リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Deep White Matter Lesions Are Associated with Early Recognition of Dementia in Alzheimer's Disease.」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Deep White Matter Lesions Are Associated with Early Recognition of Dementia in Alzheimer's Disease.

笠原, 浩生 カサハラ, ヒロオ Ksahara, Hiroo 群馬大学

2020.03.24

概要

【目的】
アルツハイマー病(Alzheimer's disease: AD)では脳内にアミロイドβ蛋白 (amyloid-β: Aβ)が蓄積する.11C-labeled Pittsburgh Compound B(PiB)を用いたPET検査(PiB PET)を行うことで,脳内のAβ蓄積を画像化できる.脳血管障害の危険因子 (vascular risk factors: VRF)はAD発症の危険因子でもあることが判明しており,頭部 MRIでの大脳白質病変(white matter lesions: WML)および血管周囲腔拡大(enlarged perivascular spaces: EPVS)は,脳微小血管障害(cerebral small vessel disease: SVD)を反映するとされる.WMLおよびEPVSは血管性認知症と関連しているが,ADの病態における意義は明らかでない.そこでPiB PETおよび頭部MRIを用いて,脳Aβ蓄積とSVDとの関連を調査した.

【方法】
臨床的にADが疑われPiB PETを施行した78例を対象とし,後ろ向きに調査を行った.対象者は全員頭部MRIを施行し,WMLおよびEPVSについて視診で重症度評価を行った.WMLは脳室周囲高信号病変(periventricular hyperintensity: PVH)と深部白質高信号病変(deep white matter hyperintensity: DWMH)を区別し,Fazekas分類にて重症度評価を行った.EPVSは2004年にMacLullichらが提唱した分類に準じて重症度評価を行った.PiB PETの結果については,陽性・陰性を視診にて判定した.PiB PET陽性例の一部では,mcSUVR(mean cortical standardized uptake value ratio)値を算出することで定量的評価を行った.mcSUVR値の算出にあたっては,まず複数の領域の大脳皮質に関心領域を設定し,小脳皮質を参照領域として,各皮質関心領域におけるPiBの集積についてSUVR値を測定した.さらに複数の皮質関心領域を集合したArea A~Dを設定し,各 Areaに含まれる全ての関心領域のSUVR値を平均することでmcSUVR値を算出した.Area Aは前頭葉・頭頂葉・側頭葉・後頭葉・前部帯状回・後部帯状回,Area Bは前頭葉・頭頂葉・前部帯状回・後部帯状回,Area Cは前頭葉・前部帯状回,Area Dは頭頂葉・後部帯状回から構成されるように設定した.一部の対象例ではAPOE(apolipoprotein E)遺伝子型についても解析を行った.

【結果】
PiB PET結果は視診で,67例(86%)が陽性,11例(14%)が陰性であった.APOE遺伝子型については, ADの遺伝的危険因子となるAPOEε4アリル保有者がPiB PET陽性群で陰性群より有意に高かった.次に,MRI所見の重症度について,PiB PET陽性群と陰性群で比較した. APOEε4アリルはAD発症と関連するため,APOEε3アリルのホモ接合例に限って検討を行ったところ,PiB PET陽性群は陰性群に比べてMRI所見の重症度が高い傾向があった.次に視診でPiB PET陽性と診断され臨床的にもADと診断された30例においてmcSUVR値を算出し,MRI所見の重症度との関連性についてSpearmanの順位相関係数を用いて評価を行った.DWMHではArea A~Dの全てにおいて,PVHではArea B,Cにおいて,mcSUVR値とMRI所見の重症度との間に有意な負の相関を認めたが,EPVSではいずれのAreaにおいても有意な相関を認めなかった.またmcSUVR値を従属変数,MRI所見の重症度・VRF・年齢を独立変数として重回帰分析を行った.重回帰分析の結果,DWMHおよびPVHではArea A~Dの全てにおいてmcSUVR値とMRI所見の重症度の間に有意な関連があったが,EPVSではArea Dのみで有意な関連があった.

