リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Improving the functionality of surface-engineered yeast cells by altering the cell wall morphology of the host strain」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Improving the functionality of surface-engineered yeast cells by altering the cell wall morphology of the host strain

Inokuma, Kentaro Kitada, Yuki Bamba, Takahiro Kobayashi, Yuma Yukawa, Takahiro den Haan, Riaan van Zyl, Willem Heber Kondo, Akihiko Hasunuma, Tomohisa 神戸大学

2021.08

概要

The expression of functional proteins on the cell surface using glycosylphosphatidylinositol (GPI)-anchoring technology is a promising approach for constructing yeast cells with special functions. The functionality of surface-engineered yeast strains strongly depends on the amount of functional proteins displayed on their cell surface. On the other hand, since the yeast cell wall space is finite, heterologous protein carrying capacity of the cell wall is limited. Here, we report the effect of CCW12 and CCW14 knockout, which encode major nonenzymatic GPI-anchored cell wall proteins (GPI-CWPs) involved in the cell wall organization, on the heterologous protein carrying capacity of yeast cell wall. Aspergillus aculeatus β-glucosidase (BGL) was used as a reporter to evaluate the protein carrying capacity in Saccharomyces cerevisiae. No significant difference in the amount of cell wall–associated BGL and cell-surface BGL activity was observed between CCW12 and CCW14 knockout strains and their control strain. In contrast, in the CCW12 and CCW14 co-knockout strains, the amount of cell wall–associated BGL and its activity were approximately 1.4-fold higher than those of the control strain and CCW12 or CCW14 knockout strains. Electron microscopic observation revealed that the total cell wall thickness of the CCW12 and CCW14 co-knockout strains was increased compared to the parental strain, suggesting a potential increase in heterologous protein carrying capacity of the cell wall. These results indicate that the CCW12 and CCW14 co-knockout strains are a promising host for the construction of highly functional recombinant yeast strains using cell-surface display technology.

この論文で使われている画像

参考文献

Angelini A, Chen TF, de Picciotto S, Yang NJ, Tzeng A, Santos MS, Van Deventer JA, Traxlmayr

MW, Wittrup KD (2015) Protein engineering and selection using yeast surface display.

Methods Mol Biol 1319:3-36. doi:10.1007/978-1-4939-2748-7_1

Arroyo J, Farkaš V, Sanz AB, Cabib E (2016) Strengthening the fungal cell wall through chitinglucan cross-links: effects on morphogenesis and cell integrity. Cell Microbiol 18(9):12391250. doi:10.1111/cmi.12615

Bamba T, Inokuma K, Hasunuma T, Kondo A (2018) Enhanced cell-surface display of a

heterologous protein using SED1 anchoring system in SED1-disrupted Saccharomyces

cerevisiae strain. J Biosci Bioeng 125(3):306-310. doi:10.1016/j.jbiosc.2017.09.013

Chen DC, Yang BC, Kuo TT (1992) One-step transformation of yeast in stationary phase. Curr Genet

21(1):83-84. doi:10.1007/BF00318659.

Grzeschik J, Hinz SC, Könning D, Pirzer T, Becker S, Zielonka S, Kolmar H (2017) A simplified

procedure for antibody engineering by yeast surface display: Coupling display levels and

target binding by ribosomal skipping. Biotechnol J 12(2). doi:10.1002/biot.201600454

Inokuma K, Bamba T, Ishii J, Ito Y, Hasunuma T, Kondo A (2016) Enhanced cell-surface display

and secretory production of cellulolytic enzymes with Saccharomyces cerevisiae Sed1 signal

peptide. Biotechnol Bioeng 113(11):2358-2366. doi:10.1002/bit.26008

Inokuma K, Hasunuma T, Kondo A (2014) Efficient yeast cell-surface display of exo- and endocellulase using the SED1 anchoring region and its original promoter. Biotechnol Biofuels

7(1):8. doi:10.1186/1754-6834-7-8

Inokuma K, Hasunuma T, Kondo A (2018) Whole cell biocatalysts using enzymes displayed on

yeast cell surface. In: Chang H (ed) Emerging Areas in Bioengineering. Wiley-VCH, New

York, pp 81-92

18

Inokuma K, Kurono H, den Haan R, van Zyl WH, Hasunuma T, Kondo A (2020) Novel strategy for

anchorage position control of GPI-attached proteins in the yeast cell wall using different GPIanchoring domains. Metab Eng 57:110-117. doi:10.1016/j.ymben.2019.11.004

Inokuma K, Yoshida T, Ishii J, Hasunuma T, Kondo A (2015) Efficient co-displaying and artificial

ratio control of α-amylase and glucoamylase on the yeast cell surface by using combinations

of different anchoring domains. Appl Microbiol Biotechnol 99(4):1655-1663.

