リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「新規non-catalytic site integrase inhibitor JTP-0157602の抗HIV-1活性及び耐性プロファイル」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

新規non-catalytic site integrase inhibitor JTP-0157602の抗HIV-1活性及び耐性プロファイル

大畑 善嗣 東北大学

2022.03.25

概要

Human immunodeficiency virus type-1 (HIV-1) はレトロウイルスに属するウイルスであり,後天性免疫不全症候群 (acquired immunodeficiency syndrome; AIDS)の原因ウイルスである。HIV-1 感染症治療薬として,これまでにウイルス蛋白質および宿主蛋白質を標的とした複数の薬剤が開発されてきた。しかし,薬剤耐性ウイルスおよび副作用が出現する患者が存在するため,新たな機序の薬剤が求められている。Non-catalytic site integrase inhibitor (NCINI) は HIV-1 インテグラーゼ (integrase; IN) に対してアロステリックに作用するインテグラーゼ阻害剤であり,新規機序の薬剤候補の 1 つとして注目されている。

本研究では,新規構造を有する NCINI である JTP-0157602 の抗ウイルス活性および耐性プロファイルを検討した。JTP-0157602 はlens epithelium-derived growth factor (LEDGF)-インテグラーゼ結合阻害作用を示す化合物であり,HIV-1複製後期過程に対して強い阻害活性を持つ特徴を示した。HIV-1IIIB をヒト末梢血単核球 (peripheral blood mononuclear cells; PBMC) に感染させた評価系で,JTP- 0157602 は 50% effective concentration (EC50;50%有効濃度) が 2.3 nM および EC90 が 7.4 nM という強い阻害活性を示した。また,100%ヒト血清 (human serum; HS) 存在下での EC90 値 (protein-binding adjusted EC90; PA-EC90) は138 nM と推定され,承認済みの integrase strand transfer inhibitor (INSTI) である elvitegravir (EVG) および dolutegravir (DTG) と同等の活性であった。更に JTP-0157602 は複数のインテグラーゼ多型導入ウイルスに対しても野生型HIV-1 に対する阻害活性と同等の活性を保持しており,幅広い HIV-1 株への有効性が示唆された。また,INSTI 耐性関連変異導入ウイルスに対しても強い活性を保持した。一方,耐性誘導試験によって,LEDGF-インテグラーゼ結合ポケットに位置するアミノ酸に変異 (A128T および T174I) が誘導され,JTP-0157602 の耐性プロファイルも明らかとなった。

以上の結果から,JTP-0157602 を始めとする NCINI は HIV-1 感染症治療薬として有効性が期待される。

この論文で使われている画像

参考文献

1. Barré-Sinoussi F, Chermann JC, Rey F, et al. Isolation of a T-lymphotropic retrovirus from a patient at risk for acquired immune deficiency syndrome (AIDS). Science 1983;220(4599):868-71. (In eng). DOI:10.1126/science.6189183.

2. Deeks SG, Overbaugh J, Phillips A, Buchbinder S. HIV infection. Nat Rev Dis Primers 2015;1:15035. (In eng). DOI: 10.1038/nrdp.2015.35.

3. Okoye AA, Picker LJ. CD4(+) T-cell depletion in HIV infection: mechanisms of immunological failure. Immunol Rev 2013;254(1):54-64. (In eng). DOI: 10.1111/imr.12066.

4. Vidya Vijayan KK, Karthigeyan KP, Tripathi SP, Hanna LE. Pathophysiology of CD4+ T-Cell Depletion in HIV-1 and HIV-2 Infections. Front Immunol 2017;8:580. (In eng). DOI: 10.3389/fimmu.2017.00580.

5. Bbosa N, Kaleebu P, Ssemwanga D. HIV subtype diversity worldwide. Curr Opin HIV AIDS 2019;14(3):153-160. (In eng). DOI: 10.1097/coh.0000000000000534.

6. Taylor BS, Sobieszczyk ME, McCutchan FE, Hammer SM. The challenge of HIV-1 subtype diversity. N Engl J Med 2008;358(15):1590-602. (In eng). DOI: 10.1056/NEJMra0706737.

