リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「マメ科クララ(Sophora flavescens)由来化合物 Kurarinone による抗腫瘍作用と免疫抑制作用の解明」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

マメ科クララ(Sophora flavescens)由来化合物 Kurarinone による抗腫瘍作用と免疫抑制作用の解明

西川 佐紀子 Nishikawa Sakiko 名古屋市立大学

2020.03.31

概要

1. 119 種類の生薬抽出液のうち、生薬クジン(マメ科クララ Sophora flavescens の根)抽出液が強く TRB3 プロモーター活性の上昇を示した。
2. S. flavescens 抽出液中の TRB3 プロモーター活性を示した活性成分はフラボノイドの kurarinone であった。
3. Kurarinone は PERK-eIF2α経路を介して ATF4 を活性化し、TRB3 を誘導した。
4. Kurarinone は PERK-eIF2α経路を介してがん細胞の増殖を抑制した。
5. Kurarinone は抗酸化タンパク質の中でも、特に HO-1 の発現を誘導した。
6. Kurarinone による HO-1 の mRNA 発現の誘導は NRF2 に依存していた。
7. Kurarinone は、LPS による Il-1β および iNos の mRNA 発現誘導を抑制した。
8. Kurarinone は Nrf2/HO-1 経路を活性化し、Il-1β および iNos の産生を阻害した。

この論文で使われている画像

参考文献

Ameri K & Harris AL. Activating transcription factor 4. Int. J. Biochem. Cell Biol., 40, 14–21 (2008).

Arrillaga-Romany I, Chi AS, Allen JE, Oster W, Wen PY, Batchelor TT. A phase 2 study of the first imipridone ONC201, a selective DRD2 antagonist for oncology, administered every three weeks in recurrent glioblastoma. Oncotarget, 8, 79298–79304 (2017).

Bruch J, Xu H, Rösler TW, De Andrade A, Kuhn PH, Lichtenthaler SF, Arzberger T, Winklhofer KF, Müller U, Höglinger GU. PERK activation mitigates tau pathology in vitro and in vivo. EMBO Mol. Med., 9, 371–384 (2017).

Carracedo A, Lorente M, Egia A, Blázquez C, García S, Giroux V, Malicet C, Villuendas R, Gironella M, González-Feria L, Piris MA, Iovanna JL, Guzmán M, Velasco, G. The stress-regulated protein p8 mediates cannabinoid-induced apoptosis of tumor cells. Cancer Cell, 9, 301–312 (2006).

Castilho BA, Shanmugam R, Silva RC, Ramesh R, Himme BM, Sattlegger E. Keeping the eIF2 alpha kinase Gcn2 in check. Biochim. Biophys. Acta, 1843, 1948–1968 (2014).

Chen C & Okayama H. High-efficiency transformation of mammalian cells by plasmid DNA. Mol. Cell. Biol., 7, 2745–2752 (1987).

Cubillos-Ruiz JR, Bettigole SE, Glimcher LH. Tumorigenic and immunosuppressive effects of endoplasmic reticulum stress in cancer. Cell, 168, 692–706 (2017).

Denoyelle C, Abou-Rjaily G, Bezrookove V, Verhaegan M, Johnson TM, Fullen DR, Pointer JN, Gruber SB, Su LD, Nikiforov MA, Kaufman RJ, Bastian BC, Soengas, MS. Anti-oncogenic role of the endoplasmic reticulum differentially activated by mutations in the MAPK pathway. Nat. Cell Biol., 8, 1053–1063 (2006).

Dey S, Sayers CM, Verginadis II, Lehman SL, Cheng Y, Cerniglia GJ, Tuttle SW, Feldman MD, Zhang PJ, Fuchs SY, Diehl JA, Koumenis C. ATF4-dependent induction of heme oxygenase 1 prevents anoikis and promotes metastasis. J. Clin. Invest., 125, 2592–2608 (2015).