doi:10.1007/s00253-014-6250-1

Ishii J, Izawa K, Matsumura S, Wakamura K, Tanino T, Tanaka T, Ogino C, Fukuda H, Kondo A

(2009) A simple and immediate method for simultaneously evaluating expression level and

plasmid maintenance in yeast. J Biochem 145(6):701-708. doi:10.1093/jb/mvp028

Ito Y, Kitagawa T, Yamanishi M, Katahira S, Izawa S, Irie K, Furutani-Seiki M, Matsuyama T

(2016) Enhancement of protein production via the strong DIT1 terminator and two RNAbinding proteins in Saccharomyces cerevisiae. Sci Rep 6:36997. doi:10.1038/srep36997

Jakočiūnas T, Bonde I, Herrgård M, Harrison SJ, Kristensen M, Pedersen LE, Jensen MK, Keasling

JD (2015) Multiplex metabolic pathway engineering using CRISPR/Cas9 in Saccharomyces

cerevisiae. Metab Eng 28:213-222 doi:10.1016/j.ymben.2015.01.008

Katahira S, Mizuike A, Fukuda H, Kondo A (2006) Ethanol fermentation from lignocellulosic

hydrolysate by a recombinant xylose- and cellooligosaccharide-assimilating yeast strain.

Appl Microbiol Biotechnol 72:1136–1143. doi:10.1007/s00253-006-0402-x

Klis

FM

(1994)

Review:

cell

wall

assembly

in

yeast.

Yeast

10(7):851-869.

doi:10.1002/yea.320100702

Lei H, Jin S, Karlsson E, Schultz-Cherry S, Ye K (2016) Yeast surface-displayed H5N1 avian

Influenza vaccines. J Immunol Res 2016:4131324. doi:10.1155/2016/4131324

19

Lei H, Xie B, Gao T, Cen Q, Ren Y (2020) Yeast display platform technology to prepare oral vaccine

against lethal H7N9 virus challenge in mice. Microb Cell Fact 19(1):53. doi:10.1186/s12934020-01316-1

Lesage G, Bussey H (2006) Cell wall assembly in Saccharomyces cerevisiae. Microbiol Mol Biol

Rev : MMBR 70(2):317-343. doi:10.1128/MMBR.00038-05

Li B, Scarselli M, Knudsen CD, Kim SK, Jacobson KA, McMillin SM, Wess J (2007) Rapid

identification of functionally critical amino acids in a G protein-coupled receptor. Nat

methods 4(2):169-174. doi:10.1038/nmeth990

Lian J, Schultz C, Cao M, HamediRad M, Zhao H (2019) Multi-functional genome-wide CRISPR

system for high throughput genotype-phenotype mapping. Nat Commun 10(1):5794.

doi:10.1038/s41467-019-13621-4

Liu Z, Ho SH, Sasaki K, den Haan R, Inokuma K, Ogino C, van Zyl WH, Hasunuma T, Kondo A

(2016) Engineering of a novel cellulose-adherent cellulolytic Saccharomyces cerevisiae for

cellulosic biofuel production. Sci Rep 6: 24550. doi:10.1038/srep24550

Liu Z, Inokuma K, Ho SH, den Haan R, van Zyl WH, Hasunuma T, Kondo A (2017) Improvement

of ethanol production from crystalline cellulose via optimizing cellulase ratios in cellulolytic

Saccharomyces cerevisiae. Biotechnol Bioeng 114(6):1201-1207. doi:10.1002/bit.26252

Lu CF, Kurjan J, Lipke PN (1994) A pathway for cell-wall anchorage of Saccharomyces cerevisiae

alpha-agglutinin. Mol Cell Biol 14(7):4825-4833. doi:10.1128/mcb.14.7.4825

Moreno-García J, Coi AL, Zara G, García-Martínez T, Mauricio JC, Budroni M (2018) Study of the

role of the covalently linked cell wall protein (Ccw14p) and yeast glycoprotein (Ygp1p)

within biofilm formation in a flor yeast strain. Fems Yeast Res 18(2).

doi:10.1093/femsyr/foy005

20

Moukadiri I, Armero J, Abad A, Sentandreu R, Zueco J (1997) Identification of a mannoprotein

present in the inner layer of the cell wall of Saccharomyces cerevisiae. J Bacteriol

179(7):2154-2162. doi:10.1128/jb.179.7.2154-2162.1997

Mrsa V, Ecker M, Strahl-Bolsinger S, Nimtz M, Lehle L, Tanner W (1999) Deletion of new

covalently linked cell wall glycoproteins alters the electrophoretic mobility of

phosphorylated wall components of Saccharomyces cerevisiae. J Bacteriol 181(10):30763086. doi:10.1128/JB.181.10.3076-3086.1999

