リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Rotational effect as the possible cause of the east-west asymmetric crater rims on Ryugu observed by LIDAR data」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Rotational effect as the possible cause of the east-west asymmetric crater rims on Ryugu observed by LIDAR data

Hirata, Naoyuki Namiki, Noriyuki Yoshida, Fumi Matsumoto, Koji Noda, Hirotomo Senshu, Hiroki Mizuno, Takahide Terui, Fuyuto Ishihara, Yoshiaki Yamada, Ryuhei Yamamoto, Keiko Abe, Shinsuke Noguchi, Rina Hirata, Naru Tsuda, Yuichi Watanabe, Sei-ichiro 神戸大学

2021.01.15

概要

Asteroid 162,173 Ryugu is a rubble-pile asteroid, whose top-shape is compatible with models of deformation by spin up. Rims of major craters on Ryugu have an east-west asymmetric profile; their western crater rims are sharp and tall, while their eastern crater rims are rounded and low. Although there are various possible explanations, we theoretically assess the effect of asteroid rotation as the possible reason for this east-west asymmetry. It is known that the trajectories and fates of ejecta are affected by the rotation. The Coriolis force and the inertial speed of the rotating surface are the factors altering the ejecta trajectories. Consequently, we found that the east-west asymmetric crater rims might be formed as a result of rotation, when the inertial speed of the rotating surface is nearly equal to the first cosmic velocity of the body. In other words, it is possible that the observed east-west asymmetric rims of the Urashima, Cendrillon, and Kolobok craters were formed when Ryugu's rotation period was ~3.6 h.

この論文で使われている画像

参考文献

494

Arakawa, M. et al., (2020), Artificial impact crater formed on the asteroid

495

162173 Ryugu in The gravity-dominated regime, Science 368, Issue

496

6486, pp. 67-71.

497

498

499

Burns, J. A. (1978). The dynamical evolution and origin of the martian

moons. Vistas in Astronomy 22, Part 2, 193-210.

Davis, D.R., K.R. Housen, Richard Greenberg, (1981), The unusual

500

dynamical environment of Phobos and Deimos, Icarus 47(2), 220-233.

501

Dobrovolskis, A.R., Joseph A. Burns, (1980), Life near the Roche limit:

502

Behavior of ejecta from satellites close to planets. Icarus 42(3),

503

422-441.

504

Geissler, P., Jean-Marc Petit, Daniel D. Durda, Richard Greenberg, William

505

Bottke, Michael Nolan, Jeffrey Moore, (1996), Erosion and Ejecta

506

Reaccretion on 243 Ida and Its Moon. Icarus 120(1), 140-157.

507

Hirabayashi, M. et al. (2019), The Western Bulge of 162173 Ryugu Formed

508

as a Result of a Rotationally Driven Deformation Process. The

509

Astrophysical Journal Letters 874, Number 1.

510

511

512

513

514

515

Hirata, Naoyuki et al. (2020), The spatial distribution of craters on Ryugu,

Icarus 338, 113527.

Housen, Kevin R., and Keith A. Holsapple, (2011), Ejecta from impact craters.

Icarus 211, 856–875.

Matsumoto, K. et al. (2020), Improving Hayabusa2 trajectory by combining

LIDAR data and a shape model, Icarus 338, 113574

516

Namiki, N. et al. (2019) Topography of large craters of 162173 Ryugu,

517

abstract #2658 presented at 50th LPSC, Houston, Texas, 18-22 March.

518

Noguchi, R. et al. (2020), Crater depth-to-diameter ratios on asteroid 162173

519

520

521

Ryugu, Icarus in press.

Pravec, Petr, and Alan W. Harris (2000), Fast and Slow Rotation of Asteroids,

Icarus 148(1), 12-20.

522

Scheeres, D. J., D.D. Durda, and P.E. Geissler, (2002), The Fate of Asteroid

523

Ejecta, in Asteroid III (Eds. William F. Bottke et al.), University of

Arizona Press, Tucson.

524

525

Shor, V. A. (1975), The motions of the Martian satellites, Celestial mechanics

12(1), 61-75.

