リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Synthesis and transport properties of van der Waals-type quasi-two-dimensional pnictide, EuSn2As2 (本文)」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Synthesis and transport properties of van der Waals-type quasi-two-dimensional pnictide, EuSn2As2 (本文)

坂上, 良介 慶應義塾大学

2021.09.21

概要

Quasi-two-dimensional pnictides are layered compounds that exhibit various functional properties including high thermoelectricity, superconductivity, and topological features. The present study aims application of van der Waals-type quasi-two-dimensional pnictide, EuSn2As2 to thermoelectric (TE) materials to reveal its transport properties. Furthermore, the present study examines its chemical bonding states by Mo¨ssbauer spectroscopy, magneti- zation measurements, and electrinic state calculations to discuss relations between chemical bonding states and transport properties.

In order to obtain near-single-phase polycrystalline samples of SnAs-based layered com- pound EuSn2As2 as a candidate for TE materials, we have established a method of synthesis procedure in which a sample was prepared from Eu ingot and Sn-As pellet in a carbon cru- cible. As far as our trials were concerned, this synthesis method produced polycrystalline samples free from second phases other than Sn, unlike another syntehsis method in which a sample was prepared from Eu ingot, Sn powder, and As powder in alumina tube. In the method using carbon crucible, 0.8050 g of the 0.9812 g of raw material was recovered. Sev- eral trial of this synthesis method will yield an adequate amounts of samples of EuSn2As2 for TE transport measurements.

Automation of measurements were necessary for experimental competitive development research of the TE materials and superconductors. Automated measurements in our labo- ratory of electrical resistivity (ρ) above and below room temperature (RT), Seebeck coeffi-cient (S ) above RT, and steady-state thermal conductivity (SSκ) at RT were realized using the Laboratory Virtual Instrument Engineering Workbench (LabVIEW) programs for controlling electronic test equipments and temperature controllers. Obtained measurement raw data were processed using Python code to obtain physical quantities. Particularly, we established calcu-lation processes for obtaining SSκ considering loss of thermal radiation. The above-mentioned work will achieve reduction in working hours and also will prevent careless mistakes.

The electrical and thermal transport properties of densified polycrystalline sample of EuSn2As2 with porosity (ϕ) of 2.4(9) vol.% were measured from RT to ∼673 K perpendicu- lar to the pressing direction of hot pressing; i.e. the crystallographic phase of EuSn2As2 in the sample was weakly oriented to the a-b plane of the hexagonal coordinate system during our measurements.
The plot of temperature (T ) dependence of the electrical resistivity (ρ) shows metallic be-havior. The ρ is probably affected by the multiband. The ρ includes T 2 term. The T 2 term is probably derived from spectral conductivity (sc) as a function of energy (ε) relative to the band edge, electron–electron scattering, ionized impurity scattering related to the displace- ment of participating elements, and/or intervalley scattering. The plot of T dependence of the Seebeck coefficient (S ) shows that the carriers exhibit p-type polarity. The measurement values of (ρ, S ) was (0.50(3) mΩ cm, 50(4) µV K−1) at T ∼ 673 K. The power factor (P) was 0.51(8) mW m−1 K−2 at 673(4) K. The direct thermal transport measurement reveals that the thermal conductivity (κ) decreases with increasing T . Using the WFL law, the ratio of phonon thermal conductivity (κph) to κ, defined as κph/κ, was 0.56(8) at T = 374(4) K and 0.35(7) at 673(6) K. The ZT value was 0.067(8) at T = 673(3) K. EuSn2As2 seems to be over-doped as a TE material. Suppression of the hole concentration will be a possible route for improving the TE properties of EuSn2As2-based compounds.