Nambu-Nishida Y, Nishida K, Hasunuma T, Kondo A (2017) Development of a comprehensive set

of tools for genome engineering in a cold- and thermo-tolerant Kluyveromyces marxianus

yeast strain. Sci Rep 7(1):8993. doi:10.1038/s41598-017-08356-5

Ragni E, Piberger H, Neupert C, García-Cantalejo J, Popolo L, Arroyo J, Aebi M, Strahl S (2011)

The genetic interaction network of CCW12, a Saccharomyces cerevisiae gene required for

cell wall integrity during budding and formation of mating projections. BMC Genomics

12:107. doi:10.1186/1471-2164-12-107

Ragni E, Sipiczki M, Strahl S (2007) Characterization of Ccw12p, a major key player in cell wall

stability of Saccharomyces cerevisiae. Yeast 24(4):309-319. doi:10.1002/yea.1465

Shankarnarayan S, Malone CL, Deschenes RJ, Fassler JS (2008) Modulation of yeast Sln1 kinase

activity by the CCW12 cell wall protein. J Biol Chem 283(4):1962-1973.

doi:10.1074/jbc.M706877200

Shibasaki S, Kawabata A, Tanino T, Kondo A, Ueda M, Tanaka M (2009) Evaluation of the

biodegradability of polyurethane and its derivatives by using lipase-displaying arming yeast.

Biocontrol Sci 14(4):171-175. doi:10.4265/bio.14.171

Shibasaki S, Ueda M, Ye K, Shimizu K, Kamasawa N, Osumi M, Tanaka A (2001) Creation of cell

surface-engineered yeast that display different fluorescent proteins in response to the glucose

concentration. Appl Microbiol Biotechnol 57(4):528-533. doi:10.1007/s002530100767

21

Shusta EV, Kieke MC, Parke E, Kranz DM, Wittrup KD (1999) Yeast polypeptide fusion surface

display levels predict thermal stability and soluble secretion efficiency. J Mol Biol

292(5):949-956. doi:10.1006/jmbi.1999.3130

van der Vaart JM, te Biesebeke R, Chapman JW, Toschka HY, Klis FM, Verrips CT (1997)

Comparison of cell wall proteins of Saccharomyces cerevisiae as anchors for cell surface

expression of heterologous proteins. Appl Environ Microbiol 63(2):615–620. doi:

10.1128/aem.63.2.615-620.1997

Wang H, Lang Q, Li L, Liang B, Tang X, Kong L, Mascini M, Liu A (2013) Yeast surface displaying

glucose oxidase as whole-cell biocatalyst: construction, characterization, and its

electrochemical

glucose

sensing

application.

Anal

Chem

85(12):6107-6112.

doi:10.1021/ac400979r

Wentz AE, Shusta EV (2007) A novel high-throughput screen reveals yeast genes that increase

secretion of heterologous proteins. Appl Environ Microbiol 73(4):1189-1198.

doi:10.1128/AEM.02427-06

Yamakawa S, Yamada R, Tanaka T, Ogino C, Kondo A (2012) Repeated fermentation from raw

starch using Saccharomyces cerevisiae displaying both glucoamylase and α-amylase.

Enzyme Microb Technol 50(6-7):343-347. doi:10.1016/j.enzmictec.2012.03.005

Zhao SX, Guo YH, Wang QN, Luo HL, He CZ, An B (2020) Expression of flagellin at yeast surface

increases biocontrol efficiency of yeast cells against postharvest disease of tomato caused by

Botrytis cinerea. Postharvest Biol Tec 162:111112. doi:10.1016/j.postharvbio.2019.111112

22

Table 1 Characteristics of yeast strains and plasmids used in this study

Yeast strains and

Relevant genotype

Source

BY4741

MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0

Life Technologies

BY-BG-SSS

BY4741/pIBG-SSS [SED1P–SED1SP–A. aculeatus BGL1–

Inokuma et al. (2016)

plasmids

S. cerevisiae

SED1A–SAG1T, leu2Δ0 met15Δ0 ura3Δ0]

BY-BG-SSSD

BY4741/pIBG-SSSD [SED1P–SED1SP–A. aculeatus BGL1–

This study

SED1A–DIT1T, leu2Δ0 met15Δ0 ura3Δ0]

ccw12-BGSD

BY-BG-SSSD CCW12Δ [SED1P–SED1SP–A. aculeatus

This study

BGL1–SED1A–DIT1T, leu2Δ0 met15Δ0 ura3Δ0 ccw12Δ]

ccw14-BGSD

BY-BG-SSSD CCW14Δ [SED1P–SED1SP–A. aculeatus

This study

BGL1–SED1A–DIT1T, leu2Δ0 met15Δ0 ura3Δ0 ccw14Δ]

ccw12/ccw14-BGSD

BY-BG-SSSD CCW12ΔCCW14Δ [SED1P–SED1SP–A.

