リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Secondary Cratering From Rheasilvia as the Possible Origin of Vesta's Equatorial Troughs」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Secondary Cratering From Rheasilvia as the Possible Origin of Vesta's Equatorial Troughs

Hirata, Naoyuki 平田, 直之 ヒラタ, ナオユキ 神戸大学

2023.03

概要

Asteroid 4 Vesta has a set of parallel troughs aligned with its equator. Although previous evaluations suggest that it is of shock fracturing tectonic origin, we propose that the equatorial troughs can be created by secondary cratering from the largest impact basin, Rheasilvia. We calculated the trajectories of ejecta particles from Rheasilvia by considering Vesta's rapid rotation. As a result, we found that secondary craters should be parallel to the latitude. In particular, if we assume that ejecta particles are launched at an initial launch velocity of approximately 350–380 m/s and a launch angle of 25°, the parallel equatorial troughs, the Divalia Fossae, can be suitably explained by secondary cratering. This model works well on objects, such as Haumea, Salacia, and Chariklo, but not on Mercury, the Moon, and regular satellites.

この論文で使われている画像

参考文献

Asphaug, E., & Melosh, H. J. (1993). The Stickney impact of Phobos: A dynamical model. Icarus, 101(1), 144–164. https://doi.org/10.1006/

icar.1993.1012

Baer, J., Chesley, S. R., & Matson, R. D. (2011). Astrometric masses of 26 asteroids and observations on asterod porosity. The Astronomical

Journal, 141(5), 143. https://doi.org/10.1088/0004-6256/141/5/143

Baldwin, R. B. (1963). The measure of the Moon. University of Chicago Press.

Bernhardt, H., Hiesinger, H., Ivanov, M. A., Ruesch, O., Erkeling, G., & Reiss, D. (2016). Photogeologic mapping and the geologic history of the

Hellas basin floor, Mars. Icarus, 264, 407–442. https://doi.org/10.1016/j.icarus.2015.09.031

Bowling, T. J., Johnson, B. C., & Melosh, H. J. (2014). Formation of equatorial graben on 4 Vesta following the rheasilvia basin forming impact.

In Abstract #2018 in the conference of Vesta in the light of dawn: First exploration of a protoplanet in the asteroid belt.

Brown, M. E. (2013). On the size, shape, and density of dwarf planet Makemake. The Astrophysical Journal Letters, 767(1), L7. https://doi.

org/10.1088/2041-8205/767/1/l7

Brown, M. E., & Butler, B. J. (2017). The density of mid-sized Kuiper belt objects from ALMA thermal observations. The Astronomical Journal,

154(1), 19. https://doi.org/10.3847/1538-3881/aa6346

Buczkowski, D. L., Wyrick, D., Toplis, M., Yingst, R., Williams, D., Garry, W., et al. (2014). The unique geomorphology and physical properties

of the Vestalia Terra plateau. Icarus, 244, 89–103. https://doi.org/10.1016/j.icarus.2014.03.035

Buczkowski, D. L., Wyrick, D. Y., Iyer, K. A., Kahn, E. G., Scully, J. E. C., Nathues, A., et al. (2012). Large-scale troughs on Vesta: A signature

of planetary tectonics. Geophysical Research Letters, 39(18), L18205. https://doi.org/10.1029/2012gl052959

Cheng, H. C. J., & Klimczak, C. (2022). Large-scale troughs on asteroid 4 Vesta accommodate opening-mode displacement. Journal of Geophysical Research: Planets, 127(6), e2021JE007130. https://doi.org/10.1029/2021je007130

Cheng, H. C. J., Klimczak, C., & Fassett, C. I. (2021). Age relationships of large-scale troughs and impact basins on Vesta. Icarus, 366, 114512.