【考察】
APOE遺伝子型はPiB PET陽性群で陰性群に比べAPOEε4アリル保有者が多く, APOEε4アリルがAD発症に関与していることを示している.APOEε3アリルのホモ接合例では,PiB PET陽性群は陰性群に比べ,高度のWMLおよびEPVSを有する頻度が高く,WMLおよびEPVSがAβ蓄積と関連していると考えられた.WMLおよびEPVSはSVDの画像マーカーとされているが,病理学的には背景が異なると考えられている.EPVSは血管透過性の増大により生じるとされている.WMLは脳虚血性変化の結果生じるとされているが, DWMHとPVHで成因は異なると考えられている.DWMHは脳虚血性変化との関連が強いが, PVHは脳虚血性変化以外にも血液脳関門の機能不全や脳室周囲の上衣細胞の障害とも関連すると報告されている.本研究ではMRI所見が重度であるほどmcSUVR値が低値である傾向を示したが,WMLではMRI所見の重症度とmcSUVR値の間に有意な負の相関を認めた一方で,EPVSではいずれのAreaにおいても有意な相関を認めなかった.さらに同じAreaで比較した場合,PVHの重症度と比較して,DWMHの重症度はmcSUVR値と強い負の相関を示した.病理学的に脳虚血性変化と関連の強いDWMHにおいて,MRI所見とmcSUVR値との間に強い負の相関を認めた点から,SVDと脳Aβ蓄積に関連があることが示唆された.多くの既報告では,ADおよび健常者においてMRI上のWMLの程度と脳Aβ蓄積との間には有意な関連はないとされている.本研究では,複数のAreaにおけるmcSUVR値を検討し,さらにWMLについてもPVHとDWMHに分けて検討することにより,脳虚血性変化の程度と脳Aβ蓄積の程度に負の相関があることを明らかにした.この理由として,AD患者では脳Aβ蓄積が比較的軽度であっても,脳虚血性変化が重度であれば,臨床的に認知機能低下を来す可能性が示唆された.SVDはAD患者における認知機能低下を加速し,認知症の早期認識を促進する可能性があると考えられた.

この論文で使われている画像

参考文献

[1] Braak H, Braak E (1991) Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 82, 239-259.

[2] Thal DR, Rub U, Orantes M, Braak H (2002) Phases of A beta-deposition in the human brain and its relevance for the development of AD. Neurology 58, 1791-1800.

[3] Klunk WE, Engler H, Nordberg A, Wang Y, Blomqvist G, Holt DP, Bergstrom M, Savitcheva I, Huang GF, Estrada S, Ausen B, Debnath ML, Barletta J, Price JC, Sandell J, Lopresti BJ, Wall A, Koivisto P, Antoni G, Mathis CA, Langstrom B (2004) Imaging brain amyloid in Alzheimer’s disease with Pittsburgh Compound-B. Ann Neurol 55, 306- 319.

[4] Rowe CC, Ng S, Ackermann U, Gong SJ, Pike K, Savage G, Cowie TF, Dickinson KL, Maruff P, Darby D, Smith C, Woodward M, Merory J, Tochon-Danguy H, O’Keefe G, Klunk WE, Mathis CA, Price JC, Masters CL, Ville- magne VL (2007) Imaging beta-amyloid burden in aging and dementia. Neurology 68, 1718-1725.

[5] Aizenstein HJ, Nebes RD, Saxton JA, Price JC, Mathis CA, Tsopelas ND, Ziolko SK, James JA, Snitz BE, Houck PR, Bi W, Cohen AD, Lopresti BJ, DeKosky ST, Halligan EM, Klunk WE (2008) Frequent amyloid deposition without significant cognitive impairment among the elderly. Arch Neurol 65, 1509-1517.