Magnetization measurements and Mo¨ssbauer spectroscopy for EuSn2As2 were demon- strated for experimental examination of chemical bonding states and further discussion on the chemical bonding and transport properties. 151Eu Mo¨ssbauer spectra indicate both Eu2+ and Eu3+ components at temperatures from 4.2 to 297 K. This was consistent with measure- ment values of magnetization of EuSn2As2 in high magnetic field. The Eu2+ component shows magnetic splitting at 4.2 K. 119Sn Mo¨ssbauer spectra at 4.2 K also demonstrate mag- netic splitting caused by internal magnetic field (Bint) of Eu. In EuSn2As2, Eu atoms are not isolated as cations but rather supply charge carriers to SnAs anionic bilayers. Although this model are not emphasized in previous reports on EuSn2As2, it will be useful for optimization of charge carrier density in EuSn2As2-based materials with high thermoelectric properties by means of partial substitution of the Eu atom for other lanthanides.

Electronic state calculations based on density functional theory (DFT) examines applica-tion of EuSn2As2 to the Zintl–Klemm concept. The spatial distribution of the charge density difference (CDD; ∆σch) of EuSn2As2 suggested the possible existence of the lone-pair elec- trons near the both Sn and As sites. The chemical bonding states of EuSn2As2 is partly explainable in terms of the Zintl–Klemm concept.

この論文で使われている画像

参考文献

[1] T. H. Geballe and J. K. Hulm, Bernd Theodor Matthias (National Academies Press, Washington, D.C., 1996).

[2] H. Hosono, A. Yamamoto, H. Hiramatsu, and Y. Ma, Materials Today 21, 278 (2017).

[3] M. Wuttig, Phys. Status Soldi B 249, 1843 (2012).

[4] M. S. Dresselhaus, G. Chen, M. Y. Tang, R.-G. Yang, H. Lee, D.-Z. Wang, Z.-F. Ren, J.-P. Fleurial, and P. Gogna, Adv. Mater. 19, 1043 (2007).

[5] J.-Y. Raty, M. Schumacher, P. Golub, V. L. Deringer, C. Gatti, and M. Wuttig, Adv. Mater. 31, 1806280 (2019).

[6] J. B. Taylor, S. L. Bennett, and R. D. Heyding, J. Phys. Chem. Solids 26, 69 (1965).

[7] M. Q. Arguilla, N. D. Cultrara, Z. J. Baum, S. Jiang, R. D. Ross, and J. E. Goldberger, Inorg. Chem. Front. 4, 378 (2017).

[8] Z.-A. Ren, W. Lu, J. Yang, W. Yi, X.-L. Shen, Z.-C. Li, G.-C. Che, X.-L. Dong, L.-L. Sun, F. Zhou, and Z.-X. Zhao Chinese Phys. Lett. 25, 2215 (2008).

[9] K. Momma and F. Izumi, J. Appl. Crystallogr. 44, 1272 (2011).

[10] Y. Yu, M. Cagnoni, O. C.-Mire´din, and M. Wuttig, Adv. Funct. Mater. 30, 1904862 (2019).

[11] H. Li, S.-Y. Gao, S.-F. Duan, Y.-F. Xu, K.-J. Zhu, S.-J. Tian, J.-C. Gao, W.-H. Fan, Z.-C. Rao, J.-R. Huang, J.-J. Li, D.-Y. Yan, Z.-T. Liu, W.-L. Liu, Y.-B. Huang, Y.-L. Li, Y. Liu, G.-B. Zhang, P. Zhang, T. Kondo, S. Shin, H.-C. Lei, Y.-G. Shi, W.-T. Zhang, H.-M. Weng, T. Qian, and H. Ding, Phys. Rev. X 9, 041039 (2019).

[12] S. Sakuragi, S. Sasaki, R. Akashi, R. Sakagami, K. Kuroda, C. Bareille, T. Hashimoto, T. Nagashima, Y. Kinoshita, Y. Hirata, M. Shimozawa, S. Asai, T. Yajima, S. Doi, N. Tsujimoto, S. Kunisada, R. Noguchi, K. Kurokawa, N. Azuma, K. Hirata, Y. Yamasaki, H. Nakao, T. K. Kim, C. Cacho, T. Masuda, M. Tokunaga, H. Wadati, K. Okazaki, S. Shin, Y. Kamihara, M. Yamashita, and T. Kondo, arXiv:2001.07991.