https://doi.org/10.1016/j.icarus.2021.114512

Davis, D. R., Housen, K. R., & Greenberg, R. (1981). The unusual dynamical environment of Phobos and Deimos. Icarus, 47(2), 220–233. https://

doi.org/10.1016/0019-1035(81)90168-8

Dobrovolskis, A. R., & Burns, J. A. (1980). Life near the Roche limit: Behavior of ejecta from satellites close to planets. Icarus, 42(3), 422–441.

https://doi.org/10.1016/0019-1035(80)90105-0

Dones, L., Chapman, C. R., McKinnon, W. B., Melosh, H. J., Kirchoff, M. R., Neukum, G., & Zahnle, K. J. (2009). Icy satellites of Saturn: Impact

cratering and age determination. In M. K. Dougherty, L. W. Esposito, & S. M. Krimigis (Eds.),. Saturn from Cassini-Huygens (pp. 613–635).

Springer.

Fassett, C. I., Head, J. W., Blewett, D. T., Chapman, C. R., Dickson, J. L., Murchie, S. L., et al. (2009). Caloris impact basin: Exterior geomorphology, stratigraphy, morphometry, radial sculpture, and smooth plains deposits. Earth and Planetary Science Letters, 285(3–4), 297–308.

https://doi.org/10.1016/j.epsl.2009.05.022

Ferrill, D. A., Wyrick, D. Y., Morris, A. P., Sims, D. W., & Franklin, N. M. (2004). Dilational fault slip and pit chain formation on Mars. Geological Society of America Today, 14(10), 4–12. https://doi.org/10.1130/1052-5173(2004)014<4:dfsapc>2.0.co;2

Ferrill, D. A., Wyrick, D. Y., & Smart, K. J. (2011). Coseismic, dilational-fault and extension-fracture related pit chain formation in Iceland:

Analog for pit chains on Mars. Lithosphere, 3(2), 133–142. https://doi.org/10.1130/l123.1

Fraser, W. C., Batygin, K., Brown, M. E., & Bouchez, A. (2013). The mass, orbit, and tidal evolution of the Quaoar–Weywot system. Icarus,

222(1), 357–363. https://doi.org/10.1016/j.icarus.2012.11.004

Frumkin, A., & Naor, R. (2019). Formation and modification of pit craters – Example from the Golan volcanic plateau, southern Levant.

Zeitschrift für Geomorphologie, 62/3(3), 163–181. https://doi.org/10.1127/zfg/2019/0614

Fujiwara, A., & Asada, N. (1983). Impact fracture patterns on Phobos ellipsoids. Icarus, 56(3), 590–602. https://doi.

org/10.1016/0019-1035(83)90176-8

Gilbert, G. K. (1893). The moon's face: A study of the origin of its features (pp. 241–292). Philosophical Society of Washington.

Grundy, W. M., Noll, K., Roe, H., Buie, M., Porter, S., Parker, A., et al. (2019). Mutual orbit orientations of transneptunian binaries. Icarus, 334,

62–78. https://doi.org/10.1016/j.icarus.2019.03.035

Guo, D., Liu, J., Head, J. W., III, & Kreslavsky, M. A. (2018). Lunar Orientale impact basin secondary craters: Spatial distribution,

size-frequency distribution, and estimation of fragment size. Journal of Geophysical Research: Planets, 123(6), 1344–1367. https://doi.

org/10.1029/2017je005446

Hamilton, D. P., & Burns, J. A. (1991). Orbital stability zones about asteroids. Icarus, 92(1), 118–131. https://doi.org/10.1016/0019-1035

(91)90039-v

Head, J. W. (1976). Evidence for the sedimentary origin of Imbrium sculpture and lunar basin radial texture. The Moon, 15(3–4), 445–462. https://

doi.org/10.1007/bf00562252

Head, J. W., & Hawke, B. R. (1975). Geology of the Apollo 14 region (Fra Mauro): Stratigraphic history and sample provenance. In Proceedings

of lunar science conference (6th, pp. 2483–2501).