526

527

Sugita, S. et al. (2019) The geomorphology, color, and thermal properties of

Ryugu: Implications for parent-body processes. Science 364, 272-275.

528

529

Thomas, P.C., (1998), Ejecta Emplacement on the Martian Satellites. Icarus

131(1), 78-106.

530

531

Thomas, P.C., J. Veverka, M. S. Robinson and S. Murchie, (2001), Shoemaker

532

crater as the source of most ejecta blocks on the asteroid 433 Eros.

533

Nature 413, 394–396.

534

Veverka, J., P. Helfenstein, P. Lee, P. Thomas, A. McEwen, M. Belton, K.

535

Klaasen, T.V. Johnson, J. Granahan, F. Fanale, P. Geissler, J.W. Head

536

III, (1996), Ida and Dactyl: Spectral Reflectance and Color Variations.

537

Icarus 120(1), 66-76.

538

Walsh, Kevin J., Derek C. Richardson, and Patrick Michel (2008), Rotational

breakup as the origin of small binary asteroids, Nature 454, 188–191.

539

540

Watanabe, S. et al. (2019), Hayabusa2 arrives at the carbonaceous asteroid

541

162173 Ryugu—A spinning top–shaped rubble pile. Science 364,

542

268-272.

543

544

545

Table 1. The 7 named craters on Ryugu and their basic data from Hirata et al.

546

(2020).

Name

Lat.

Lon. (°E)

D (m)

CL*1

Urashima

-7.19

92.99

290

Cendrillon

28.34

353.68

224

II

Kolobok

-0.70

330.28

221

II

Momotaro

-14.83

51.20

183

Kintaro

0.42

157.84

154

II

Brabo

3.24

229.95

142

Kibidango

-31.50

47.26

131

Classification shown in Hirata et al.; CL I means circular depression with

547

*1

548

rim and II circular depression without rim.

549

550

551

Table 2. Scaling parameters used in ejecta model, based on Housen and

Holsapple, (2011).

No.*

C1

C2

C3

C4

C5

C6

C7

C8

Reg.**

0.55

0.55

0.46

0.41

0.41

0.45

0.40

0.35

0.2

0.3

0.3

0.3

0.3

0.5

0.3

0.32

1.5

1.50

0.18

0.55

0.55

1.00

0.55

0.60

0.68

0.59

0.59

0.8

1.1

0.38

0.40

0.81

1.5

1.0

1.0

1.3

1.3

1.3

1.0

1.0

0.5

0.5

0.3

0.3

0.3

0.3

0.3

0.2

1000

3000

2600

1600

1510

1500

1500

1200

30

0.45

4×10-3

2×10-3

𝝆𝝆𝒕𝒕

𝝁𝝁

𝒌𝒌

𝑪𝑪𝟏𝟏

𝑯𝑯𝟏𝟏

𝑯𝑯𝟐𝟐

𝒏𝒏𝟐𝟐

𝒑𝒑

(kg/m3)

𝒀𝒀

(MPa)

552

* Scaling parameters for Water (C1), Rock (C2), weakly cemented basalt (C3), sand (C4

553

and C5), glass micro-spheres (C6), sand/fly ash mixture (C7), and perlite/sand mixture

554

(C8).

555

** The strength regime (S) or gravity regime (G).

556

(e)

05

0.505

0 .49

...

... ,------- - ---------,

•••

...

-2

....

crater radii

0518

(f)

0516

051'

0512

051

0.508

ca.

0.500

(1)

,? 0504

0.502

0.5

..

(C)

0,498

- -- - - - - - - - ~

' - - - --1

crater radii

(g)

Kolobok

052

('y~

\ J

. - - - - - - - - =cr:..:a::;tec:;r..:cra::cd:,:ii_ _ _ _ _--,

Brabo / \

(\

I .

0.496 ' - - -- ~ - - - - - - - - - - - '

-1

-2

-2

053

·~-2~----_-1____0 , - - - - - - - - - - - ~

Cendrillon

Kintaro

0.5

• • • L.__ _ _ _ _ _ _ _ _ _ _ _ _ ___J

(b)

0 . .5

...

