リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「A global system of furrows on Ganymede indicative of their creation in a single impact event」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

A global system of furrows on Ganymede indicative of their creation in a single impact event

Hirata, Naoyuki Suetsugu, Ryo Ohtsuki, Keiji 神戸大学

2020.12

概要

Furrows are a concentric system of tectonic troughs, and are the oldest recognizable surface feature on Ganymede. We analyzed the distribution of furrows utilizing Voyager and Galileo images and found that furrows over Ganymede's surface are part of a global concentric circular structure. If this multi-ring structure is impact origin, this is the largest impact structure identified so far in the solar system. Deviations of the shapes of the furrows from the concentricity are small everywhere, which implies that the relative location of the blocks of the dark terrains over the entire surface of Ganymede has not changed appreciably even during formation of the bright terrains. The estimate of the impactor size is difficult, but an 150 km-radius impactor is consistent with the observed properties of furrows. The furrow-forming impact should have significant effects on the satellite's geological and internal evolution, which are expected to be confirmed by future explorations of Jupiter's icy moons, such as the JUICE (Jupiter Icy moon Explorer) or Europa Clipper mission.

この論文で使われている画像

参考文献

688

Amsden, A. A., H. M. Ruppel, and C. W. Hirt (1980), SALE: a simplified ALE computer

689

program for fluid flow at all speeds, Los Alamos National Laboratory Report LA-8095

690

– 1980, Los Alamos, NM.

691

692

693

Barr, A. C., R. M. Canup, (2010), Origin of the Ganymede-Callisto dichotomy by impacts

during the late heavy bombardment, Nature Geoscience 3, 164.

Bray, V. J., G. S. Collins, J. V. Morgan, H. J. Melosh, and P. M. Schenk (2014), Hydrocode

38

694

simulation of Ganymede and Europa cratering trends – How thick is Europa’s crust?,

695

Icarus, 231, 394-406, doi:https://doi.org/10.1016/j.icarus.2013.12.009.

696

Casacchia, R., and R. G. Strom (1984), Geologic evolution of Galileo Regio, Ganymede,

697

Journal

698

doi:10.1029/JB089iS02p0B419.

of

Geophysical

Research:

Solid

Earth,

89(S02),

B419-B428,

699

Collins, G. C., G. W. Patterson, J. W. Head, R. T. Pappalardo, L. M. Prockter, B. K. Lucchitta,

700

and J. P. Kay (2013), Global geologic map of Ganymede: U.S. Geological Survey

701

Scientific Investigations Map 3237, pamphlet 4 p., 1 sheet, scale 1:15,000,000,

702

http://dx.doi.org/10.3133/sim3237.

703

Collins, G. S. (2014), Numerical simulations of impact crater formation with dilatancy,

704

Journal

705

doi:doi:10.1002/2014JE004708.

of

Geophysical

Research:

Planets,

119(12),

2600-2619,

706

Collins, G. S., D. Elbeshausen, K. Wünnemann, T. M. Davison, B. A. Ivanov, and H. J.

707

Melosh (2016), iSALE: A multi-material, multi-rheology shock physics code for

708

simulating impact phenomena in two and three dimensions. iSALE-Dellen manual.

709

Collins, G. S., H. J. Melosh, and K. Wünnemann (2011), Improvements to the ɛ-α porous

710

compaction model for simulating impacts into high-porosity solar system objects,

711

International

712

doi:https://doi.org/10.1016/j.ijimpeng.2010.10.013.

713

Journal

of

Impact

simulations,

715

doi:doi:10.1111/j.1945-5100.2004.tb00337.x.

Meteoritics

Planetary

planetesimals,

718

doi:https://doi.org/10.1016/j.gca.2012.08.001.

720

434-439,

Science,

39(2),

217-231,

Davison, T. M., F. J. Ciesla, and G. S. Collins (2012), Post-impact thermal evolution of porous

717

719

38(6),

Collins, G. S., M. H. Jay, and I. B. A. (2004), Modeling damage and deformation in impact

714

716

Engineering,

Geochimica

et

Cosmochimica

Acta,

95,

252-269,

Frieden, B. R., and W. Swindell (1976), Restored Pictures of Ganymede, Moon of Jupiter,

Science, 191(4233), 1237-1241, doi:10.1126/science.191.4233.1237.