Hiesinger, H., & Head, J. W., III. (2002). Topography and morphology of the Argyre basin, Mars: Implications for its geologic and hydrologic

history. Planetary and Space Science, 50(10–11), 939–981. https://doi.org/10.1016/s0032-0633(02)00054-5

Hirata, N., & Ikeya, R. (2021). Ejecta distribution from impact craters on Ryugu: Possible origin of the bluer units. Icarus, 364, 114474. https://

doi.org/10.1016/j.icarus.2021.114474

Hirata, N., & Miyamoto, H. (2016). Rayed craters on Dione: Implication for the dominant surface alteration process. Icarus, 274, 116–121.

https://doi.org/10.1016/j.icarus.2016.03.021

Hirata, N., Namiki, N., Yoshida, F., Matsumoto, K., Noda, H., Senshu, H., et al. (2021). Rotational effect as the possible cause of the east-west

asymmetric crater rims on Ryugu observed by LIDAR data. Icarus, 354, 114073. https://doi.org/10.1016/j.icarus.2020.114073

Hirata, N., Suetsugu, R., & Ohtsuki, K. (2020). A global system of furrows on Ganymede indicative of their creation in a single impact event.

Icarus, 352, 113941. https://doi.org/10.1016/j.icarus.2020.113941

17 of 19

21699100, 2023, 3, Downloaded from https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2022JE007473 by Kobe University, Wiley Online Library on [23/05/2023]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License

Journal of Geophysical Research: Planets

10.1029/2022JE007473

Holler, B. J., Grundy, W. M., Buie, M. W., & Noll, K. S. (2021). The Eris/Dysnomia system I: The orbit of Dysnomia. Icarus, 355, 114130. https://

doi.org/10.1016/j.icarus.2020.114130

Holsapple, K. A., & Housen, K. R. (2007). A crater and its ejecta: An interpretation of Deep Impact. Icarus, 187(1), 345–356. https://doi.

org/10.1016/j.icarus.2006.08.035

Housen, K. R., & Holsapple, K. A. (2011). Ejecta from impact craters. Icarus, 211(1), 856–875. https://doi.org/10.1016/j.icarus.2010.09.017

Ikeya, R., & Hirata, N. (2021). Ejecta emplacement as the possible origin of Ryugu's equatorial ridge. Icarus, 367, 114590.

https://doi.org/10.1016/j.icarus.2021.114590

Ivanov, B. A., & Melosh, H. J. (2013). Two-dimensional numerical modeling of the Rheasilvia impact formation. Journal of Geophysical

Research: Planets, 118(7), 1545–1557. https://doi.org/10.1002/jgre.20108

Jaumann, R., Clark, R. N., Nimmo, F., Hendrix, A. R., Buratti, B. J., Denk, T., et al. (2009). Icy satellites: Geological evolution and surface

processes. In M. K. Dougherty, L. W. Esposito, & S. M. Krimigis (Eds.),. Saturn from Cassini-Huygens (pp. 637–681). Springer.

Jaumann, R., Williams, D. A., Buczkowski, D. L., Yingst, R. A., Preusker, F., Hiesinger, H., et al. (2012). Vesta's shape and morphology. Science,

336(6082), 687–690. https://doi.org/10.1126/science.1219122

Kiss, C., Marton, G., Parker, A. H., Grundy, W. M., Farkas-Takacs, A., Stansberry, J., et al. (2019). The mass and density of the dwarf planet

(225088) 2007 OR10. Icarus, 334, 3–10. https://doi.org/10.1016/j.icarus.2019.03.013

Kring, D. A. (1995). The dimensions of the Chicxulub impact crater and impact melt sheet. Journal of Geophysical Research, 100(E8), 16979–

16986. https://doi.org/10.1029/95je01768

Leiva, R., Sicardy, B., Camargo, J. I. B., Ortiz, J. L., Desmars, J., Berard, D., et al. (2017). Size and shape of Chariklo from multi-epoch stellar

occultations. The Astronomical Journal, 154(4), 159. https://doi.org/10.3847/1538-3881/aa8956

