リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「A β”‐Alumina/Inorganic Ionic Liquid Dual Electrolyte for Intermediate‐Temperature Sodium–Sulfur Batteries」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

A β”‐Alumina/Inorganic Ionic Liquid Dual Electrolyte for Intermediate‐Temperature Sodium–Sulfur Batteries

Wang, Di Hwang, Jinkwang Chen, Chi‐yao Kubota, Keigo Matsumoto, Kazuhiko Hagiwara, Rika 京都大学 DOI:10.1002/adfm.202105524

2021.11

概要

Although sodium–sulfur (Na–S) batteries present the great prospects of high energy density, long cyclability, and sustainability, their deployment is heavily encumbered by safety, practicality, and versatility issues engendered by their high operating temperatures above 300 °C. Lowering the operating temperatures impedes the performance of Na–S batteries due to the formation of insulating S/polysulfides, diminished Na ion conduction in the β”-alumina solid electrolyte (BASE), the Na metal dendrite growth at temperatures below its melting point, and the shuttle effect occurring in the absence of the BASE. Herein, a Na–S battery that integrates a dual electrolyte consisting of the BASE and a novel inorganic ionic liquid is proposed for intermediate-temperature operations of 150 °C. Investigations reveal the ionic liquid to have high ionic conductivity, wide electrochemical window, and excellent thermal and chemical stability, making it propitious for intermediate-temperature operations. The high reversible capacity of 795 mAh (g-S)⁻¹ at 0.1 mA (electrode area: 0.785 cm²) and an average capacity of 381 mAh (g-S)⁻¹ achieved over 1000 cycles at 0.5 mA validate the use of ionic liquids in dual electrolyte systems to improve Na–S performance.

この論文で使われている画像

参考文献

[1] International Energy Agency, World energy balances 2020: Overview, IEA, Paris 2020.

[2] N. L. Panwar, S. C. Kaushik, S. Kothari, Renew. Sustain. Energy Rev. 2011, 15, 1513.

[3] B. Dunn, H. Kamath, J.-M. Tarascon, Science 2011, 334, 928.

[4] T. Oshima, M. Kajita, A. Okuno, Int. J. Appl. Ceram. Technol. 2004, 1, 269.

[5] J. T. Kummer, N. Weber, SAE Trans. 1968, 76, 1003.

[6] R. Okuyama, E. Nomura, J. Power Sources 1999, 77, 164.

[7] J. K. Min, C.-H. Lee, J. Power Sources 2012, 210, 101.

[8] J. Sangster, A. D. Pelton, J. Phase Equilibria 1997, 18, 89.

[9] K. B. Hueso, M. Armand, T. Rojo, Energy Environ. Sci. 2013, 6, 734.

[10]Z. Wen, Y. Hu, X. Wu, J. Han, Z. Gu, Adv. Funct. Mater. 2013, 23, 1005.

[11]X. Lu, G. Xia, J. P. Lemmon, Z. Yang, J. Power Sources 2010, 195, 2431.

[12]S. Wenzel, H. Metelmann, C. Raiß, A. K. Dürr, J. Janek, P. Adelhelm, J. Power Sources 2013, 243, 758.

[13]I. Kim, J.-Y. Park, C. H. Kim, J.-W. Park, J.-P. Ahn, J.-H. Ahn, K.-W. Kim, H.-J. Ahn, J. Power Sources 2016, 301, 332.

[14]L. Medenbach, P. Hartmann, J. Janek, T. Stettner, A. Balducci, C. Dirksen, M. Schulz, M. Stelter, P. Adelhelm, Energy Technol. 2020, 8, 1901200.

[15]C.-W. Park, J.-H. Ahn, H.-S. Ryu, K.-W. Kim, H.-J. Ahn, Electrochem. Solid State Lett. 2006, 9, A123.

[16]C.-W. Park, H.-S. Ryu, K.-W. Kim, J.-H. Ahn, J.-Y. Lee, H.-J. Ahn, J. Power Sources 2007, 165, 450.

[17]D. Kumar, Mohd. Suleman, S. A. Hashmi, Solid State Ionics 2011, 202, 45.

[18]H. Ryu, T. Kim, K. Kim, J.-H. Ahn, T. Nam, G. Wang, H.-J. Ahn, J. Power Sources 2011, 196, 5186.