[6] Jack CR Jr, Lowe VJ, Senjem ML, Weigand SD, Kemp BJ, Shiung MM, Knopman DS, Boeve BF, Klunk WE, Mathis CA, Petersen RC (2008) 11C PiB and structural MRI pro- vide complementary information in imaging of Alzheimer’s disease and amnestic mild cognitive impairment. Brain 131, 665-680.

[7] Kivipelto M, Helkala EL, Laakso MP, Hanninen T, Hal- likainen M, Alhainen K, Soininen H, Tuomilehto J, Nissinen A (2001) Midlife vascular risk factors and Alzheimer’s dis- ease in later life: Longitudinal, population based study. BMJ 322, 1447-1451.

[8] Li J, Wang YJ, Zhang M, Xu ZQ, Gao CY, Fang CQ, Yan JC, Zhou HD (2011) Vascular risk factors promote conver- sion from mild cognitive impairment to Alzheimer disease. Neurology 76, 1485-1491.

[9] Cheng G, Huang C, Deng H, Wang H (2012) Diabetes as a risk factor for dementia and mild cognitive impairment: A meta-analysis of longitudinal studies. Intern Med J 42, 484-491.

[10] Kemppainen N, Johansson J, Teuho J, Parkkola R, Joutsa J, Ngandu T, Solomon A, Stephen R, Liu Y, Hanninen T, Paajanen T, Laatikainen T, Soininen H, Jula A, Rokka J, Rissanen E, Vahlberg T, Peltoniemi J, Kivipelto M, Rinne JO (2017) Brain amyloid load and its associations with cog- nition and vascular risk factors in FINGER study. Neurology 90, e206-e213.

[11] Abraham HM, Wolfson L, Moscufo N, Guttmann CR, Kaplan RF, White WB (2016) Cardiovascular risk factors and small vessel disease of the brain: Blood pressure, white matter lesions, and functional decline in older persons. J Cereb Blood Flow Metab 36, 132-142.

[12] Pantoni L, Poggesi A, Inzitari D (2007) The relation between white-matter lesions and cognition. Curr Opin Neurol 20, 390-397.

[13] Potter GM, Chappell FM, Morris Z, Wardlaw JM (2015) Cerebral perivascular spaces visible on magnetic resonance imaging: Development of a qualitative rating scale and its observer reliability. Cerebrovasc Dis 39, 224-231.

[14] Provenzano FA, Muraskin J, Tosto G, Narkhede A, Wasser- man BT, Griffith EY, Guzman VA, Meier IB, Zimmerman ME, Brickman AM (2013) White matter hyperintensities and cerebral amyloidosis: Necessary and sufficient for clin- ical expression of Alzheimer disease? JAMA Neurol 70, 455-461.

[15] Zhou Y, Yu F, Duong TQ (2015) White matter lesion load is associated with resting state functional MRI activity and amyloid PET but not FDG in mild cognitive impairment and early Alzheimer’s disease patients. J Magn Reson Imaging 41, 102-109.

[16] Roseborough A, Ramirez J, Black SE, Edwards JD (2017) Associations between amyloid beta and white matter hyper- intensities: A systematic review. Alzheimers Dement 13, 1154-1167.

[17] McKhann GM, Knopman DS, Chertkow H, Hyman BT, Jack CR, Jr., Kawas CH, Klunk WE, Koroshetz WJ, Manly JJ, Mayeux R, Mohs RC, Morris JC, Rossor MN, Schel- tens P, Carrillo MC, Thies B, Weintraub S, Phelps CH (2011) The diagnosis of dementia due to Alzheimer’s dis- ease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 263-269.

[18] Folstein MF, Folstein SE, McHugh PR (1975) “Mini-mental state". A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 12, 189-198.

[19] Dubois B, Slachevsky A, Litvan I, Pillon B (2000) The FAB: A Frontal Assessment Battery at bedside. Neurology 55, 1621-1626.

[20] Nasreddine ZS, Phillips NA, Bedirian V, Charbonneau S, Whitehead V, Collin I, Cummings JL, Chertkow H (2005) The Montreal Cognitive Assessment, MoCA: A brief screening tool for mild cognitive impairment. J Am Geriatr Soc 53, 695-699.