Marchi, S., McSween, H. Y., O’Brien, D. P., Schenk, P., De Sanctis, M. C., Gaskell, R., et al. (2012). The violent collisional history of asteroid 4

Vesta. Science, 336(6082), 690–694. https://doi.org/10.1126/science.1218757

Martin, E. S., Kattenhorn, S. A., Collins, G. C., Michaud, R. L., Pappalardo, R. T., & Wyrick, D. Y. (2017). Pit chains on Enceladus signal the

recent tectonic dissection of the ancient cratered terrains. Icarus, 294, 209–217. https://doi.org/10.1016/j.icarus.2017.03.014

McCauley, J. F., Guest, J. E., Schaber, G. G., Trask, N. J., & Greeley, R. (1981). Stratigraphy of the Caloris basin, Mercury. Icarus, 47(2),

184–202. https://doi.org/10.1016/0019-1035(81)90166-4

McKinnon, W. B., & Melosh, H. J. (1980). Evolution of planetary lithospheres: Evidence from multiringed structures on Ganymede and Callisto.

Icarus, 44(2), 454–471. https://doi.org/10.1016/0019-1035(80)90037-8

Melosh, H. J. (1982). A simple mechanical model of Valhalla basin, Callisto. Journal of Geophysical Research, 87(B3), 1880–1890. https://doi.

org/10.1029/JB087iB03p01880

Melosh, H. J. (2011). Planetary surface processes. Cambridge University Press.

Morrison, S. J., Thomas, P. C., Tiscareno, M. S., Burns, J. A., & Veverka, J. (2009). Grooves on small Saturnian satellites and other objects:

Characteristics and significance. Icarus, 204(1), 262–270. https://doi.org/10.1016/j.icarus.2009.06.003

Nayak, M., & Asphaug, E. (2016). Sesquinary catenae on the Martian satellite Phobos from reaccretion of escaping ejecta. Nature Communications, 7(1), 12591. https://doi.org/10.1038/ncomms12591

O’Brien, D. P., Marchi, S., Morbidelli, A., Bottke, W. F., Schenk, P. M., Russell, C. T., & Raymond, C. A. (2014). Constraining the cratering

chronology of Vesta. Planetary and Space Science, 103, 131–142. https://doi.org/10.1016/j.pss.2014.05.013

Ortiz, J. L., Santos-Sanz, P., Sicardy, B., Benedetti-Rossi, G., Bérard, D., Morales, N., et al. (2017). The size, shape, density and ring of the dwarf

planet Haumea from a stellar occultation. Nature, 550(7675), 219–223.

Pál, A., Kiss, C., Müller, T. G., Santos-Sanz, P., Vilenius, E., Szalai, N., et al. (2012). “TNOs are cool”: A survey of the trans-Neptunian region

VII. Size and surface characteristics of (90377) Sedna and 2010 EK139 (Vol. 541, No. (L6)). Astronomy & Astrophysics.

Parker, A., Buie, M. W., Grundy, W., Noll, K., Young, L., Schwamb, M. E., et al. (2018). The mass, density, and figure of the Kuiper belt dwarf

planet makemake. In AAS/Division for Planetary Sciences Meeting Abstracts# 50 (Vol. 50, pp. 509-02).

Prockter, L., Thomas, P., Robinson, M., Joseph, J., Milne, A., Bussey, B., et al. (2002). Surface expressions of structural features on Eros. Icarus,

155(1), 75–93. https://doi.org/10.1006/icar.2001.6770

Ragozzine, D., & Brown, M. E. (2009). Orbits and masses of the satellites of the dwarf planet Haumea (2003 EL61). The Astronomical Journal,

137(6), 4766–4776. https://doi.org/10.1088/0004-6256/137/6/4766

Raymond, C. A., Park, R. S., Asmar, S. W., Konopliv, A. S., Buczkowski, D. L., De Sanctis, M. C., et al. (2013). Vestalia Terra: An ancient

mascon in the southern hemisphere of Vesta. In 44th lunar planetary science conference. abstract #2882.