[19]Y.-M. Chen, W. Liang, S. Li, F. Zou, S. M. Bhaway, Z. Qiang, M. Gao, B. D. Vogt, Y. Zhu, J. Mater. Chem. A 2016, 4, 12471.

[20]R. Carter, L. Oakes, A. Douglas, N. Muralidharan, A. P. Cohn, C. L. Pint, Nano Lett. 2017, 17, 1863.

[21]Y.-X. Wang, W.-H. Lai, S.-L. Chou, H.-K. Liu, S.-X. Dou, Adv. Mater. 2020, 32, 1903952.

[22]X. Hong, J. Mei, L. Wen, Y. Tong, A. J. Vasileff, L. Wang, J. Liang, Z. Sun, S. X. Dou, Adv. Mater. 2019, 31, 1802822.

[23]C. Arbizzani, G. Gabrielli, M. Mastragostino, J. Power Sources 2011, 196, 4801.

[24]T. Yim, M.-S. Park, J.-S. Yu, K. J. Kim, K. Y. Im, J.-H. Kim, G. Jeong, Y. N. Jo, S.-G. Woo, K. S. Kang, I. Lee, Y.-J. Kim, Electrochim. Acta 2013, 107, 454.

[25]K. M. Abraham, R. D. Rauh, S. B. Brummer, Electrochim. Acta 1978, 23, 501.

[26]X. Lu, B. W. Kirby, W. Xu, G. Li, J. Y. Kim, J. P. Lemmon, V. L. Sprenkle, Z. Yang, Energy Environ. Sci 2013, 6, 299.

[27]X. Lu, G. Li, J. Y. Kim, D. Mei, J. P. Lemmon, V. L. Sprenkle, J. Liu, Nat. Commun. 2014, 5, 4578.

[28]F. Yang, S. M. A. Mousavie, T. K. Oh, T. Yang, Y. Lu, C. Farley, R. J. Bodnar, L. Niu, R. Qiao, Z. Li, Adv. Energy Mater. 2018, 8, 1701991.

[29]G. Nikiforidis, G. J. Jongerden, E. F. Jongerden, M. C. M. van de Sanden, M. N. Tsampas, J. Electrochem. Soc. 2019, 166, A135.

[30]S. Kandhasamy, G. Nikiforidis, G. J. Jongerden, F. Jongerden, M. C. M. Sanden, M. N. Tsampas, ChemElectroChem 2021, 8, 1156.

[31]K. . Ahlbrecht, C. Bucharsky, M. Holzapfel, J. Tübke, M. J. Hoffmann, Ionics 2017, 23, 1319.

[32]Y. Wang, D. Zhou, V. Palomares, D. Shanmukaraj, B. Sun, X. Tang, C. Wang, M. Armand, T. Rojo, G. Wang, Energy Environ. Sci. 2020, 13, 3848.

[33]M.-T. F. Rodrigues, G. Babu, H. Gullapalli, K. Kalaga, F. N. Sayed, K. Kato, J. Joyner, P. M. Ajayan, Nat. Energy 2017, 2, 1.

[34]J.-W. Park, K. Ueno, N. Tachikawa, K. Dokko, M. Watanabe, J. Phys. Chem. C 2013, 117, 20531.

[35]M. Watanabe, M. L. Thomas, S. Zhang, K. Ueno, T. Yasuda, K. Dokko, Chem. Rev. 2017, 117, 7190.

[36]K. Matsumoto, J. Hwang, S. Kaushik, C.-Y. Chen, R. Hagiwara, Energy Environ. Sci. 2019, 12, 3247.

[37]T. Welton, Chem. Rev. 1999, 99, 2071.

[38]P. Wasserscheid, W. Keim, Angew. Chem. Int. Ed. 2000, 39, 3772.

[39]R. D. Rogers, K. R. Seddon, Science 2003, 302, 792.

[40]Z. Lu, L. Yang, Y. Guo, J. Power Sources 2006, 156, 555.

[41]M. Götz, R. Reimert, S. Bajohr, H. Schnetzer, J. Wimberg, T. J. S. Schubert, Thermochim. Acta 2015, 600, 82.

[42]R. Hagiwara, K. Tamaki, K. Kubota, T. Goto, T. Nohira, J. Chem. Eng. Data 2008, 53, 355.