,---- - - - . . , ,c~,a~e,,.r..ca,,,d,,,ii' - - - - - - - - ,

Kibidango

,,,.

.'\

0455

051

"'.

05

...

0 .435

043 ' - - - - ~ - - - - - - - - - - - '

·1

-2

0485

ra:.:dc:.ii_ _..,...._ _--,

::te::.r.:.:

,-----.----.---=crca.:::

(d) •••

f \Momotaro !

0475

041

....

~!

O45S

557

...

crater radii

... L - - - -~ - - - - -- - - - - - '

-2

-1

558

Figure 1. Observed east-west asymmetric profiles of the 7 named craters on

559

Ryugu. In each plate, left side is west, and right side is east. The profiles are

560

from the shape model of Watanabe et al. (2019). Survey lines are shown in

561

Figure 2. Note that a sharp peak at the right side of Kibidango, and two

562

sharp peaks at the right side of Kolobok are boulders.

563

30°

Topography(m)

379 - - - - - - -- 529

o-----Slope(0 )

564

60

565

Figure 2. Local simple cylindrical projection maps of the 7 named craters and

566

locations of the survey lines in Figure 1. In each location, there are three

567

plates of ONC-T images mosaic colorized by topography and geopotential

568

slope at a rotation of 7.627 h and 3.5 hour. The center and length of the lines

569

is defined as the center and twice of the diameter of each crater, respectively.

570

Topography is defined as the distance from the geometric center of Ryugu.

571

572

,._____ x - - - --+

4--------

573

R: ______,

--- - - - - - - - n2Rc - ----------,

574

Figure 3. Definition of variables in Eq. (5) in Section 2.1. Dashed line is a

575

trajectory of a particle launched at a location,𝑥𝑥.

576

-1500

Initial launch

velocity

- - 1 .18

- - 1.65

-600

(a)

(b)

·1000

West

East

-550

-500

'<

~o

-500

2-

500

-450

1000

1500

1500

1000

500

-500

= 10000 h

-1000

-400

-1500

100

50

(m)

-1500

-50

=10000 h

-100

- - 2.14

- - 2.71

3.39

- - 4.24

5.32

- - 6.73

8.62

- - 11 .2

14.9

- - 20.4

- - 29.0

- - 43.1

68.7

120

- - 687

1200

3738

(cm/s)

(m)

-600

(c)

(d)

·1000

-550

-500

'<

-500

500

-450

1000

1500

1500

1000

500

-1500

-500

=7.627 h

·1000

-400

-1500

100

50

(m)

-50

=7.627 h

-100

x(m)

-600

(e)

·1000

-550

-500

'<

-500

500

-450

1000

577

1500

1500

1000

500

-500

=5.0 h

-1000

-400

-1500

100

50

-50

=5.0 h

-100

578

Figure 4. The trajectories of a particle launched from a 50m-radius crater to

579

the west and east, when 𝑇𝑇 =10000, 7.627, and 5.0 hours. The xy-plane

580

581

582

corresponds to the equatorial plane of Ryugu. Although we calculate

trajectories of 𝑁𝑁1 × 𝑁𝑁2 = 36,000,000 ejecta particles in order to obtain

Figs. 7, 9-11, a part of them is shown in this figure. The velocities of the

583

trajectories correspond to the initial lunch velocities of ejecta particles

584

launched from the initial launch position,𝑥𝑥, in increments of one-twentieth of

585

the crater rim radius.

586

-1500

-600

-1000

·550

-500

'<

-500

~O

2-

500

-450

1000

T = 3.5 h

1500

1500

1000

500

·500

·1000

T = 3.5 h

-400

·1500

100

50

(m)

·1500

-50

·100

Initial lau nch

velocity

- - 1.18

- - 1.65

- - 2.14

- - 2.71

3.39

- - 4.24

5.32

- - 6.73

8.62

- - 11.2

14.9

- - 20.4

- - 29.0

- - 43.1

68.7

120

- - 687

1200

3738

(cm/s)

(m)

·600

·1000

·550

·500

'<

·500

500

-450

1000

T = 3.0 h

587

1500

1500

1000

500

-500

-1000

·400

-1500

100

50

·SO

·100

588

Figure 5. The trajectories of a particle launched from the 50m-radius crater

589

to the west and east, when 𝑇𝑇=3.5 and 3.0 hours.

