リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「High-accuracy tensor renormalization group algorithms and their applications」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

High-accuracy tensor renormalization group algorithms and their applications

足立, 大樹 東京大学 DOI:10.15083/0002004672

2022.06.22

概要

We propose novel real-space renormalization group algorithms for classical and quantum lattice models. Conventionally, the tensor renormalization group (TRG) algorithm proposed by Levin and Nave in 2007 and the higher-order tensor renormalization group (HOTRG) algorithm proposed by Xie et al. in 2012 have been widely used as efficient numerical renormalization methods to study large-scale classical and quantum spin systems. The accuracy of the tensor network algorithms is generally controlled by the bond dimension χ, which is the cutoff of tensor indices. With a fixed bond dimension χ, TRG can renormalize the two-dimensional squarelattice tensor network within O ( χ 5 ) computational time. However, it is difficult to apply the TRG algorithm to models in three or higher dimensions. On the other hand, HOTRG can be applied, at least in principle, to higher-dimensional models, and it has a higher accuracy than TRG when comparing with the same bond dimension, while the computational cost of O ( χ 4d−1 ) for d-dimensional models is higher than TRG even in two dimensions and too high to execute simulations for higher-dimensional models in practice. New algorithms that can perform the real-space renormalization in general dimensions with a reasonable cost are strongly demanded.

In this thesis, we propose two novel algorithms, the anisotropic tensor renormalization group (ATRG) and the bond-weighted tensor renormalization group (BTRG). ATRG is aimed to simulate lattice models in high dimensions efficiently, and BTRG is aimed to renormalize a two-dimensional square-lattice tensor network more accurately. ATRG can renormalize a ddimensional hypercubic-lattice tensor network with the computational cost of O(χ 2d+1) and the memory footprint of O(χ d+1), which are much smaller than O(χ 4d−1 ) computational time and O(χ 2d ) memory footprint, respectively, of the best existing algorithm, HOTRG. Although ATRG is less accurate than HOTRG when comparing with the same bond dimension, it is more efficient by orders of magnitude than HOTRG with fixed computation time, especially in higher dimensions. BTRG, on the other hand, is aimed to simulate the square-lattice tensor network more accurately. In BTRG, we consider the weights of the bonds in the tensor network. Despite the computational cost of BTRG [O(χ 5 )] being much lower than that of HOTRG [O(χ 7 )], we show that BTRG can yield more accurate results than HOTRG even in the vicinity of the critical point. In addition to these new algorithms, we introduce several techniques to improve the accuracy of ATRG, propose the combination of ATRG with BTRG, and discuss the performance of the algorithms. We also present the application of our new algorithms to classical and quantum lattice models to demonstrate the high accuracy of ATRG when applied to various simple and complex models.

参考文献

[1] Onsager, L. Crystal statistics. i. a two-dimensional model with an order-disorder transition. Phys. Rev. 65, 117–149 (1944). URL https://link.aps.org/doi/10.1103/PhysRev.65. 117.

[2] Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H. & Teller, E. Equation of state calculations by fast computing machines. J. Chem. Phys. 21, 1087 (1953).

[3] Hastings, W. K. Monte carlo sampling methods using markov chains and their applications. Biometrika 57, 97–109 (1970). URL http://dx.doi.org/10.1093/biomet/57.1.97.

[4] Swendsen, R. H. & Wang, J.-S. Nonuniversal critical dynamics in monte carlo simulations. Phys. Rev. Lett. 58, 86–88 (1987). URL https://link.aps.org/doi/10.1103/ PhysRevLett.58.86.

[5] Wolff, U. Comparison between cluster monte carlo algorithms in the ising model. Physics Letters B 228, 379 – 382 (1989). URL http://www.sciencedirect.com/science/article/ pii/0370269389915633.

[6] Hirsch, J. E., Sugar, R. L., Scalapino, D. J. & Blankenbecler, R. Monte carlo simulations of one-dimensional fermion systems. Phys. Rev. B 26, 5033–5055 (1982). URL https: //link.aps.org/doi/10.1103/PhysRevB.26.5033.

[7] Prokof’ev, N., Svistunov, B. & Tupitsyn, I. “ worm ”algorithm in quantum monte carlo simulations. Physics Letters A 238, 253 – 257 (1998). URL http://www.sciencedirect. com/science/article/pii/S0375960197009572.

[8] White, S. R. Density matrix formulation for quantum renormalization groups. Phys. Rev. Lett. 69, 2863–2866 (1992). URL https://link.aps.org/doi/10.1103/PhysRevLett.69. 2863.