Raymond, C. A., Russell, C. T., & McSween, H. Y. (2017). Dawn at Vesta: Paradigms and paradoxes. In L. Elkins-Tanton & B. Weiss (Eds.),

Planetesimals: Early differentiation and consequences for planets (pp. 321–340). Cambridge University Press.

Russell, C. T., & Raymond, C. A. (2011). The Dawn mission to Vesta and Ceres. Space Science Reviews, 163(1–4), 3–23. https://doi.org/10.1007/

s11214-011-9836-2

Russell, C. T., Raymond, C. A., Coradini, A., McSween, H. Y., Zuber, M. T., Nathues, A., et al. (2012). Dawn at Vesta: Testing the protoplanetary

paradigm. Science, 336(6082), 684–686. https://doi.org/10.1126/science.1219381

Schäfer, M., Nathues, A., Williams, D. A., Mittlefehldt, D. W., Le Corre, L., Buczkowski, D. L., et al. (2014). Imprint of the Rheasilvia impact on

Vesta – Geologic mapping of quadrangles Gegania and Lucaria. Icarus, 244, 60–73. https://doi.org/10.1016/j.icarus.2014.06.026

Scheeres, D. J., Durda, D. D., & Geissler, P. E. (2002). The fate of asteroid ejecta. In W. F. Bottke (Ed.). Asteroid III. University of Arizona Press.

Schenk, P., Kirchoff, M., Hoogenboom, T., & Rivera-Valentín, E. (2020). The anatomy of fresh complex craters on the mid-sized icy moons of

Saturn and self-secondary cratering at the rayed crater Inktomi (Rhea). Meteoritics & Planetary Sciences, 55(11), 2440–2460. https://doi.

org/10.1111/maps.13592

Schenk, P., O’Brien, D. P., Marchi, S., Gaskell, R., Preusker, F., Roatsch, T., et al. (2012). The geologically recent giant impact basins at Vesta's

south Pole. Science, 336(6082), 694–697. https://doi.org/10.1126/science.1223272

Schenk, P. M., McKinnon, W., Moore, J., Nimmo, F., Stern, S. A., Weaver, H., et al. (2015). A large impact origin for Sputnik Planum and

surrounding terrains, Pluto? In AAS/Division for Planetary Sciences Meeting Abstracts #47.

Schmedemann, N., Kneissl, T., Ivanov, B., Michael, G., Wagner, R., Neukum, G., et al. (2014). The cratering record, chronology and surface

ages of (4) Vesta in comparison to smaller asteroids and the ages of HED meteorites. Planetary and Space Science, 103, 104–130. https://doi.

org/10.1016/j.pss.2014.04.004

Schmedemann, N., Neesemann, A., Schulzeck, F., Krohn, K., von der Gathen, I., Otto, K. A., et al. (2017). The distribution of impact ejecta on

Ceres. In 48th lunar and planetary science conference. abstract #1233.

Schmedemann, N., Schulzeck, F., Krohn, K., von der Gathen, I., Otto, K. A., Jaumann, R., et al. (2018). The distribution of diogenitic material on

Vesta in comparison with Rheasilvia ejecta. In 49th lunar and planetary science conference. abstract #2083.

HIRATA

18 of 19

21699100, 2023, 3, Downloaded from https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2022JE007473 by Kobe University, Wiley Online Library on [23/05/2023]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License

Journal of Geophysical Research: Planets

10.1029/2022JE007473

Scully, J. E. C., Buczkowski, D. L., Schmedemann, N., Raymond, C. A., Castillo-Rogez, J. C., King, S. D., et al. (2017). Evidence for the interior

evolution of Ceres from geologic analysis of fractures. Geophysical Research Letters, 44(19), 9564–9572. https://doi.org/10.1002/2017gl075086

Scully, J. E. C., Yin, A., Russell, C., Buczkowski, D., Williams, D., Blewett, D., et al. (2014). Geomorphology and structural geology of Saturnalia