721

Gomes, R., H. F. Levison, K. Tsiganis, and A. Morbidelli (2005), Origin of the cataclysmic

722

Late Heavy Bombardment period of the terrestrial planets, Nature, 435, 466,

723

doi:10.1038/nature03676.

724

Greeley, R., J. E. Klemaszewski, and R. Wagner (2000), Galileo views of the geology of

725

Callisto,

726

doi:https://doi.org/10.1016/S0032-0633(00)00050-7.

Planetary

and

Space

Science,

48(9),

829-853,

727

Ivanov, B. A., D. Deniem, and G. Neukum (1997), Implementation of dynamic strength

728

models into 2D hydrocodes: Applications for atmospheric breakup and impact

729

cratering,

International

Journal

of

39

Impact

Engineering,

20(1),

411-430,

730

doi:https://doi.org/10.1016/S0734-743X(97)87511-2.

731

Ivanov, B., and V. Kostuchenko (1997), Block oscillation model for impact crater collapse, in

732

28th Lunar and Planetary Science Conference, Abstract #631, Lunar and Planetary

733

Institute, Houston.

734

Johnson, B. C., T. J. Bowling, A. J. Trowbridge, and A. M. Freed (2016b), Formation of the

735

Sputnik Planum basin and the thickness of Pluto's subsurface ocean, Geophysical

736

Research Letters, 43(19), 10,068-10,077, doi:doi:10.1002/2016GL070694.

737

Johnson, B. C., T. J. Bowling, and H. J. Melosh (2013), Formation of Valhalla-Like

738

Multi-Ring Basins, in 44th Lunar and Planetary Science Conference, Abstract #1302,

739

Lunar and Planetary Institute, Houston.

740

741

Johnson, B. C., et al. (2016a), Formation of the Orientale lunar multiring basin, Science,

354(6311), 441-444, doi:10.1126/science.aag0518.

742

Jones, K. B., J. W. Head III, R. T. Pappalardo, J. M.Moore, (2003), Morphology and origin of

743

palimpsests on Ganymede based on Galileo observations, Icarus 164(1), 197-212.

744

McKinnon, W. B., and E. Parmentier (1986), Ganymede and Callisto, in Satellites (Eds. J. A.

745

Burns and M. S. Matthews), University of Arizona Press, Tucson.

746

McKinnon, W. B., and H. J. Melosh (1980), Evolution of planetary lithospheres: Evidence

747

from multiringed structures on Ganymede and Callisto, Icarus, 44(2), 454-471,

748

doi:http://dx.doi.org/10.1016/0019-1035(80)90037-8.

749

Melosh, H. J. (1982), A simple mechanical model of Valhalla Basin, Callisto, Journal of

750

Geophysical Research: Solid Earth, 87(B3), 1880-1890, doi:10.1029/JB087iB03p01880.

751

Melosh, H. J., E. V. Ryan, and E. Asphaug (1992), Dynamic fragmentation in impacts:

752

Hydrocode simulation of laboratory impacts, Journal of Geophysical Research:

753

Planets, 97(E9), 14735-14759, doi:10.1029/92JE01632.

754

755

Nimmo, F., and R. T. Pappalardo (2004), Furrow flexure and ancient heat flux on Ganymede,

Geophysical Research Letters, 31(19), L19701, doi:10.1029/2004GL020763.

756

Pappalardo, R. T., G. C. Collins, J. Head, P. Helfenstein, T. B. McCord, J. M. Moore, L. M.

757

Prockter, P. M. Schenk, and J. R. Spencer (2004), Geology of Ganymede, in Jupiter:

758

The Planet, Satellites and Magnetosphere (Eds. F. Bagenal et al.), Cambridge

759

University Press, Cambridge, United Kingdom.

760

Passey, Q. R., and E. M. Shoemaker (1982), Craters and basins on Ganymede and

761

Callisto-Morphological indicators of crustal evolution, in Satellites of Jupiter (Eds.