[43]X. Tu, Y. Chu, C. Ma, Ionics 2010, 16, 81.

[44]T. Nohira, T. Ishibashi, R. Hagiwara, J. Power Sources 2012, 205, 506.

[45]H. Chu, H. Noh, Y.-J. Kim, S. Yuk, J.-H. Lee, J. Lee, H. Kwack, Y. Kim, D.-K. Yang, H.- T. Kim, Nat. Commun. 2019, 10, 188.

[46]A. Gupta, A. Bhargav, A. Manthiram, ACS Energy Lett. 2020, 224.

[47]H. Shin, M. Baek, A. Gupta, K. Char, A. Manthiram, J. W. Choi, Adv. Energy Mater. 2020, 10, 2001456.

[48]A. Gupta, A. Bhargav, J.-P. Jones, R. V. Bugga, A. Manthiram, Chem. Mater. 2020, 32, 2070.

[49]D. Reed, G. Coffey, E. Mast, N. Canfield, J. Mansurov, X. Lu, V. Sprenkle, J. Power Sources 2013, 227, 94.

[50]G. Kim, Y.-C. Park, Y. Lee, N. Cho, C.-S. Kim, K. Jung, J. Power Sources 2016, 325, 238.

[51]J. Hwang, A. N. Sivasengaran, H. Yang, H. Yamamoto, T. Takeuchi, K. Matsumoto, R. Hagiwara, ACS Appl. Mater. Interfaces 2021, 13, 2538.

[52]K. Matsumoto, T. Oka, T. Nohira, R. Hagiwara, Inorg. Chem. 2013, 52, 568.

[53]W. A. Henderson, M. Herstedt, Young Victor G., S. Passerini, H. C. De Long, P. C. Trulove, Inorg. Chem. 2006, 45, 1412.

[54]W. A. Henderson, D. M. Seo, Q. Zhou, P. D. Boyle, J.-H. Shin, H. C. D. Long, P. C. Trulove, S. Passerini, Adv. Energy Mater. 2012, 2, 1343.

[55]Z. W. Seh, J. Sun, Y. Sun, Y. Cui, ACS Cent. Sci. 2015, 1, 449.

[56]D.-J. Lee, J.-W. Park, I. Hasa, Y.-K. Sun, B. Scrosati, J. Hassoun, J. Mater. Chem. A 2013, 1, 5256.

[57]S. Wei, S. Xu, A. Agrawral, S. Choudhury, Y. Lu, Z. Tu, L. Ma, L. A. Archer, Nat. Commun. 2016, 7, 11722.

[58]D. Zhou, Y. Chen, B. Li, H. Fan, F. Cheng, D. Shanmukaraj, T. Rojo, M. Armand, G. Wang, Angew. Chem. Int. Ed. 2018, 57, 10168.

[59]K. Matsumoto, T. Hosokawa, T. Nohira, R. Hagiwara, A. Fukunaga, K. Numata, E. Itani, S. Sakai, K. Nitta, S. Inazawa, J. Power Sources 2014, 265, 36.

[60]D. Monti, E. Jónsson, M. R. Palacín, P. Johansson, J. Power Sources 2014, 245, 630.

[61]K. Matsumoto, Y. Okamoto, T. Nohira, R. Hagiwara, J. Phys. Chem. C 2015, 119, 7648.

[62]A. Fukunaga, T. Nohira, Y. Kozawa, R. Hagiwara, S. Sakai, K. Nitta, S. Inazawa, J. Power Sources 2012, 209, 52.

[63]H. Vogel, Phys. Z 1921, 22, 645.

[64]G. S. Fulcher, J. Am. Ceram. Soc. 1925, 8, 339.

[65]W. Xu, E. I. Cooper, C. A. Angell, J. Phys. Chem. B 2003, 107, 6170.

[66]A. Watarai, K. Kubota, M. Yamagata, T. Goto, T. Nohira, R. Hagiwara, K. Ui, N. Kumagai, J. Power Sources 2008, 183, 724.

[67]J. Hwang, K. Matsumoto, R. Hagiwara, Adv. Energy Mater. 2020, 10, 2001880.

[68]G. Nikiforidis, M. C. M. van de Sanden, M. N. Tsampas, RSC Adv. 2019, 9, 5649.

[69]X. Yu, A. Manthiram, ChemElectroChem 2014, 1, 1275.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る