7. Nyamweya S, Hegedus A, Jaye A, Rowland-Jones S, Flanagan KL, Macallan DC. Comparing HIV-1 and HIV-2 infection: Lessons for viral immunopathogenesis. Rev Med Virol 2013;23(4):221-40. (In eng). DOI: 10.1002/rmv.1739.

8. Nkeze J, Li L, Benko Z, Li G, Zhao RY. Molecular characterization of HIV-1 genome in fission yeast Schizosaccharomyces pombe. Cell Biosci 2015;5:47. (In eng). DOI: 10.1186/s13578-015-0037-7.

9. Engelman A, Cherepanov P. The structural biology of HIV-1: mechanistic and therapeutic insights. Nat Rev Microbiol 2012;10(4):279-90. (In eng). DOI: 10.1038/nrmicro2747.

10. Pu J, Wang Q, Xu W, Lu L, Jiang S. Development of Protein- and Peptide- Based HIV Entry Inhibitors Targeting gp120 or gp41. Viruses 2019;11(8) (In eng). DOI: 10.3390/v11080705.

11. Grande F, Occhiuzzi MA, Rizzuti B, et al. CCR5/CXCR4 Dual Antagonism for the Improvement of HIV Infection Therapy. Molecules 2019;24(3) (In eng). DOI: 10.3390/molecules24030550.

12. Lusic M, Siliciano RF. Nuclear landscape of HIV-1 infection and integration. Nat Rev Microbiol 2017;15(2):69-82. (In eng). DOI: 10.1038/nrmicro.2016.162.

13. Engelman A, Mizuuchi K, Craigie R. HIV-1 DNA integration: mechanism of viral DNA cleavage and DNA strand transfer. Cell 1991;67(6):1211-21. (In eng). DOI: 10.1016/0092-8674(91)90297-c.

14. Cherepanov P, Ambrosio AL, Rahman S, Ellenberger T, Engelman A. Structural basis for the recognition between HIV-1 integrase and transcriptional coactivator p75. Proc Natl Acad Sci U S A 2005;102(48):17308-13. (In eng). DOI: 10.1073/pnas.0506924102.

15. van Nuland R, van Schaik FM, Simonis M, et al. Nucleosomal DNA binding drives the recognition of H3K36-methylated nucleosomes by the PSIP1- PWWP domain. Epigenetics Chromatin 2013;6(1):12. (In eng). DOI: 10.1186/1756-8935-6-12.

16. Eidahl JO, Crowe BL, North JA, et al. Structural basis for high-affinity binding of LEDGF PWWP to mononucleosomes. Nucleic Acids Res 2013;41(6):3924-36. (In eng). DOI: 10.1093/nar/gkt074.

17. Turlure F, Maertens G, Rahman S, Cherepanov P, Engelman A. A tripartite DNA-binding element, comprised of the nuclear localization signal and two AT-hook motifs, mediates the association of LEDGF/p75 with chromatin in vivo. Nucleic Acids Res 2006;34(5):1653-65. (In eng). DOI: 10.1093/nar/gkl052.

18. Symons J, Cameron PU, Lewin SR. HIV integration sites and implications for maintenance of the reservoir. Curr Opin HIV AIDS 2018;13(2):152-159. DOI: 10.1097/COH.0000000000000438.

19. Vranckx LS, Demeulemeester J, Saleh S, et al. LEDGIN-mediated Inhibition of Integrase-LEDGF/p75 Interaction Reduces Reactivation of Residual Latent HIV. EBioMedicine 2016;8:248-264. (In eng). DOI: 10.1016/j.ebiom.2016.04.039.

20. Ciuffi A, Llano M, Poeschla E, et al. A role for LEDGF/p75 in targeting HIV DNA integration. Nat Med 2005;11(12):1287-9. (In eng). DOI: 10.1038/nm1329.

21. Shun MC, Raghavendra NK, Vandegraaff N, et al. LEDGF/p75 functions downstream from preintegration complex formation to effect gene-specific HIV-1 integration. Genes Dev 2007;21(14):1767-78. (In eng). DOI: 10.1101/gad.1565107.

22. Pornillos O, Ganser-Pornillos BK, Yeager M. Atomic-level modelling of the HIV capsid. Nature 2011;469(7330):424-7. (In eng). DOI: 10.1038/nature09640.