Dinkova-Kostova AT, Liby KT, Stephenson KK, Holtzclaw WD, Gao X, Suh N, Williams C, Risingsong R, Honda T, Gribble GW, Sporn MB, Talalay P. Extremely potent triterpenoid inducers of the phase 2 response: correlations of protection against oxidant and inflammatory stress. Proc. Natl. Acad. Sci. USA, 102, 4584–4589 (2005).

Du K, Herzig S, Kulkarni RN, Montminy M. TRB3: A tribbles homolog that inhibits Akt/PKB activation by insulin in liver. Science, 300, 1574–1577 (2003).

Fujiki T, Ando F, Murakami K, Isobe K, Mori T, Susa K, Nomura N, Sohara E, Rai T, Uchida S. Tolvaptan activates the Nrf2/HO-1 antioxidant pathway through PERK phosphorylation. Sci. Rep., 9, 9245 (2019).

Han JM, Jin YY, Kim HY, Park KH, Lee WS, Jeong TS. Lavandulyl flavonoids from Sophora flavescens suppress lipopolysaccharide-induced activation of nuclear factor-κB and mitogen-activated protein kinases in RAW264.7 cells. Biol. Pharm. Bull., 33, 1019–1023 (2010).

Harding HP, Zhang Y, Zeng H, Novoa I, Lu PD, Calfon M, Sadri N, Yun C, Popko B, Paules R, Stojdl DF, Bell JC, Hettman T, Leiden JM, Ron D. An integrative stress response regulates amino acid metabolism and resistance to oxidative stress. Mol. Cell, 11, 619–633 (2003).

Hart LS, Cunningham JT, Datta T, Dey S, Trameire F, Lehman SL, Qiu B, Zhang H, Cerniglia G, Bi M, Li Y, Gao Y, Liu H, Li C, Maity A, Thomas-Tikhonenko A, Perl AE, Koong A, Fuchs SY, Diehl JA, Mills IG, Ruggero D, Koumenis C. ER stress-mediated autophagy promotes Myc-dependent transformation and tumor growth. J. Clin. Invest., 122, 4621–4634 (2012).

He X, Fang J, Huang L, Wang J, Huang X. Sophora flavescens Ait.: Traditional usage, phytochemistry and pharmacology of an important traditional Chinese medicine. J. Ethnopharmacol., 172, 10–29 (2015).

Hirata Y & Uemura D. Halichondrins-antitumor polyether macrolides from a marine sponge. Pure Appl. Chem., 58, 701–710 (1986).

Inoue Y, Kawachi C, Ohkubo T, Nagasaka M, Ito S, Fukuura, K, Itoh Y, Ohoka N, Morishita D, Hayashi H. The CDK inhibitor p21 is a novel target gene of ATF4 and contributes to cell survival under ER stress. FEBS Lett., 591, 3682–3691 (2017).

Izrailit J, Berman HK, Datti A, Wrana JL, Reedijk M. High throughput kinase inhibitor screens reveal TRB3 and MAPK-ERK/TGF pathways as fundamental Notch regulators in breast cancer. Proc. Natl. Acad. Sci. USA, 110, 1714–1719 (2013).

Jeong TS, Ryu YB, Kim HY, Curtis-Long MJ, An S, Lee JH, Lee WS, Park KH. Low density lipoprotein (LDL)-antioxidant flavonoids from roots of Sophora flavescens. Biol. Pharm. Bull., 31, 2097–2102 (2008).

Jung HA, Jeong DM, Chung HY, Lim HA, Kim JY, Yoon NY, Choi JS. Re-evaluation of the antioxidant prenylated flavonoids from the roots of Sophora flavescens. Biol. Pharm. Bull., 31, 908–915 (2008).

Kang TH, Jeong SJ, Ko WG, Kim NY, Lee BH, Inagaki M, Miyamoto T, Higuchi R, Kim YC. Cytotoxic lavandulyl flavanones from Sophora flavescens. J. Nat. Prod., 63, 680–681 (2000).