[9] Östlund, S. & Rommer, S. Thermodynamic limit of density matrix renormalization. Phys. Rev. Lett. 75, 3537–3540 (1995). URL https://link.aps.org/doi/10.1103/ PhysRevLett.75.3537.

[10] Rommer, S. & Östlund, S. Class of ansatz wave functions for one-dimensional spin systems and their relation to the density matrix renormalization group. Phys. Rev. B 55, 2164–2181 (1997). URL https://link.aps.org/doi/10.1103/PhysRevB.55.2164.

[11] Verstraete, F. & Cirac, J. I. Renormalization algorithms for quantum-many body systems in two and higher dimensions (2004). cond-mat/0407066v1.

[12] Murg, V., Verstraete, F. & Cirac, J. I. Variational study of hard-core bosons in a twodimensional optical lattice using projected entangled pair states. Phys. Rev. A 75, 033605 (2007). URL https://link.aps.org/doi/10.1103/PhysRevA.75.033605.

[13] Zwolak, M. & Vidal, G. Mixed-state dynamics in one-dimensional quantum lattice systems: A time-dependent superoperator renormalization algorithm. Phys. Rev. Lett. 93, 207205 (2004). URL https://link.aps.org/doi/10.1103/PhysRevLett.93.207205.

[14] Verstraete, F., García-Ripoll, J. J. & Cirac, J. I. Matrix product density operators: Simulation of finite-temperature and dissipative systems. Phys. Rev. Lett. 93, 207204 (2004). URL https://link.aps.org/doi/10.1103/PhysRevLett.93.207204.

[15] Nishino, T. & Okunishi, K. Corner transfer matrix renormalization group method. Journal of the Physical Society of Japan 65, 891–894 (1996). URL https://doi.org/10.1143/ JPSJ.65.891. https://doi.org/10.1143/JPSJ.65.891.

[16] Nishino, T. & Okunishi, K. Corner transfer matrix algorithm for classical renormalization group. Journal of the Physical Society of Japan 66, 3040–3047 (1997). URL https://doi. org/10.1143/JPSJ.66.3040. https://doi.org/10.1143/JPSJ.66.3040.

[17] White, S. R. & Noack, R. M. Real-space quantum renormalization groups. Phys. Rev. Lett. 68, 3487–3490 (1992). URL https://link.aps.org/doi/10.1103/PhysRevLett.68.3487.

[18] Levin, M. & Nave, C. P. Tensor renormalization group approach to two-dimensional classical lattice models. Phys. Rev. Lett. 99, 120601 (2007). URL https://link.aps.org/doi/10. 1103/PhysRevLett.99.120601.

[19] Xie, Z. Y. et al. Coarse-graining renormalization by higher-order singular value decomposition. Phys. Rev. B 86, 045139 (2012). URL https://link.aps.org/doi/10.1103/ PhysRevB.86.045139.

[20] Gu, Z.-C. & Wen, X.-G. Tensor-entanglement-filtering renormalization approach and symmetry-protected topological order. Phys. Rev. B 80, 155131 (2009). URL https: //link.aps.org/doi/10.1103/PhysRevB.80.155131.

[21] Xie, Z. Y., Jiang, H. C., Chen, Q. N., Weng, Z. Y. & Xiang, T. Second renormalization of tensor-network states. Phys. Rev. Lett. 103, 160601 (2009). URL https://link.aps.org/ doi/10.1103/PhysRevLett.103.160601.

[22] Evenbly, G. & Vidal, G. Tensor network renormalization. Phys. Rev. Lett. 115, 180405 (2015). URL https://link.aps.org/doi/10.1103/PhysRevLett.115.180405.

[23] Evenbly, G. Algorithms for tensor network renormalization. Phys. Rev. B 95, 045117 (2017). URL https://link.aps.org/doi/10.1103/PhysRevB.95.045117.

[24] Bal, M., Mariën, M., Haegeman, J. & Verstraete, F. Renormalization group flows of hamiltonians using tensor networks. Phys. Rev. Lett. 118, 250602 (2017). URL https: //link.aps.org/doi/10.1103/PhysRevLett.118.250602.

[25] Yang, S., Gu, Z.-C. & Wen, X.-G. Loop optimization for tensor network renormalization. Phys. Rev. Lett. 118, 110504 (2017). URL https://link.aps.org/doi/10.1103/ PhysRevLett.118.110504.