[13] Y. Goto, A. Yamada, T. D. Matusda, Y. Aoki, and Y. Mizuguchi, J. Phys. Soc. Jpn. 86, 123701 (2017).

[14] K. Ishihara, T. Takenaka, Y. Miao, O. Tanaka, Y. Mizukami, H. Usui, K. Kuroki, M. Konczykowski, Y. Goto, Y. Mizuguchi, and T. Shibaushi, Phys. Rev. B 98, 020503(R) (2018).

[15] E. J. Cheng, J. M. Ni, F. Q. Meng, T. P. Ying, B. L. Pan, Y. Y. Huang, D. C. Peets, Q. H. Zhang, and S. Y. Li, EPL-Europhys. Lett. 123, 47004 (2018).

[16] H. Yuwen, Y. Goto, R, Jha, A. Miura, C. Moriyoshi, Y. Kuroiwa, T. D. Matsuda, Y. Aoki, and Y. Mizuguchi, Jpn. J. Appl. Phys. 58, 083001 (2019).

[17] B. He, Y. Wang, M. Q. Arguilla, N. D. Cultrara, M. R. Scudder, J. E. Goldberger, W. Windl, and J. P. Heremans, Nat. Mater. 18, 568 (2019).

[18] K. Lee, D. Kaseman, S. Sen, I. Hung, Z. Gan, B. Gerke, R. Po¨ttgen, M. Feygenson, J. Neuefeind, O.I. Lebedev, K. Kovnir, J. Am. Chem. Soc. 137, 3622 (2015).

[19] L.-Y. Rong, J.-Z. Ma, S.-M. Nie, Z.-P. Lin, Z.-L. Li, B.-B. Fu, L.-Y. Kong, X.-Z. Zhang, Y.-B. Huang, H.-M. Weng, T. Qian, H. Ding, R.-Z. Tai, Sci. Rep.-UK 7, 6133 (2017).

[20] H.-C. Chen, Z.-F. Lou, Y.-X. Zhou, Q. Chen, B.-J. Xu, S.-J. Chen, J.-H. Du, J.-H. Yang, H.-D. Wang, and M.-H. Fang, Chinese Phys. Lett. 37, 047201 (2020).

[21] R. Sakagami, Y. Goto, Y. Mizuguchi, M. Matoba, and Y. Kamihara, Mater. Sci. Tech. Jpn. 55, 72 (2018) (in Japanese).

[22] T. J. Seebeck, Magnetische Polarisation der Metalle und Erze durch Temperatur- Differenz (Abh. Akad. Wiss., Berlin, 1822) (in German).

[23] H. J. Goldsmid and R. W. Douglas, Brit. J. Appl. Phys. 5, 386 (1954).

[24] 寺崎一郎, 熱電材料の物質科学—熱力学・物性物理学・ナノ科学 (内田老鶴圃, 東京, 2017); I. Terasaki, Materials Science of Thermoelectric Materials: Thermodynam- ics, Condensed Matter Physics and Nanoscience (Uchida Rokakuho, Tokyo, 2017) (in Japanese).

[25] D. T. Morelli and G. P. Meisner, J. Appl. Phys. 77, 3777 (1995).

[26] T. Caillat, J.-P. Fleurial, and A. Borshchevsky, Phys. Chem. Solids 58, 1119 (1997).

[27] G. S. Nolas, J. L. Cohn, G. A. Slack, and S. B. Schujman, Appl. Phys. Lett. 73, 178 (1998).