590

(a) T=10000h

90

Initial launch

vel ocity (cm/s)

10

60

30

·30

·10

-60

1.18

1.65

2.14

2.71

3.39

·90

30

60

90

(b) T=7.627h

1 20 150 180

210

240

270

300 330

360

140

160

150

170

180

190

200

Long1tude(E)

LOOg1tude(E)

90

60

10

30

·30

-60

4.24

5.32

6.7 3

8.62

11.2

14.9

20.4

29.0

- - Crater rim

-10

·90

30

60

90

(c) T=S.0h

120 150 180

210

140

240 270 300 330 360

150

160

Long1tude(E)

170

180

190

200

Long1tude(E)

90

.,'

10

60

30

·30

:(Q)

f-~

·60

-10

·90

30

60

90

(d) T=3.5h

1 20 150 180

210

240

270

300 330

360

140

150

160

Long1tude(E)

170

180

190

200

180

190

200

180

190

200

Long1tude(E)

90

10

60

30

·30

-10

-60

·90

30

60

90

(e) T=3.0h

1 20 150 180

210

240 270 300 330 360

140

150

160

Long1tude(E)

170

Loog1tude(E)

90

60

10

30

-30

-10

·60

-90

30

60

90

120 150 180

210

Long1tude(E)

591

240 270 300 330 360

140

150

160

170

Loog1tude(E)

592

Figure 6. The landing locations of particles launched from a crater with a

593

radius of 50m at the equator as a function of initial launch velocity of ejecta

594

particles.

(a) T=10000h

90

Initial launch

Azimuth

10

60

East

NE

Nouth

NW

West

SW

South

SE

30

-30

-60

· 10

-90

30

60

90

120 150

180

210

240

270

300 330

140

360

150

160

Long1tude(E)

(b) T=7.627h

170

180

190

200

- - Crater rim

Long1tude(E)

90

60

10

30

-8

-8

-30

'\:,

-60

-10

-90

30

60

90

120

(c) T=5.0h

150

180 210

240

270

300

330

140

360

150

160

Long1tude(E)

170

180

190

200

180

190

200

180

190

200

180

190

200

Long1tude(E)

90

60

10

30

-8

-8

-30

-10

·60

30

60

90

1 20 150 180

(d) T=3.5h

210

240

270

300

330

360

140

150

160

Long1tude(E)

170

Long1tude(E)

90

10

60

30

-8

-8

il

'.l

·30

-10

·60

·90

30

60

90

1 20 150 180

(e) T=3.0h

210

240

270

300 330

360

140

150

160

170

Long1tude(E)

Long1tude(E)

90

60

10

30

-8

-8

-30

-60

-10

-90

30

60

90

120

150

180 210

Long1tude(E)

595

240

270

300

330

360

140

150

160

170

Long1tude(E)

596

Figure 7. The landing locations of particles launched from a crater with a

597

radius of 50m at the equator as a function of initial launch direction of ejecta

598

particles.

599

,l

(a)

90

T=10000h

60

30

-1

.,

-2

-3

-30

-5

-6

-60

10'(rn)

30

60

90

120

150 180 210 240 270

Longitude(E}

300

30

60

90

120

150 180 210 240 270

Longitude(E}

300 330 360

30

60

90

120

150 180 210 240 270

300 330 360

(b)

90

T=7.627h

60

;r

·1

-2

.3

330 360

30

.5

·60

10'(rn)

·90

(c)

90

T=5.0h

60

-1

-2

.3

"8

i_,

30

.5

·60

-6

10'(rn)

LOOgitude(E}

(d)

90

T=3.5h

60

'l"

-1

.,

~ 0

-2

.3

.30

-60

10'(rn)

(e)

30

60

90

120

150 180 210 240 270

Longitude(E}

300

30

60

90

120

150 180 210 240 270

Longitude(E)

300 330 360

90

T=3.0 h

330 360

60

'j"

-1

-2

.3

Io

.5

-60

-6

600

1o'(rn)

.,

...J

-30

.90

601

Figure 8. The global distribution of ejecta thickness launched from a

602

50m-radius crater at the equator.