[21] Fujiwara Y, Suzuki H, Yasunaga M, Sugiyama M, Ijuin M, Sakuma N, Inagaki H, Iwasa H, Ura C, Yatomi N, Ishii K, Tokumaru AM, Homma A, Nasreddine Z, Shinkai S (2010) Brief screening tool for mild cognitive impairment in older Japanese: Validation of the Japanese version of the Montreal Cognitive Assessment. Geriatr Gerontol Int 10, 225-232.

[22] Sheikh JI, Yesavage JA, Brooks JO, 3rd, Friedman L, Gratzinger P, Hill RD, Zadeik A, Crook T (1991) Pro- posed factor structure of the Geriatric Depression Scale. Int Psychogeriatr 3, 23-28.

[23] Lawton MP, Brody EM (1969) Assessment of older people: Self-maintaining and instrumental activities of daily living. Gerontologist 9, 179-186.

[24] Fazekas F, Chawluk JB, Alavi A, Hurtig HI, Zimmerman RA (1987) MR signal abnormalities at 1.5 T in Alzheimer’s dementia and normal aging. AJR Am J Roentgenol 149, 351- 356.

[25] MacLullich AM, Wardlaw JM, Ferguson KJ, Starr JM, Seckl JR, Deary IJ (2004) Enlarged perivascular spaces are associ- ated with cognitive function in healthy elderly men. J Neurol Neurosurg Psychiatry 75, 1519-1523.

[26] Mathis CA, Wang Y, Holt DP, Huang GF, Debnath ML, Klunk WE (2003) Synthesis and evaluation of 11C-labeled 6-substituted 2-arylbenzothiazoles as amyloid imaging agents. J Med Chem 46, 2740-2754.

[27] Ikeda M, Tashiro Y, Takai E, Kurose S, Fugami N, Tsuda K, Arisaka Y, Kodaira S, Fujita Y, Makioka K, Mizuno Y, Shi- mada H, Harigaya Y, Takatama M, Amari M, Yamazaki T, Yamaguchi H, Higuchi T, Okamoto K, Tsushima Y, Ikeda Y (2014) CSF levels of Abeta1-38/Abeta1-40/Abeta1-42 and (11)C PiB-PET studies in three clinical variants of primary progressive aphasia and Alzheimer’s disease. Amyloid 21, 238-245.

[28] Lopresti BJ, Klunk WE, Mathis CA, Hoge JA, Ziolko SK, Lu X, Meltzer CC, Schimmel K, Tsopelas ND, DeKosky ST, Price JC (2005) Simplified quantification of Pittsburgh Compound B amyloid imaging PET studies: A comparative analysis. J Nucl Med 46, 1959-1972.

[29] McNamee RL, Yee SH, Price JC, Klunk WE, Rosario B, Weissfeld L, Ziolko S, Berginc M, Lopresti B, Dekosky S, Mathis CA (2009) Consideration of optimal time window for Pittsburgh compound B PET summed uptake measure- ments. J Nucl Med 50, 348-355.

[30] Yamane T, Ishii K, Sakata M, Ikari Y, Nishio T, Ishii K, Kato T, Ito K, Senda M (2017) Inter-rater variability of visual interpretation and comparison with quantitative eval- uation of (11)C-PiB PET amyloid images of the Japanese Alzheimer’s Disease Neuroimaging Initiative (J-ADNI) multicenter study. Eur J Nucl Med Mol Imaging 44, 850- 857.

[31] Wenham PR, Price WH, Blandell G (1991) Apolipoprotein E genotyping by one-stage PCR. Lancet 337, 1158-1159.

[32] National Institute on Aging/Alzheimer’s Association Work- ing Group (1996) Apolipoprotein E genotyping in Alzheimer’s disease. Lancet 347, 1091-1095.