23. McFadden WM, Snyder AA, Kirby KA, et al. Rotten to the core: antivirals targeting the HIV-1 capsid core. Retrovirology 2021;18(1):41. (In eng). DOI: 10.1186/s12977-021-00583-z.

24. Jurado KA, Wang H, Slaughter A, et al. Allosteric integrase inhibitor potency is determined through the inhibition of HIV-1 particle maturation. Proc Natl Acad Sci U S A 2013;110(21):8690-5. (In eng). DOI: 10.1073/pnas.1300703110.

25. Desimmie BA, Schrijvers R, Demeulemeester J, et al. LEDGINs inhibit late stage HIV-1 replication by modulating integrase multimerization in the virions. Retrovirology 2013;10:57. (In eng). DOI: 10.1186/1742-4690-10-57.

26. Balakrishnan M, Yant SR, Tsai L, et al. Non-catalytic site HIV-1 integrase inhibitors disrupt core maturation and induce a reverse transcription block in target cells. PLoS One 2013;8(9):e74163. (In eng). DOI: 10.1371/journal.pone.0074163.

27. Kessl JJ, Kutluay SB, Townsend D, et al. HIV-1 Integrase Binds the Viral RNA Genome and Is Essential during Virion Morphogenesis. Cell 2016;166(5):1257-1268.e12. (In eng). DOI: 10.1016/j.cell.2016.07.044.

28. Fadel HJ, Morrison JH, Saenz DT, et al. TALEN knockout of the PSIP1 gene in human cells: analyses of HIV-1 replication and allosteric integrase inhibitor mechanism. J Virol 2014;88(17):9704-17. (In eng). DOI: 10.1128/jvi.01397-14.

29. Saag MS, Gandhi RT, Hoy JF, et al. Antiretroviral Drugs for Treatment and Prevention of HIV Infection in Adults: 2020 Recommendations of the International Antiviral Society-USA Panel. Jama 2020;324(16):1651-1669. (In eng). DOI: 10.1001/jama.2020.17025.

30. Lai YT. Small Molecule HIV-1 Attachment Inhibitors: Discovery, Mode of Action and Structural Basis of Inhibition. Viruses 2021;13(5) (In eng). DOI: 10.3390/v13050843.

31. Xiao T, Cai Y, Chen B. HIV-1 Entry and Membrane Fusion Inhibitors. Viruses 2021;13(5) (In eng). DOI: 10.3390/v13050735.

32. Markham A. Ibalizumab: First Global Approval. Drugs 2018;78(7):781-785. (In eng). DOI: 10.1007/s40265-018-0907-5.

33. Rai MA, Pannek S, Fichtenbaum CJ. Emerging reverse transcriptase inhibitors for HIV-1 infection. Expert Opin Emerg Drugs 2018;23(2):149-157. (In eng). DOI: 10.1080/14728214.2018.1474202.

34. Dow DE, Bartlett JA. Dolutegravir, the Second-Generation of Integrase Strand Transfer Inhibitors (INSTIs) for the Treatment of HIV. Infect Dis Ther 2014;3(2):83-102. (In eng). DOI: 10.1007/s40121-014-0029-7.

35. Cocohoba J, Dong BJ. Raltegravir: the first HIV integrase inhibitor. Clin Ther 2008;30(10):1747-65. (In eng). DOI: 10.1016/j.clinthera.2008.10.012.

36. Unger NR, Worley MV, Kisgen JJ, Sherman EM, Childs-Kean LM. Elvitegravir for the treatment of HIV. Expert Opin Pharmacother 2016;17(17):2359-2370. (In eng). DOI: 10.1080/14656566.2016.1250885.

37. Hayashi H, Takamune N, Nirasawa T, et al. Dimerization of HIV-1 protease occurs through two steps relating to the mechanism of protease dimerization inhibition by darunavir. Proc Natl Acad Sci U S A 2014;111(33):12234-9. (In eng). DOI: 10.1073/pnas.1400027111.

38. Anstett K, Brenner B, Mesplede T, Wainberg MA. HIV drug resistance against strand transfer integrase inhibitors. Retrovirology 2017;14(1):36. (In eng). DOI: 10.1186/s12977-017-0360-7.