[28] G. A. Slack, New Materials and Performance Limits for Thermoelectric Cooling in CRC Handbook of Thermoelectrics, edited by D. M. Rowe (CRC, Boca Raton, 1995).

[29] H. Wang, W. D. Porter, H. Bo¨ttner, J. Ko¨nig, L. Chen, S. Q. Bai, T. M. Tritt, A. Mayolet, J. Senawiratne, C. Smith, F. Harris, P. Gilbert, J. Sharp, J. Lo, H. Kleinke, and L. Kiss, J. Electron. Mater. 42, 654 (2013).

[30] H. Wang, W. D. Porter, H. Bo¨ttner, J. Ko¨nig, L. Chen, S. Q. Bai, T. M. Tritt, A. Mayolet, J. Senawiratne, C. Smith, F. Harris, P. Gilbert, J. Sharp, J. Lo, H. Kleinke, and L. Kiss, J. Electron. Mater. 42, 1073 (2013).

[31] H. Zhang, M. Baitinger, M.-B. Tang, Z.-Y. Man, H.-H. Chen, X.-X. Yang, Y. Liu, L. Chen, Y. Grin, and J.-T. Zhao, Dalton T 39, 1101 (2010).

[32] F. Gascoin, S. Ottensmann, D. Stark, S. M. Ha¨ıle, and G. J. Snyder, Adv. Funct. Mater. 15, 1860 (2005).

[33] K. Kihou, H. Nishiate, A. Yamamoto, and C.-H. Lee, Inorg. Chem. 56, 3709 (2017).

[34] Z.-P. Lin, G. Wang, C.-C. Le, H.-Z. Zhao, N. Liu, J.-P. Hu, L.-W. Guo, and X.-L. Chen, Phys Rev. B 95, 165201 (2017).

[35] A. Palenzona, P. Manfrinetti, and M. L. Fornasini, J. Alloy. Compd. 280, 211 (1998).

[36] S. Ono, F. L. Hui, J. G. Despault, L. D. Calvert, and J. B. Taylor, J. Less-Common Met. 25, 287 (1971).

[37] Springer, http://materials.springer.com/isp/phase-diagram/docs/c 0900186 (Accessed June 2017).

[38] E. R. Jette and F. Foote, J. Chem. Phys. 3, 605 (1935).

[39] アドバンス理工 (旧社名: アルバック理工), 卓上型ランプ加熱装置 MILA-5000 取扱説明書; Advance Riko (its former company name: ULVAC-RIKO), Instrution manual of infrared lamp heating system, MILA-5000 (in Japanese).

[40] N. Cusack, P. Kendall, P. Phys. Soc. 72, 898 (1958).

[41] M. J. Laubitz, Can. J. Phys. 47, 2633 (1969).

[42] J. B. J. Fourier, The´orie Analytique de la Chaleur (Cambridge University Press, Cam- bridge, 2009) (Original work published 1822) (in French).

[43] J. B. J. Fourier, The Analytical Theory of Heat, translated by A. Freeman (Cambridge University Press, Cambridge, 2009) (Original work published 1822).

[44] R. Sakagami, Y. Goto, H. Karimata, N. Azuma, M. Yamaguchi, S. Iwasaki, M. Nakan- ishi, I. Kitawaki, Y. Mizuguchi, M. Matoba, and Y. Kamihara, Jpn. J. Appl. Phys. 60, 035511 (2021).

[45] G. J. Snyder, in Energy Harvesting Technologies, ed. S. Priya and D. J. Inman (Springer, New York, 2009).

[46] K. Hanamura, Proc. 217th Topical Symp. Magnetic Society of Japan, Tokyo, 2018, p. 9 (in Japanese).

[47] J. W. Gibbs, Transactions of the Connecticut Academy of Arts and Sciences 2, 382 (1873).

[48] J. W. Gibbs, Transactions of the Connecticut Academy of Arts and Sciences 3, 108 (1874–1878).