[26] Hauru, M., Delcamp, C. & Mizera, S. Renormalization of tensor networks using graphindependent local truncations. Phys. Rev. B 97, 045111 (2018). URL https://link.aps. org/doi/10.1103/PhysRevB.97.045111.

[27] Harada, K. Entanglement branching operator. Phys. Rev. B 97, 045124 (2018). URL https://link.aps.org/doi/10.1103/PhysRevB.97.045124.

[28] Morita, S., Igarashi, R., Zhao, H.-H. & Kawashima, N. Tensor renormalization group with randomized singular value decomposition. Phys. Rev. E 97, 033310 (2018). URL https://link.aps.org/doi/10.1103/PhysRevE.97.033310.

[29] Wang, C., Qin, S.-M. & Zhou, H.-J. Topologically invariant tensor renormalization group method for the edwards-anderson spin glasses model. Phys. Rev. B 90, 174201 (2014). URL https://link.aps.org/doi/10.1103/PhysRevB.90.174201.

[30] Zhao, H.-H., Xie, Z.-Y., Xiang, T. & Imada, M. Tensor network algorithm by coarse-graining tensor renormalization on finite periodic lattices. Phys. Rev. B 93, 125115 (2016). URL https://link.aps.org/doi/10.1103/PhysRevB.93.125115.

[31] Evenbly, G. Gauge fixing, canonical forms, and optimal truncations in tensor networks with closed loops. Phys. Rev. B 98, 085155 (2018). URL https://link.aps.org/doi/10.1103/ PhysRevB.98.085155.

[32] Ferris, A. J. Area law and real-space renormalization. Phys. Rev. B 87, 125139 (2013). URL https://link.aps.org/doi/10.1103/PhysRevB.87.125139.

[33] Lan, W. & Evenbly, G. Tensor renormalization group centered about a core tensor (2019). quant-ph/1906.09283.

[34] Morita, S. & Kawashima, N. Calculation of higher-order moments by higher-order tensor renormalization group. Computer Physics Communications 236, 65 – 71 (2019). URL http://www.sciencedirect.com/science/article/pii/S001046551830362X.

[35] Li, W. et al. Phase transitions and thermodynamics of the two-dimensional ising model on a distorted kagome lattice. Phys. Rev. B 82, 134434 (2010). URL https://link.aps.org/ doi/10.1103/PhysRevB.82.134434.

[36] Zhao, H. H. et al. Renormalization of tensor-network states. Phys. Rev. B 81, 174411 (2010). URL https://link.aps.org/doi/10.1103/PhysRevB.81.174411.

[37] Chen, Q. N. et al. Partial order and finite-temperature phase transitions in potts models on irregular lattices. Phys. Rev. Lett. 107, 165701 (2011). URL https://link.aps.org/ doi/10.1103/PhysRevLett.107.165701.

[38] Dittrich, B. & Eckert, F. C. Towards computational insights into the large-scale structure of spin foams. Journal of Physics: Conference Series 360, 012004 (2012). URL http: //stacks.iop.org/1742-6596/360/i=1/a=012004.

[39] Jiang, H. C., Weng, Z. Y. & Xiang, T. Accurate determination of tensor network state of quantum lattice models in two dimensions. Phys. Rev. Lett. 101, 090603 (2008). URL https://link.aps.org/doi/10.1103/PhysRevLett.101.090603.

[40] Evenbly, G. & Vidal, G. Local scale transformations on the lattice with tensor network renormalization. Phys. Rev. Lett. 116, 040401 (2016). URL https://link.aps.org/doi/ 10.1103/PhysRevLett.116.040401.

[41] Meurice, Y. Accurate exponents from approximate tensor renormalizations. Phys. Rev. B 87, 064422 (2013). URL https://link.aps.org/doi/10.1103/PhysRevB.87.064422.

[42] Wang, S., Xie, Z.-Y., Chen, J., Bruce, N. & Xiang, T. Phase transitions of ferromagnetic potts models on the simple cubic lattice. Chinese Physics Letters 31, 070503 (2014). URL http://stacks.iop.org/0256-307X/31/i=7/a=070503.

[43] Yu, J. F. et al. Tensor renormalization group study of classical xy model on the square lattice. Phys. Rev. E 89, 013308 (2014). URL https://link.aps.org/doi/10.1103/ PhysRevE.89.013308.

[44] Ueda, H., Okunishi, K. & Nishino, T. Doubling of entanglement spectrum in tensor renormalization group. Phys. Rev. B 89, 075116 (2014). URL https://link.aps.org/doi/10. 1103/PhysRevB.89.075116.