39. Kandel CE, Walmsley SL. Dolutegravir - a review of the pharmacology, efficacy, and safety in the treatment of HIV. Drug Des Devel Ther 2015;9:3547-55. (In eng). DOI: 10.2147/dddt.S84850.

40. Spagnuolo V, Castagna A, Lazzarin A. Bictegravir. Curr Opin HIV AIDS 2018;13(4):326-333. (In eng). DOI: 10.1097/coh.0000000000000468.

41. Clotet B, DeJesus E, Lazzarin A, Livrozet M, Morlat P, Vavro CL, Horton JH, Huang J, Sato A, Underwood MR. HIV Integrase Genotypic and Phenotypic Changes between Day 1 and Day 11 in Subjects with Raltegravir Resistant HIV Treated with S/GSK1349572: Results of Viking Study. abstr TUPE0130. 18th International AIDS Conference. Vienna, Austria 2010.

42. Marcus JL, Leyden WA, Alexeeff SE, et al. Comparison of Overall and Comorbidity-Free Life Expectancy Between Insured Adults With and Without HIV Infection, 2000-2016. JAMA Netw Open 2020;3(6):e207954. (In eng). DOI: 10.1001/jamanetworkopen.2020.7954.

43. Hoen B, Fournier I, Lacabaratz C, et al. Structured treatment interruptions in primary HIV-1 infection: the ANRS 100 PRIMSTOP trial. J Acquir Immune Defic Syndr 2005;40(3):307-16. (In eng). DOI: 10.1097/01.qai.0000182628.66713.31.

44. Castagna A, Muccini C, Galli L, et al. Analytical treatment interruption in chronic HIV-1 infection: time and magnitude of viral rebound in adults with 10 years of undetectable viral load and low HIV-DNA (APACHE study). J Antimicrob Chemother 2019;74(7):2039-2046. (In eng). DOI: 10.1093/jac/dkz138.

45. Hogg RS, Bangsberg DR, Lima VD, et al. Emergence of drug resistance is associated with an increased risk of death among patients first starting HAART. PLoS Med 2006;3(9):e356. (In eng). DOI: 10.1371/journal.pmed.0030356.

46. Clutter DS, Jordan MR, Bertagnolio S, Shafer RW. HIV-1 drug resistance and resistance testing. Infect Genet Evol 2016;46:292-307. (In eng). DOI: 10.1016/j.meegid.2016.08.031.

47. Christ F, Shaw S, Demeulemeester J, et al. Small-molecule inhibitors of the LEDGF/p75 binding site of integrase block HIV replication and modulate integrase multimerization. Antimicrob Agents Chemother 2012;56(8):4365-74. (In eng). DOI: 10.1128/aac.00717-12.

48. Kessl JJ, Jena N, Koh Y, et al. Multimode, cooperative mechanism of action of allosteric HIV-1 integrase inhibitors. J Biol Chem 2012;287(20):16801-11. (In eng). DOI: 10.1074/jbc.M112.354373.

49. Tsiang M, Jones GS, Niedziela-Majka A, et al. New class of HIV-1 integrase (IN) inhibitors with a dual mode of action. J Biol Chem 2012;287(25):21189-203. (In eng). DOI: 10.1074/jbc.M112.347534.

50. Fenwick C, Amad M, Bailey MD, et al. Preclinical profile of BI 224436, a novel HIV-1 non-catalytic-site integrase inhibitor. Antimicrob Agents Chemother 2014;58(6):3233-44. (In eng). DOI: 10.1128/aac.02719-13.

51. Gupta K, Turkki V, Sherrill-Mix S, et al. Structural Basis for Inhibitor- Induced Aggregation of HIV Integrase. PLoS Biol 2016;14(12):e1002584. (In eng). DOI: 10.1371/journal.pbio.1002584.

52. Amadori C, van der Velden YU, Bonnard D, et al. The HIV-1 integrase- LEDGF allosteric inhibitor MUT-A: resistance profile, impairment of virus maturation and infectivity but without influence on RNA packaging or virus immunoreactivity. Retrovirology 2017;14(1):50. (In eng). DOI: 10.1186/s12977-017-0373-2.