[49] J. W. Gibbs, Transactions of the Connecticut Academy of Arts and Sciences 3 , 343 (1874–1878).

[50] H. B. Callen, Thermodynamics and an Introduction to Thermostatistics (Wiley, New York, 1985) 2nd ed.

[51] H. Tasaki, Netsurikigaku: Gendaiteki-na shiten-kara (Baifukan, Tokyo, 2000) Ap- pendix F, pp. 257–259 (in Japanese).

[52] A. F. Ioffe, Semiconductor Thermoelements and Thermoelectric Cooling (Infosearch, London, 1957).

[53] G. J. Snyder and E. S. Toberer, Nat. Mater. 7, 105 (2008).

[54] K. Guo, Q.-G. Cao, and J.-T. Zhao, J. Rare Earth. 31, 1029 (2013).

[55] J.-W. Zhang, L.-R. Song, and B.-B. Iversen, npj Comput. Mater. 5, 76 (2019).

[56] L.-T. Zheng, W. Li, C. Sun, X.-M. Shi, X.-Y. Zhang, and Y.-Z. Pei, J. Alloy. Compd. 821, 153497 (2020).

[57] E. S. Toberer, A. F. May, B. C. Melot, E. Flage-Larsen, and G. J. Snyder, Dalton T 39, 1046 (2010).

[58] Q.-G. Cao, H. Zhang, M.-B. Tang, H.-H. Chen, X.-X. Yang, Y. Grin, and J.-T. Zhao, J. Appl. Phys. 107, 053714 (2010).

[59] X.-J. Wang, M.-B. Tang, H.-H. Chen, X.-X. Yang, J.-T. Zhao, U. Burkhardt, and Y. Grin, Appl. Phys. Lett. 94, 092106 (2009).

[60] C. Yu, T. J. Zhu, S. N. Zhang, X. B. Zhao, J. He, Z. Su, and T. M. Tritt, J. Appl. Phys. 104, 013705 (2008).

[61] K. Guo, Q.-G. Cao, X.-J. Feng, M.-B. Tang, H.-H. Chen, X. X. Guo, L. Chen, Y. Grin, and J.-T. Zhao, Eur. J. Inorg. Chem. 26, 4043 (2011).

[62] C. L. Condron, S. M. Kauzlarich, F. Gascoin, and G. J. Snyder, J. Solid State Chem. 179, 2252 (2006).

[63] F. Ahmadpour, T. Kolodiazhnyi, and Y. Mozharivskyj, J. Solid State Chem. 180, 2420 (2007).

[64] S. Kim, C. Kim, Y.-K. Hong, T. Onimaru, K. Suekuni, T. Takabatake, and M.-H. Jung, J. Mater. Chem. A 2, 12311 (2014).

[65] J. Shuai, Y. Wang, H.-S. Kim, Z. Liu, J. Sun, S. Chen, J. Sui, and Z. Ren, Acta Mater. 93, 187 (2015).

[66] A. Bhardwaj, A. Rajput, A. K. Shukla, J. J. Pulikkotil, A. K. Srivastava, A. Dhar, G. Gupta, S. Auluck, D. K. Misra, and R. C. Budhani, RSC Adv. 3, 8504 (2013).

[67] A. Bhardwaj and D. K. Misra, RSC Adv. 4, 34552 (2014).

[68] H. Tamaki, H. K. Sato, and T. Kanno, Adv. Mater. 28, 10182 (2016).

[69] J.-W. Zhang, L.-R. Song, S. H. Pedersen, H. Yin, L. T. Hung, and B. B. Iversen, Nat. Commun. 8, 13901 (2017).

[70] A. F. May, M. A. McGuire, D. J. Singh, J. Ma, O. Delaire, A. Huq, W. Cai, and H. Wang, Phys. Rev. B 85, 035202 (2012).

[71] J. Shuai, Z.-H. Liu, H. S. Kim, Y.-M. Wang, J. Mao, R. He, J.-H. Sui, and Z.-F. Ren, J. Mater. Chem. A 4, 4312 (2016).