[33] Godin O, Tzourio C, Maillard P, Alperovitch A, Mazoyer B, Dufouil C (2009) Apolipoprotein E genotype is related to progression of white matter lesion load. Stroke 40, 3186- 3190.

[34] Mahley RW, Rall SC Jr (2000) Apolipoprotein E: Far more than a lipid transport protein. Annu Rev Genomics Hum Genet 1, 507-537.

[35] Corder EH, Saunders AM, Strittmatter WJ, Schmechel DE, Gaskell PC, Small GW, Roses AD, Haines JL, Pericak- Vance MA (1993) Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset fam- ilies. Science 261, 921-923.

[36] Saunders AM, Strittmatter WJ, Schmechel D, George- Hyslop PH, Pericak-Vance MA, Joo SH, Rosi BL, Gusella JF, Crapper-MacLachlan DR, Alberts MJ, et al. (1993) Association of apolipoprotein E allele epsilon 4 with late- onset familial and sporadic Alzheimer’s disease. Neurology 43, 1467-1472.

[37] Saunders AM (2000) Apolipoprotein E and Alzheimer disease: An update on genetic and functional analyses. J Neuropathol Exp Neurol 59, 751-758.

[38] Rezek DL, Morris JC, Fulling KH, Gado MH (1987) Periventricular white matter lucencies in senile dementia of the Alzheimer type and in normal aging. Neurology 37, 1365-1368.

[39] Scheltens P, Barkhof F, Valk J, Algra PR, van der Hoop RG, Nauta J, Wolters EC (1992) White matter lesions on mag- netic resonance imaging in clinically diagnosed Alzheimer’s disease. Evidence for heterogeneity. Brain 115, 735-748.

[40] Meyer JS, Kawamura J, Terayama Y (1992) White matter lesions in the elderly. J Neurol Sci 110, 1-7.

[41] Kalaria RN (2000) The role of cerebral ischemia in Alzheimer’s disease. Neurobiol Aging 21, 321-330.

[42] McAleese KE, Walker L, Graham S, Moya ELJ, Johnson M, Erskine D, Colloby SJ, Dey M, Martin-Ruiz C, Taylor JP, Thomas AJ, McKeith IG, De Carli C, Attems J (2017) Parietal white matter lesions in Alzheimer’s disease are associated with cortical neurodegenerative pathology, but not with small vessel disease. Acta Neuropathol 134, 459- 473.

[43] Rouhl RP, van Oostenbrugge RJ, Knottnerus IL, Staals JE, Lodder J (2008) Virchow-Robin spaces relate to cerebral small vessel disease severity. J Neurol 255, 692-696.

[44] Yao M, Herve D, Jouvent E, Duering M, Reyes S, Godin O, Guichard JP, Dichgans M, Chabriat H (2014) Dilated perivascular spaces in small-vessel disease: A study in CADASIL. Cerebrovasc Dis 37, 155-163.

[45] Zhu YC, Tzourio C, Soumare A, Mazoyer B, Dufouil C, Chabriat H (2010) Severity of dilated Virchow-Robin spaces is associated with age, blood pressure, and MRI markers of small vessel disease: A population-based study. Stroke 41, 2483-2490.

[46] Hiroki M, Miyashita K (2001) Linear hyperintensity objects on magnetic resonance imaging related to hypertension. Cerebrovasc Dis 11, 164-168.

[47] Patankar TF, Mitra D, Varma A, Snowden J, Neary D, Jack- son A (2005) Dilatation of the Virchow-Robin space is a sensitive indicator of cerebral microvascular disease: Study in elderly patients with dementia. AJNR Am J Neuroradiol 26, 1512-1520.

[48] Vermeer SE, Prins ND, den Heijer T, Hofman A, Koudstaal PJ, Breteler MM (2003) Silent brain infarcts and the risk of dementia and cognitive decline. N Engl J Med 348, 1215- 1222.