Fossae and adjacent structures in the northern hemisphere of Vesta. Icarus, 244, 23–40. https://doi.org/10.1016/j.icarus.2014.01.013

Sicardy, B., Ortiz, J. L., Assafin, M., Jehin, E., Maury, A., Lellouch, E., et al. (2011). A Pluto-like radius and a high albedo for the dwarf planet

Eris from an occultation. Nature, 478(7370), 493–496. https://doi.org/10.1038/nature10550

Smart, K. J., Wyrick, D. Y., & Ferrill, D. A. (2011). Discrete element modeling of Martian pit crater formation in response to extensional fracturing and dilational normal faulting. Journal of Geophysical Research, 116(E4), E04005. https://doi.org/10.1029/2010je003742

Spudis, P. D. (1993). The geology of multi-ring impact basins (p. 263). Cambridge University Press.

Stern, S. A., Bagenal, F., Ennico, K., Gladstone, G. R., Grundy, W. M., McKinnon, W. B., et al. (2015). The Pluto system: Initial results from its

exploration by new horizons. Science, 350(6258), aad1815.

Stickle, A. M., Schultz, P. H., & Crawford, D. A. (2015). Subsurface failure in spherical bodies: A formation scenario for linear troughs on Vesta's

surface. Icarus, 247, 18–34. https://doi.org/10.1016/j.icarus.2014.10.002

Sullivan, R., Greeley, R., Pappalardo, R., Asphaug, E., Moore, J., Morrison, D., et al. (1996). Geology of 243 Ida. Icarus, 120(1), 119–139.

https://doi.org/10.1006/icar.1996.0041

Thomas, P. C. (1998). Ejecta emplacement on the Martian satellites. Icarus, 131(1), 78–106. https://doi.org/10.1006/icar.1997.5858

Veverka, J., Thomas, P., Simonelli, D., Belton, M. J. S., Carr, M., Chapman, C., et al. (1994). The discovery of grooves on Gaspra. Icarus, 107(1),

72–83. https://doi.org/10.1006/icar.1994.1007

Whitten, J. L., & Martin, E. S. (2019). Icelandic pit chains as planetary analogs: Using morphologic measurements of pit chains to determine

regolith thickness. Journal of Geophysical Research: Planets, 124(11), 2983–2999. https://doi.org/10.1029/2019je006099

Wilhelms, D. E. (1976). Secondary impact craters of lunar basins. In Proceeding of 7th Lunar Planetary Science Conference (pp. 2883–2901).

Williams, D. A., Kneissl, T., Neesemann, A., Mest, S., Palomba, E., Platz, T., et al. (2018). The geology of the Kerwan quadrangle of dwarf planet

Ceres: Investigating Ceres' oldest, largest impact basin. Icarus, 316, 99–113. https://doi.org/10.1016/j.icarus.2017.08.015

Wyrick, D., Ferrill, D. A., Morris, A. P., Colton, S. L., & Sims, D. W. (2004). Distribution, morphology, and origins of Martian pit crater chains.

Journal of Geophysical Research, 109(E6), E06005. https://doi.org/10.1029/2004je002240

Wyrick, D. Y., & Buczkowski, D. L. (2022). Pit Crater chains across the solar system: Evidence for subterranean tectonic caves, porosity

and permeability pathways on planetary bodies. Journal of Geophysical Research: Planets, 127(12), e2022JE007281. https://doi.

org/10.1029/2022je007281

Yingst, R. A., Mest, S., Berman, D., Garry, W., Williams, D., Buczkowski, D., et al. (2014). Geologic mapping of Vesta. Planetary and Space

Science, 103, 2–23. https://doi.org/10.1016/j.pss.2013.12.014

HIRATA

19 of 19

21699100, 2023, 3, Downloaded from https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2022JE007473 by Kobe University, Wiley Online Library on [23/05/2023]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License

Journal of Geophysical Research: Planets

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る