53. Maehigashi T, Ahn S, Kim UI, et al. A highly potent and safe pyrrolopyridine-based allosteric HIV-1 integrase inhibitor targeting host LEDGF/p75-integrase interaction site. PLoS Pathog 2021;17(7):e1009671. (In eng). DOI: 10.1371/journal.ppat.1009671.

54. Christ F, Voet A, Marchand A, et al. Rational design of small-molecule inhibitors of the LEDGF/p75-integrase interaction and HIV replication. Nat Chem Biol 2010;6(6):442-8. (In eng). DOI: 10.1038/nchembio.370.

55. Engelman AN. Multifaceted HIV integrase functionalities and therapeutic strategies for their inhibition. J Biol Chem 2019;294(41):15137-15157. (In eng). DOI: 10.1074/jbc.REV119.006901.

56. Vansant G, Vranckx LS, Zurnic I, et al. Impact of LEDGIN treatment during virus production on residual HIV-1 transcription. Retrovirology 2019;16(1):8. (In eng). DOI: 10.1186/s12977-019-0472-3.

57. Sato M, Motomura T, Aramaki H, et al. Novel HIV-1 integrase inhibitors derived from quinolone antibiotics. J Med Chem 2006;49(5):1506-8. (In eng). DOI: 10.1021/jm0600139.

58. Shimura K, Kodama E, Sakagami Y, et al. Broad antiretroviral activity and resistance profile of the novel human immunodeficiency virus integrase inhibitor elvitegravir (JTK-303/GS-9137). J Virol 2008;82(2):764-74. (In eng). DOI: 10.1128/jvi.01534-07.

59. Adachi A, Gendelman HE, Koenig S, et al. Production of acquired immunodeficiency syndrome-associated retrovirus in human and nonhuman cells transfected with an infectious molecular clone. J Virol 1986;59(2):284-91. (In eng). DOI: 10.1128/jvi.59.2.284-291.1986.

60. Zhu B, Cai G, Hall EO, Freeman GJ. In-fusion assembly: seamless engineering of multidomain fusion proteins, modular vectors, and mutations. Biotechniques 2007;43(3):354-9. (In eng). DOI: 10.2144/000112536.

61. Japour AJ, Mayers DL, Johnson VA, et al. Standardized peripheral blood mononuclear cell culture assay for determination of drug susceptibilities of clinical human immunodeficiency virus type 1 isolates. The RV-43 Study Group, the AIDS Clinical Trials Group Virology Committee Resistance Working Group. Antimicrob Agents Chemother 1993;37(5):1095-101. (In eng). DOI: 10.1128/aac.37.5.1095.

62. Kimpton J, Emerman M. Detection of replication-competent and pseudotyped human immunodeficiency virus with a sensitive cell line on the basis of activation of an integrated beta-galactosidase gene. J Virol 1992;66(4):2232-9. (In eng). DOI: 10.1128/jvi.66.4.2232-2239.1992.

63. Tsiang M, Jones GS, Hung M, et al. Affinities between the binding partners of the HIV-1 integrase dimer-lens epithelium-derived growth factor (IN dimer-LEDGF) complex. J Biol Chem 2009;284(48):33580-99. (In eng). DOI: 10.1074/jbc.M109.040121.

64. Hazuda DJ, Hastings JC, Wolfe AL, Emini EA. A novel assay for the DNA strand-transfer reaction of HIV-1 integrase. Nucleic Acids Res 1994;22(6):1121-2. (In eng). DOI: 10.1093/nar/22.6.1121.

65. Kodama EI, Kohgo S, Kitano K, et al. 4'-Ethynyl nucleoside analogs: potent inhibitors of multidrug-resistant human immunodeficiency virus variants in vitro. Antimicrob Agents Chemother 2001;45(5):1539-46. (In eng). DOI: 10.1128/aac.45.5.1539-1546.2001.

66. Kobayashi M, Yoshinaga T, Seki T, et al. In Vitro antiretroviral properties of S/GSK1349572, a next-generation HIV integrase inhibitor. Antimicrob Agents Chemother 2011;55(2):813-21. (In eng). DOI: 10.1128/aac.01209-10.

67. Lataillade M, Chiarella J, Kozal MJ. Natural polymorphism of the HIV-1 integrase gene and mutations associated with integrase inhibitor resistance. Antivir Ther 2007;12(4):563-70. (In eng).