603

(a)

10

7.627h

5,0h

3,5h

3.0h

:E

0,1

t-

"'

tl

0.01

0 .001

150

(b)

160

170

180

190

200

210

LOngitude(E)

10

3.

3.4h

3.3h

3.2h

3.lh

3,0h

..

:E

0.1

t-

"'

tl

,!I!.

0.01

0 .001

604

605

606

607

150

160

170

180

190

200

210

Longitude(E)

Figure 9. The west-east profile of the ejecta thickness near the crater at the

equator.

Cl

C2

C3

C4

C6

C7

C8

(a) T = 3.5 h

10

(/)

C6

C7

C8

(/)

(/)

(/)

Q)

Q)

C:

C:

{)

{)

Cl

C2

C3

C4

(b) T = 3.4 h

10

0.1

ro

t5

0.1

ro

t5

Q)

Q)

w0.01

w0.01

0.001

0.001

·3

·2

·1

·3

·2

·1

crater radii

crater radii

Cl

C2

C3

C4

C6

C7

C8

(c) T = 3.3 h

10

(/)

(/)

C3

C4

C6

C7

C8

(/)

Q)

Q)

C:

C2

10

(/)

C:

-""

.:£

.S1

Cl

(d) T = 3.2 h

.S1

0.1

ro

t5

0.1

ro

t5

Q)

Q)

w0.01

w0.01

0.001

0.001

·3

·2

·1

·3

·2

·1

crater radii

Cl

C2

C3

C4

C6

C7

C8

(e) T = 3.1 h

10

(/)

(/)

Cl

C2

C3

C4

10

C6

C7

C8

(/)

(/)

Q)

Q)

C:

C:

-""

{)

{)

crater radii

0.1

Q)

0.1

~Q)

w0.01

w0.01

---608

609

610

611

612

613

614

0.001

0.001

.3

·2

·1

.3

·2

·1

Figure 10. The comparison of model results in the 8 sets of scaling

parameters in Table 2. It shows that the west-east profile of the ejecta

thickness near the crater along the equator as a function of the rotation

period between 3.5h and 3.0 h.

(a)

90

LAT=30

60

10-1

-2

-3

30

QI

"O

_J

-4

·30

-5

-6

-60

10x(m)

30

(b)

LAT=60

10-1

-2

-3

-4

-5

-6

60

90

120

150 180 210

240

270

300 330 360

240

270

300 330 360

Longitude(E)

90

60

30

QI

"O

1i

_J

·30

-60

10x(m)

30

60

90

120

150 180 210

Longitude(E)

(c)

10

LAT=O

LAT=30

LAT=60

original

::l

QI

-l3

:c

0.1

I-

"'

t:l

fil

0.01

0.001

-3

615

616

617

618

619

620

621

622

623

624

-2

-1

crater radii

Figure 11. (a) The global ejecta thickness of a 50m-radius crater formed at

30°N, 180°W when 𝑇𝑇 =3.0 hours. (b) The global ejecta thickness of a

50m-radius crater formed at 60°N, 180°W when 𝑇𝑇 =3.0 hours. (c) The

comparison of the west-east profile of the ejecta thickness near the crater

formed at the equator, 30°N, and 60°N when 𝑇𝑇=3.0 hours. The horizontal

axis is scaled at 1 crater radius (50 meter).