762

D. Morrison and M. S. Matthews), University of Arizona Press, Tucson.

763

Prockter, L. M., G. C. Collins, S. L. Murchie, P. M. Schenk, and R. T. Pappalardo (2002),

764

Ganymede Furrow Systems as Strain Markers: Implications for Evolution and

765

Resurfacing Processes, in 33rd Lunar and Planetary Science Conference, Abstract

40

766

767

768

769

770

771

772

#1272, Lunar and Planetary Institute, Houston.

Schenk, P. M. (1995), The geology of Callisto, Journal of Geophysical Research: Planets,

100(E9), 19023-19040, doi:10.1029/95JE01855.

Schenk, P. M., and F. J. Ridolfi (2002), Morphology and scaling of ejecta deposits on icy

satellites, Geophysical Research Letters, 29(12), 1590, doi:10.1029/2001GL013512.

Schenk, P. M., and W. B. McKinnon (1987), Ring geometry on Ganymede and Callisto, Icarus,

72(1), 209-234, doi:http://dx.doi.org/10.1016/0019-1035(87)90126-6.

773

Schubert, G., J. Anderson, T. Spohn, and W. McKinnon (2004), Interior composition,

774

structure and dynamics of the Galilean satellites, in Jupiter: The Planet, Satellites

775

and Magnetosphere (Eds. F. Bagenal et al.), Cambridge University Press, Cambridge,

776

United Kingdom.

777

Senft, L. E., and S. T. Stewart (2008), Impact crater formation in icy layered terrains on

778

Mars,

779

doi:doi:10.1111/j.1945-5100.2008.tb00657.x.

Meteoritics

Planetary

Science,

43(12),

1993,

780

Shoemaker , E. M., and R. Wolfe (1982), Cratering time scales for the Galilean satellites, in

781

Satellites of Jupiter (Eds. D. Morrison and M. S. Matthews), University of Arizona

782

Press, Tucson.

783

784

785

786

Smith, B. A., et al. (1979a), The Galilean Satellites and Jupiter: Voyager 2 Imaging Science

Results, Science, 206(4421), 927-950, doi:10.1126/science.206.4421.927.

Smith, B. A., et al. (1979b), The Jupiter System Through the Eyes of Voyager 1, Science,

204(4396), 951-972, doi:10.1126/science.204.4396.951.

787

Strom, R. G., A. Woronow, and M. Gurnis (1981), Crater populations on Ganymede and

788

Callisto, Journal of Geophysical Research: Space Physics, 86(A10), 8659-8674,

789

doi:doi:10.1029/JA086iA10p08659.

790

Thompson, S., and H. Lauson (1974), Improvements in the Chart D radiation-hydrodynamic

791

CODE III: Revised analytic equations of state, Sandia National Laboratories Report

792

SC-RR--71-0714, Albuquerque, NM.

793

Tillotson, J. H. (1962), Metallic equations of state for hypervelocity impact, General Atomic

794

Report GA-3216, Division of General Dynamics, John Jay Hopkins Laboratory for

795

Pure and Applied Science, San Diego, CA.

796

797

Tonks, W. B., and H. Jay Melosh (1992), Core formation by giant impacts, Icarus, 100(2),

326-346, doi:https://doi.org/10.1016/0019-1035(92)90104-F.

798

U.S. Geological Survey (2003), Controlled color photomosaic map of Ganymede; Jg 15M

799

CMNK: U.S. Geological Survey Geologic Investigations Series I–2762, available at

800

https://pubs.usgs.gov/imap/i2762/.

801

Wünnemann, K., G. S. Collins, and H. J. Melosh (2006), A strain-based porosity model for

41

802

use in hydrocode simulations of impacts and implications for transient crater growth

803

in

804

doi:https://doi.org/10.1016/j.icarus.2005.10.013.

805

806

porous

Icarus,

targets,

180(2),

514-527,

Zahnle, K., P. Schenk, H. Levison, and L. Dones (2003), Cratering rates in the outer Solar

System, Icarus, 163(2), 263-289.

807

Zuber, M. T., and E. M. Parmentier (1984), A geometric analysis of surface deformation:

808

Implications for the tectonic evolution of Ganymede, Icarus, 60(1), 200-210,

809

doi:http://dx.doi.org/10.1016/0019-1035(84)90148-9.

810

811

812

42

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る