68. Rhee SY, Liu TF, Kiuchi M, et al. Natural variation of HIV-1 group M integrase: implications for a new class of antiretroviral inhibitors. Retrovirology 2008;5:74. (In eng). DOI: 10.1186/1742-4690-5-74.

69. Ceccherini-Silberstein F, Malet I, D'Arrigo R, Antinori A, Marcelin AG, Perno CF. Characterization and structural analysis of HIV-1 integrase conservation. AIDS Rev 2009;11(1):17-29. (In eng).

70. Bonnard D, Le Rouzic E, Eiler S, et al. Structure-function analyses unravel distinct effects of allosteric inhibitors of HIV-1 integrase on viral maturation and integration. J Biol Chem 2018;293(16):6172-6186. (In eng). DOI: 10.1074/jbc.M117.816793.

71. Eron JJ, Clotet B, Durant J, et al. Safety and efficacy of dolutegravir in treatment-experienced subjects with raltegravir-resistant HIV type 1 infection: 24-week results of the VIKING Study. J Infect Dis 2013;207(5):740-8. (In eng). DOI: 10.1093/infdis/jis750.

72. DHHS. Guidelines for the Use of Antiretroviral Agents in Adults and Adolescents Living with HIV. Aug 16, 2021.

73. 日本エイズ学会 HIV 感染症治療委員会. HIV 感染症「治療の手引き」第 24 版. 2020 年 11 月.

74. Raffi F, Rachlis A, Stellbrink HJ, et al. Once-daily dolutegravir versus raltegravir in antiretroviral-naive adults with HIV-1 infection: 48 week results from the randomised, double-blind, non-inferiority SPRING-2 study. Lancet 2013;381(9868):735-43. (In eng). DOI: 10.1016/s0140- 6736(12)61853-4.

75. Lewin SR, Rouzioux C. HIV cure and eradication: how will we get from the laboratory to effective clinical trials? Aids 2011;25(7):885-97. (In eng). DOI: 10.1097/QAD.0b013e3283467041.

76. Durand CM, Blankson JN, Siliciano RF. Developing strategies for HIV-1 eradication. Trends Immunol 2012;33(11):554-62. (In eng). DOI: 10.1016/j.it.2012.07.001.

77. Fletcher CV, Staskus K, Wietgrefe SW, et al. Persistent HIV-1 replication is associated with lower antiretroviral drug concentrations in lymphatic tissues. Proc Natl Acad Sci U S A 2014;111(6):2307-12. DOI: 10.1073/pnas.1318249111.

78. Kim Y, Anderson JL, Lewin SR. Getting the "Kill" into "Shock and Kill": Strategies to Eliminate Latent HIV. Cell Host Microbe 2018;23(1):14-26. (In eng). DOI: 10.1016/j.chom.2017.12.004.

79. Spivak AM, Planelles V. Novel Latency Reversal Agents for HIV-1 Cure. Annu Rev Med 2018;69:421-436. DOI: 10.1146/annurev-med-052716- 031710.

80. Vansant G, Bruggemans A, Janssens J, Debyser Z. Block-And-Lock Strategies to Cure HIV Infection. Viruses 2020;12(1) (In eng). DOI: 10.3390/v12010084.

81. Leth S, Schleimann MH, Nissen SK, et al. Combined effect of Vacc-4x, recombinant human granulocyte macrophage colony-stimulating factor vaccination, and romidepsin on the HIV-1 reservoir (REDUC): a single-arm, phase 1B/2A trial. Lancet HIV 2016;3(10):e463-72. (In eng). DOI: 10.1016/s2352-3018(16)30055-8.

82. Tapia G, Højen JF, Ökvist M, et al. Sequential Vacc-4x and romidepsin during combination antiretroviral therapy (cART): Immune responses to Vacc-4x regions on p24 and changes in HIV reservoirs. J Infect 2017;75(6):555-571. (In eng). DOI: 10.1016/j.jinf.2017.09.004.

83. Bruggemans A, Vansant G, Balakrishnan M, et al. GS-9822, a preclinical LEDGIN candidate, displays a block-and-lock phenotype in cell culture. Antimicrob Agents Chemother 2021;65(5) (In eng). DOI: 10.1128/aac.02328- 20.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る