Kline CL, Van den Heuvel AP, Allen JE, Prabhu VV, Dicker DT, El-Deiry WS. ONC201 kills solid tumor cells by triggering an integrated stress response dependent on ATF4 activation by specific eIF2α kinases. Sci. Signal., 9, ra18 (2016).

Kasai S, Yamazaki H, Tanji K, Engler MJ, Matsumiya T, Itoh K. Role of the ISR-ATF4 pathway and its cross talk with Nrf2 in mitochondrial quality control. J. Clin. Biochem. Nutr., 64, 1–12 (2019).

Keleku-Lukwete N, Suzuki M, Yamamoto M. An overview of the advantages of KEAP1-NRF2 system activation during inflammatory disease treatment. Antioxid. Redox Signal., 29, 1746–1755 (2018).

Kobayashi EH, Suzuki T, Funayama R, Nagashima T, Hayashi M, Sekine H, Tanaka N, Moriguchi T, Motohashi H, Nakayama K, Yamamoto M. Nrf2 suppresses macrophage inflammatory response by blocking proinflammatory cytokine transcription. Nat. Commun., 7, 11624 (2016).

Lee S, Chae MR, Lee BC, Kim YC, Choi JS, Lee SW, Cheong JH, Park CS. Urinary Bladder-Relaxant Effect of Kurarinone Depending on Potentiation of Large- Conductance Ca2+-Activated K+ Channels. Mol. Pharmacol., 90, 140–150 (2016).

Lee S, Choi JS, Park CS. Direct activation of the large-conductance calcium-activated potassium channel by flavonoids isolated from Sophora flavescens. Biol. Pharm. Bull., 41, 1295–1298 (2018).

Li Y, Zhu D, Hou L, Hu B, Xu M, Meng X. TRB3 reverses chemotherapy resistance and mediates crosstalk between endoplasmic reticulum stress and AKT signaling pathway in MHCC97H human hepatocelluar carcinoma cells. Oncol. Lett., 15, 1343– 1349 (2018).

Linker RA, Lee D, Ryan S, van Dam AM, Conrad R, Bista P, Zeng W, Hronowsky X, Buko A, Chollate S, Ellrichmann G, Brück W, Dawson K, Goelz S, Wiese S, Scannevin RH, Lukashev M, Gold, R. Fumaric acid esters exert neuroprotective effects in neuroinflammation via activation of the Nrf2 antioxidant pathway. Brain, 134, 678–692 (2011).

Ma T, Klann E. PERK: A novel therapeutic target for neurodegenerative diseases?Alzheimers Res. Ther., 6, 30 (2014).

McMahon M, Itoh K, Yamamoto M, Chanas SA, Henderson CJ, McLellan LI, Wolf CR, Cavin C, Hayes JD. The cap‘n’collar basic leucine zipper transcription factor Nrf2 (NF- E2 p45-related factor 2) controls both constitutive and inducible expression of intestinal detoxification and glutathione biosynthetic enzymes. Cancer Res., 61, 3299–3307 (2001).

Negelkerke A., Bussink J, Mujcic H, Wounters BG, Lehmann S, Sweep FC, Span PN. Hypoxia stimulates migration of breast cancer cells via the Perk/atf4/lamp3-arm of the unfolded protein response. Breast Cancer Res., 15, R2 (2013).

Ohoka N, Yoshii S, Hattori T, Onozaki K, Hayashi H. TRB3, a novel ER stress- inducible gene, is induced via ATF4-CHOP pathway and is involved in cell death. EMBO J., 24, 1243–1255 (2005).

Pakos-Zebrucka K, Koryga I, Mnich K, Ljujic M, Samali A, Gorman AM. The integrated stress response. EMBO Rep., 17, 1374–1395 (2016).