[49] Engler H, Forsberg A, Almkvist O, Blomquist G, Larsson E, Savitcheva I, Wall A, Ringheim A, Langstrom B, Nord- berg A (2006) Two-year follow-up of amyloid deposition in patients with Alzheimer’s disease. Brain 129, 2856-2866.

[50] Mintun MA, Larossa GN, Sheline YI, Dence CS, Lee SY, Mach RH, Klunk WE, Mathis CA, DeKosky ST, Morris JC (2006) [11C]PIB in a nondemented population: Poten- tial antecedent marker of Alzheimer disease. Neurology 67, 446-452.

[51] Edison P, Archer HA, Hinz R, Hammers A, Pavese N, Tai YF, Hotton G, Cutler D, Fox N, Kennedy A, Rossor M, Brooks DJ (2007) Amyloid, hypometabolism, and cognition in Alzheimer disease: An [11C]PIB and [18F]FDG PET study. Neurology 68, 501-508.

[52] Forsberg A, Engler H, Almkvist O, Blomquist G, Hagman G, Wall A, Ringheim A, Langstrom B, Nordberg A (2008) PET imaging of amyloid deposition in patients with mild cognitive impairment. Neurobiol Aging 29, 1456-1465.

[53] Kemppainen NM, Aalto S, Wilson IA, Nagren K, Helin S, Bruck A, Oikonen V, Kailajarvi M, Scheinin M, Viitanen M, Parkkola R, Rinne JO (2006) Voxel-based analysis of PET amyloid ligand [11C]PIB uptake in Alzheimer disease. Neurology 67, 1575-1580.

[54] Goodheart AE, Tamburo E, Minhas D, Aizenstein HJ, McDade E, Snitz BE, Price JC, Mathis CA, Lopez OL, Klunk WE, Cohen AD (2015) Reduced binding of Pittsburgh Compound-B in areas of white matter hyperin- tensities. Neuroimage Clin 9, 479-483.

[55] Suzuki K, Masawa N, Takatama M (2001) Pathogenesis of e´tat crible´ in experimental hypertensive rats. J Stroke Cerebrovasc Dis 10, 106-112.

[56] Zhang X, Ding L, Yang L, Qin W, Yuan J, Li S, Hu W (2016) Brain atrophy correlates with severe enlarged perivascular spaces in basal ganglia among lacunar stroke patients. PLoS One 11, e0149593.

[57] Fazekas F, Kleinert R, Offenbacher H, Schmidt R, Kleinert G, Payer F, Radner H, Lechner H (1993) Pathologic corre- lates of incidental MRI white matter signal hyperintensities. Neurology 43, 1683-1689.

[58] Schmidt R, Schmidt H, Haybaeck J, Loitfelder M, Weis S, Cavalieri M, Seiler S, Enzinger C, Ropele S, Erkinjuntti T, Pantoni L, Scheltens P, Fazekas F, Jellinger K (2011) Heterogeneity in age-related white matter changes. Acta Neuropathol 122, 171-185.

[59] Grimmer T, Faust M, Auer F, Alexopoulos P, Forstl H, Hen- riksen G, Perneczky R, Sorg C, Yousefi BH, Drzezga A, Kurz A (2012) White matter hyperintensities predict amy- loid increase in Alzheimer’s disease. Neurobiol Aging 33, 2766-2773.

[60] Gurol ME, Viswanathan A, Gidicsin C, Hedden T, Martinez- Ramirez S, Dumas A, Vashkevich A, Ayres AM, Auriel E, van Etten E, Becker A, Carmasin J, Schwab K, Rosand J, Johnson KA, Greenberg SM (2013) Cerebral amyloid angiopathy burden associated with leukoaraiosis: A positron emission tomography/magnetic resonance imaging study. Ann Neurol 73, 529-536.

[61] Esiri MM, Nagy Z, Smith MZ, Barnetson L, Smith AD (1999) Cerebrovascular disease and threshold for demen- tia in the early stages of Alzheimer’s disease. Lancet 354, 919-920.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る