[45] Genzor, J., Gendiar, A. & Nishino, T. Phase transition of the ising model on a fractal lattice. Phys. Rev. E 93, 012141 (2016). URL https://link.aps.org/doi/10.1103/ PhysRevE.93.012141.

[46] Yang, L.-P., Liu, Y., Zou, H., Xie, Z. Y. & Meurice, Y. Fine structure of the entanglement entropy in the o(2) model. Phys. Rev. E 93, 012138 (2016). URL https://link.aps.org/ doi/10.1103/PhysRevE.93.012138.

[47] Kawauchi, H. & Takeda, S. Tensor renormalization group analysis of CP(n − 1) model. Phys. Rev. D 93, 114503 (2016). URL https://link.aps.org/doi/10.1103/PhysRevD. 93.114503.

[48] Sakai, R., Takeda, S. & Yoshimura, Y. Higher-order tensor renormalization group for relativistic fermion systems. Prog. Theor. Exp. Phys. 2017, 063B07 (2017).

[49] Yoshimura, Y., Kuramashi, Y., Nakamura, Y., Takeda, S. & Sakai, R. Calculation of fermionic green functions with grassmann higher-order tensor renormalization group. Phys. Rev. D 97, 054511 (2018). URL https://link.aps.org/doi/10.1103/PhysRevD.97. 054511.

[50] Akiyama, S., Kuramashi, Y., Yamashita, T. & Yoshimura, Y. Phase transition of fourdimensional ising model with higher-order tensor renormalization group (2019). hep-lat/ 1906.06060.

[51] Akiyama, S., Kuramashi, Y., Yamashita, T. & Yoshimura, Y. Phase transition of fourdimensional ising model with tensor network scheme (2019). hep-lat/1911.12954.

[52] Genzor, J., Gendiar, A. & Nishino, T. Measurements of magnetization on the sierpiński carpet (2019). comd-mat/1904.10645.

[53] Suzuki, M. Relationship between d-Dimensional Quantal Spin Systems and (d+1)- Dimensional Ising Systems: Equivalence, Critical Exponents and Systematic Approximants of the Partition Function and Spin Correlations. Progress of Theoretical Physics 56, 1454– 1469 (1976). URL https://doi.org/10.1143/PTP.56.1454. http://oup.prod.sis.lan/ ptp/article-pdf/56/5/1454/5264429/56-5-1454.pdf.

[54] Yamada, H., Imakura, A. & Sakurai, T. Cost-efficient cutoff method for tensor renormalization group with randomized singular value decomposition. JSIAM Letters 10, 61–64 (2018).

[55] Nakamura, Y., Oba, H. & Takeda, S. Tensor renormalization group algorithms with a projective truncation method. Phys. Rev. B 99, 155101 (2019). URL https://link.aps. org/doi/10.1103/PhysRevB.99.155101.

[56] Teng, P. Generalization of the tensor renormalization group approach to 3-d or higher dimensions. Physica A: Statistical Mechanics and its Applications 472, 117 – 135 (2017). URL http://www.sciencedirect.com/science/article/pii/S0378437116310603.

[57] De Lathauwer, L., De Moor, B. & Vandewalle, J. A multilinear singular value decomposition. SIAM Journal on Matrix Analysis and Applications 21, 1253–1278 (2000). URL https:// doi.org/10.1137/S0895479896305696. https://doi.org/10.1137/S0895479896305696.

[58] 河内比花留. テンソルくりこみ群によるCP(N-1)モデルの解析. Ph.D. thesis, 金沢大学 (2018). URL http://hdl.handle.net/2297/51432.

[59] Strassen, V. Gaussian elimination is not optimal. Numer.Math. 13, 354–356 (1969). URL https://doi.org/10.1007/BF02165411.

[60] Coppersmith, D. & Winograd, S. Matrix multiplication via arithmetic progressions. J. Symb. Comput. 9, 251–280 (1990). URL http://dx.doi.org/10.1016/S0747-7171(08)80013-2.

[61] Le Gall, F. Powers of tensors and fast matrix multiplication. In Proceedings of the 39th International Symposium on Symbolic and Algebraic Computation, ISSAC ’14, 296–303 (ACM, New York, NY, USA, 2014). URL http://doi.acm.org/10.1145/2608628.2608664.

[62] Halko, N., Martinsson, P. G. & Tropp, J. A. Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions. SIAM Review 53, 217–288 (2011). URL https://doi.org/10.1137/090771806. https://doi.org/10.1137/ 090771806.

参考文献をもっと見る