This study

aculeatus BGL1–SED1A–DIT1T, leu2Δ0 met15Δ0 ura3Δ0

ccw12Δ ccw14Δ]

BY-EG-SSSD

BY4741/pIEG-SSSD [SED1P–SED1SP– T. reesei EGII–

This study

SED1A–DIT1T, leu2Δ0 met15Δ0 ura3Δ0]

ccw12/ccw14-EGSD

BY-EG-SSSD CCW12ΔCCW14Δ [SED1P–SED1SP– T.

This study

reesei EGII–SED1A–DIT1T, leu2Δ0 met15Δ0 ura3Δ0

ccw12Δ ccw14Δ]

BY-BG-SSAD

BY4741/pIBG-SSAD [SED1P–SED1SP–A. aculeatus

This study

BGL1–SAG1A–DIT1T, leu2Δ0 met15Δ0 ura3Δ0]

ccw12/ccw14-BGAD

BY4741/pIBG-SSAD CCW12ΔCCW14Δ [SED1P–SED1SP–

This study

A. aculeatus BGL1–SAG1A–DIT1T, leu2Δ0 met15Δ0

ura3Δ0 ccw12Δ ccw14Δ]

Plasmids

pIBG-SSS

HIS3 SED1P–SED1SP–A. aculeatus BGL1–SED1A–SAG1T

Inokuma et al. (2016)

pIBG-SSSD

HIS3 SED1P–SED1SP–A. aculeatus BGL1–SED1A–DIT1T

This study

pIEG-SSS

HIS3 SED1P–SED1SP–T. reesei EGII–SED1A–SAG1T

Inokuma et al. (2016)

pIEG-SSSD

HIS3 SED1P–SED1SP–T. reesei EGII–SED1A–DIT1T

This study

pIBG13

HIS3 TDH3P–A. aculeatus BGL1–SAG1A–SAG1T

Katahira et al. (2006)

pIBG-SSAD

HIS3 SED1P–SED1SP–A. aculeatus BGL1–SAG1A–DIT1T

This study

pGK415

CEN-ARS LEU2 PGK1P–PGK1T

(Ishii et al. 2009)

Cas9_Base

K. marxianus ARS7, K. marxianus CEN D, kanMX

(Nambu-Nishida et

PDC1P–Cas9–TDH3T

al. 2017)

pCL-Cas9

CEN-ARS LEU2 TEF1P–SV40NLS–Cas9–SV40NLS–CYC1T

This study

pGK426

2μ ori URA3 PGK1P–PGK1T

(Ishii et al. 2009)

pSUP4t

2μ ori URA3 SUP4T

This study

p2gRNA-CCW12

2μ ori URA3 SNR52P–gRNA for CCW12–SUP4T

This study

p2gRNA- CCW14

2μ ori URA3 SNR52P–gRNA for CCW14–SUP4T

This study

23

p2gRNA-

2μ ori URA3 SNR52P–gRNA for CCW12–SUP4T SNR52P–

CCW12/CCW14

gRNA for CCW14–SUP4T

This study

A. aculeatus, Aspergillus aculeatus; T. reesei, Trichoderma reesei; K. marxianus, Kluyveromyces

marxianus; P, promoter; SP, secretion signal peptide sequence; A, anchoring region; T, terminator;

NLS, nuclear localization signal.

24

Figure captions

Fig. 1 Sequence alignments of CCW12 and CCW14 compared to their respective dsOligos. The

sense strands of the target sites are shown. The green sequences of the wild-type reference sequence

denote the protospacer adjacent motif (PAM) sites. The red sequences indicate stop codons replacing

the PAM sites. Sequences present in the gRNAs are underlined.

Fig. 2 Effects of CCW12 and/or CCW14 knockout on BGL-displaying yeast. (a) Time-course of

cell-surface BGL activities. (b) Cell growth of BGL-displaying yeasts. (c) Comparison of transcript

levels of BGL1-encoding genes after cultivation in YPD medium for 48 h. The relative transcript

level of each gene is shown as a fold-change in mRNA levels relative to the average level detected

in the control strain (BY-BG-SSSD). (d) Relative quantification of BGL1 in the cell walls by nanoUPLC-MSE. The amount of BGL1 was normalized to the dry cell weight of each strain. Data are

presented as the means ± standard deviation (n = 3).

Fig. 3 Electron micrographs of ultrathin sections of (a) BY-BG-SSSD, (b) ccw12-BGSD, (c) ccw14BGSD, and (d) ccw12/14-BGSD cells.

25



 

 



 









 

 



 







































  ...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る