Puzzuti K, Krasniqi E, Barchiesi G, Mazzotta M, Barba M, Amodio A, Massimiani G, Pelle F, Kayal R, Vizza E, Grassadonia A, Tomao S, Venuti A, Gamucci T, Marchetti P, Natoli C, Sanguineti G, Ciliberto G, Vici P. Eribulin in Triple Negative Metastatic Breast Cancer: Critic Interpretation of Current Evidence and Projection for Future Scenarios. J. Cancer, 10, 5903–5914 (2019).

Poprac P, Jomova K, Simunkova M, Kollar V, Rhodes CJ, Valko M. Targeting free radicals in oxidative stress-related human diseases. Trends Pharmacol. Sci., 38, 592– 607 (2017).

Qing G, Li B, Vu A, Skuli N, Walton ZE, Liu X, Mayes PA, Wise DR, Thompson CB, Maris JM, Hogarty MD, Simon MC. ATF4 regulates MYC-mediated neuroblastoma cell death upon glutamine deprivation. Cancer Cell, 22, 631–644 (2012).

Rani V, Deep G, Singh RK, Palle K, Yadav UCS. Oxidative stress and metabolic disorders: Pathogenesis and therapeutic strategies. Life Sci., 148, 183–193 (2016).

Ron D, Harding HP. Protein-folding homeostasis in the endoplasmic reticulum and nutritional regulation. Cold Spring Harb. Perspect. Biol., 4, a03177 (2012).

Ryu SY, Lee HS, Kim YK, Kim SH. Determination of isoprenyl and lavandulyl positions of flavonoids from Sophora flavescens by NMR experiment. Arch. Pharm. Res., 20, 491–495 (1997).

Sakai S, Miyajima C, Uchida C, Itoh Y, Hayashi H, Inoue Y. Tribbles-related protein family members as regulators or substrates of the ubiquitin-proteasome system in cancer development. Curr. Cancer Drug Target, 16, 147–156 (2016).

Seo OW, Kim JH, Lee KS, Lee KS, Kim JH, Won MH, Ha KS, Kwon YG, Kim YM. Kurarinone promotes TRAIL-induced apoptosis by inhibiting NF-κB-dependent cFLIP expression in HeLa cells. Exp. Mol. Med., 44, 653–664 (2010).

Sidrauski C, Acosta-Alvear D, Khoutorsky A, Vedantham P, Hearn BR, Li H, Gamache K, Gallagher CM, Ang KK, Wilson C, Okreglak V, Ashkenazi A, Hann B, Nader K, Arkin MR, Rensio AR, Sonenberg N, Walter P. Pharmacological brake-release of mRNA translation enhances cognitive memory. eLIFE, 2, e00498 (2013).

Sidrauski C, McGeachy AM, Ingolia NT, Walter P. The small molecule ISRIB reverses the effects of eIF2α phosphorylation on translation and stress granule assembly. eLIFE, 4, e05033 (2015).

Sohn HY, Son KH, Kwon CS, Kwon GS, Kang SS. Antimicrobial and cytotoxic activity of 18 prenylated flavonoids isolated from medicinal plants: Morus alba L., Morus mongolica Schneider, Broussnetia papyrifera (L.) Vent., Sophora flavescens Ait. and Echinosophora koreensis Nakai. Phytomedicine, 11, 666–672 (2004).

Stockwell SR, Platt G, Barrie SE, Zoumpoulidou G, Te Poele RH, Aherne GW, Wilson SC, Sheldrake P, McDonald E, Venet M, Soudy C, Elustondo F, Rigorelau L, Blagg J, Workman P, Garrett MD, Mittnacht S. Mechanism-based screen for G1/S checkpoint activators identifies a selective activator of EIF2AK3/PERK signalling. PLoS ONE, 7, e28568 (2012).

Sun M, Cao H, Sun L, Dong S, Bian Y, Han J, Zhang L, Ren S, Hu Y, Liu C, Xu L, Liu P. Antitumor activities of kushen: literature review. Evid. Based Complement Alternat. Med., 2012, 373219 (2012).

