixation of femoral nonunions over an intramedullary nail with autogenous bone grafting," (in eng), J Orthop Trauma, vol. 25, no. 2, pp. 84-9, Feb 2011, doi: 10.1097/BOT.0b013e3181dfbb33.

[123] Y. F. Jin, H. C. Xu, Z. H. Shen, X. K. Pan, and H. Xie, "Comparing Augmentative Plating and Exchange Nailing for the Treatment of Nonunion of Femoral Shaft Fracture after Intramedullary Nailing: A Meta-analysis," (in eng), Orthop Surg, vol. 12, no. 1, pp. 50-57, Feb 2020, doi: 10.1111/os.12580.

[124] J. Pretell Mazzini, J. Rodriguez Martin, and C. Resines Erasun, "Removal of a broken intramedullary femoral nail with an unusual pattern of breakage: a case report," (in eng), Strategies Trauma Limb Reconstr, vol. 4, no. 3, pp. 151-5, Dec 2009, doi: 10.1007/s11751-009-0066-z.

[125] G. I. Im and S. R. Shin, "Treatment of femoral shaft fractures with a titanium intramedullary nail," (in eng), Clin Orthop Relat Res, no. 401, pp. 223-9, Aug 2002, doi: 10.1097/00003086-200208000-00025.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る