Urashima

Cendrillon

(f)

(a)

90

T=10000h

90

T=10000h

60

-1

-2

-3

-4

60

f'

30

"C

.e o

-30

-1

-2

-3

30

-4

-60

-60

-5

10'(rn)

10'(rn)

30

(bl

60

90

90

120 150 180 210

Longitude(E)

240 270

300 330 360

60

21

-1

-2

-3

-4

Jj

-2

-3

-60

-4

30

60

90

120 150 180 210

Longitude(E)

240 270 300 330 360

10'(rn)

30

60

90

120

240 270

300 330 360

30

60

90

120 150 180 210 240 270

300 330 360

30

Jj

.e o

-2

-3

-30

-30

-4

·60

·60

-5

10'(rn)

30

60

90

(d)

90

T=3. 5h

120 150 180 210

Longitude(E)

240 270

300 330 360

(i)

90

T=3.5h

60

60

30

'I"

1l

-8

.e o

-2

-3

·30

-4

-60

JJ

·30

-2

-3

-60

-4

-5

-5

-90

10'(rn)

30

60

90

120 150 180 210

240 270 300 330 360

Longitude(E)

(e)

90

T=3.0h

10'(rn)

T=3.0h

60

2-

Longitude(E)

90

60

30

30

-8

-8

.e o

.e o

Jj

-30

-2

-3

-60

-4

-5

1o'(rn)

300 330 360

-8

.11

625

120 150 180 210 240 270

Longitude(E)

60

.e o

-4

90

-60

90

(h)

T=5.0h

-8

-2

-3

60

·30

-5

-90

30

.i

30

·30

60

300 330 360

.e o

-1

120 150 180 210 240 270

Longitude(E)

-8

.e o

-4

10'(rn)

90

30

-8

90

(c)

T=5.0h

-2

-3

60

60

30

10'(rn)

30

(g)

90

T=7.627h

T=7.627h

-30

-60

-5

30

60

90

120 150 180 210

240 270 300 330 360

10'(rn)

30

60

90

120 150 180 210 240 270

300 330 360

626

Figure 12. The global ejecta thicknesses from Urashima, Cendrillon, and

627

Kolobok and Brabo craters.

628

Kolobok

Brabo

(f)

(a)

90

T=10000h

90

T=10000h

60

Jj

60

f'

30

"C

.e o

-2

-3

-4

-5

·30

-60

10x(m)

-1

-2

-3

-4

-5

30

-60

10x(m)

30

(bl

60

90

90

120 150 180 210

Longitude(E)

240 270

300 330 360

30

60

90

120 150 180 210 240 270

Longitude(E)

300 330 360

30

60

90

120 150 180 210 240 270

Longitude(E)

300 330 360

30

60

90

120 150 180 210 240 270

Longitude(E)

300 330 360

30

60

90

120 150 180 210 240 270

300 330 360

(g)

90

T=7.627h

T=7.627h

60

60

230

X -1

-2

-3

-4

Jj

-8

.e o

.e o

-30

-2

-3

-4

-5

-60

10x(m)

30

60

90

90

(c)

T=5.0h

120 150 180 210

Longitude(E)

240 270 300 330 360

10x(m)

Jj

-8

.e o

.11

-2

-3

-4

-5

-30

-60

30

60

90

(d)

90

T=3.5h

-60

120 150 180 210

Longitude(E)

240 270

300 330 360

(i)

90

T=3.5h

60

60

'I"

1 -

"ll

-2

-3

-4

-5

30

-1

X -2

-3

-4

-5

-6

10x(m)

-8

.e o

'1

·30

-60

-90

10x(m)

30

60

90

120 150 180 210

240 270 300 330 360

Longitude(E)

(e)

90

T=3.0h

-30

-60

-90

T=3.0h

60

2-

30

30

-8

629

630

631

1o'(m)

Longitude(E)

90

60

-2

-3

-4

-5

-30

10x(m)

10x(m)

.i

30

-8

.e o

-1

-60

60

30

-30

90

(h)

T=5.0h

60

-2

-3

-4

30

-8

.e o

:l

-1

-2

-3

-4

-5

-6

10x(m)

-30

-60

30

60

90

120 150 180 210

240 270 300 330 360

-8

.e o

-30

-60

30

60

90

120 150 180 210 240 270

300 330 360

Figure 13. The global ejecta thicknesses from Kolobok and Brabo craters.

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る