Suzuki T, Motohashi H, Yamamoto M. Toward clinical application of the Keap1-Nrf2 pathway. Trends Pharmacol. Sci., 34, 340-346 (2013).

Takaya K, Suzuki T, Motohashi H, Onodera K, Satomi S, Kensler TW, Yamamoto M. Validation of the multiple sensor mechanism of the Keap1-Nrf2 system. Free Radic. Biol. Med., 53, 817–827 (2012).

Thimmulappa RK, Mai KH, Srisuma S, Kensler TW, Yamamoto M, Biswal S. Identification of Nrf2-regulated genes induced by the chemopreventive agent sulforaphane by oligonucleotide microarray. Cancer Res., 62, 5196–5203 (2002).

Wang Q, Mora-Jensen H, Weniger MA, Perez-Galan P, Wolford C, Hai T, Ron D, Chen W, Trenkle W, Wiestner A, Ye Y. ERAD inhibitors integrate ER stress with an epigenetic mechanism to activate BH3-only protein NOXA in cancer cells. Proc. Natl. Acad. Sci. USA, 106, 2200–2205 (2009).

Wang S, Kaufman RJ. The impact of the unfolded protein response on human disease. J. Cell Biol., 197, 857–867 (2012).

Wortel IMN, van der Meer LT, Kilberg MS, van Leeuwen FN. Surviving stress: Modulation of ATF4-mediated stress response in normal and malignant cells. Trends Endocrinol. Metab., 28, 794–806 (2017).

Li Y, Zhu D, Hou L, Hu B, Xu M, Meng X. TRB3 reverses chemotherapy resistance and mediates crosstalk between endoplasmic reticulum stress and AKT signaling pathway in MHCC97H human hepatocelluar carcinoma cells. Oncogene lett., 15, 1343– 1349 (2018).

Yang J, Chen H, Wang Q, Deng S, Huang M, Ma X, Song P, Du J, Huang Y, Wen Y, Ren Y, Yang X. Inhibitory effect of kurarinone on growth of human non-small cell lung cancer: An experimental study both in vitro and in vivo studies. Front. Pharmacol., 9, 252 (2018).

Yang L, Palliyaguru DL, Kensler TW. Frugal chemoprevention: targeting Nrf2 with foods rich in sulforaphane. Semin. Oncol., 43, 146–153 (2016).

Yates MS, Tauchi M, Katsuoka F, Flanders KC, Liby KT, Honda T, Gribble GW, Johnson DA, Johnson JA, Burton NC, Guilarte TR, Yamamoto M, Sporn MB, Kensler TW. Pharmacodynamic characterization of chemopreventive triterpenoids as exceptionally potent inducers of Nrf2-regulated genes. Mol. Cancer Ther., (2007) 6, 154–162 (2007).

Zeeuw D, Akizawa T, Audhya P, Bakris GL, Chin M, Christ-Schmidt H, Goldsberry A, Houser M, Krauth M, Heerspink HJL, McMurray JJ, Meyer CJ, Parving H, Remuzzi G, Toto RD, Vaziri ND, Wanner C, Wittes J, Wrolstad D, Chertow GM; BEACON trial investigators. Bardoxolone methyl in type 2 diabetes and stage 4 chronic kidney disease.N. Engl. J. Med., 369, 2492–2503 (2013).

Zeng P, Sun S, Li R, Xiao ZX, Chen H. HER2 upregulates ATF4 to promote cell migration via activation of ZEB1 and downregulation of E-cadherin. Int. J. Mol. Sci., 20, 2223 (2019).

Zhang X, Jiang P, Chen P, Cheng N. Metabolism of kurarinone by human liver microsomes and its effect on cytotoxicity. Pharm. Biol., 54, 619–627 (2016).

参考文献をもっと見る