[72] J. Shuai, H.-Y. Geng, Y.-C. Lan, Z. Zhu, C. Wang, Z.-H. Liu, J.-M. Bao, C.-W. Chu, J-H. Sui, and Z.-F. Ren, P. Natl. Acad. Sci. USA 113, E4125 (2016).

[73] E. I. Gladyshevskii, P. I. Kripyakevich, and O. I. Bodak, Ukr. Fiz. Zh. 12, 447 (1967) (in Ukrainian).

[74] X.-J. Wang, M.-B. Tang, J.-T. Zhao, H.-H. Chen, and X.-X. Yang, Appl. Phys. Lett. 90, 232107 (2007).

[75] J. E. Iglesias, K. E. Pachali, and H. Steinfink, J. Solid State Chem. 9, 6 (1974).

[76] H. Kunioka, K. Kihou, H. Nishate, A. Yamamoto, H. Usui, K. Kuroki, and C. H. Lee, Dalton T. 47, 16205 (2018).

[77] H. Kunioka, K. Kihou, D. Kato, H. Usui, T. Iida, H. Nishiate, K. Kuroki, A. Yamamoto, and C. H. Lee, Inorg. Chem. 59, 5828 (2020).

[78] Z. Ban and M. Sikirica, Acta Crystallogr. 18, 594 (1965).

[79] D. Harker, Z. Kristallogr. 89, 175 (1934).

[80] M. Asbrand, B. Eisenmann, and J. Klein, Z. Anorg. Allg. Chem. 621, 576 (1995) (in German).

[81] Y. Goto, A. Miura, C. Moriyoshi, Y. Kuroiwa, T. D. Mtsuda, Y. Aoki, and Y. Mizuguchi, Sci. Rep.-UK 8, 12852 (2018).

[82] H. W. Shu, S. Jaulmes, and J. Flahaut, J. Solid State Chem. 74, 277 (1988).

[83] The International Bureau of Weights and Measures (BIPM), The International System of Units (SI) (BIPM, online, 2019).

[84] F. K. Lotgering, J. Inorg. Cucl. Chem. 9, 113 (1959).

[85] J. A. Bearden, Rev. Mod. Phys. 39, 78 (1967).

[86] F. Bloch, Z. Phys. 59, 208 (1930) (in German).

[87] E. Gru¨neisen, Ann. Phys.-Berlin 16, 530 (1933) (in German).

[88] J. Bass, W. P. Pratt, Jr, and P. A. Schroeder, Rev. Mod. Phys. 62, 645 (1990).

[89] J. E. Hoffman, Rep. Prog. Phys. 74, 124513 (2011).

[90] N. Ni, S. L. Bud’ko, A. Kreyssig, S. Nandi, G. E. Rustan, A. I. Goldman, S. Gupta, J. D. Corbett, A. Kracher, P. C. Canfield, Phys. Rev. B 78, 014507 (2008).

[91] J. M. Ziman, Electrons and Phonons: The Theory of Transport Phenomena in Solids (Clarendon Press, Oxford, 1960).

[92] M. Cutler and N. F. Mott, Phys. Rev. 181, 1336 (1969).

[93] T. Takeuchi, Mater. Trans. 50, 2359 (2009).

[94] T. Takeuchi, J. Thermoelectric. Soc. Jpn. 8, 17 (2011) (in Japanese).

[95] T. Takeuchi, T. Otagiri, H. Sakagami, T. Kondo, U. Mizutani, H. Sato, Phys. Rev. B 70, 144202 (2004).

[96] R. E. Peierls, Quantum Theory of Solids (Clarendon Press, Oxford, 1955).

[97] F. J. Blatt, in: F. Seitz, D. Turnbull (Eds.), Solid State Physics: Advances in Research and Applications, Vol. 4, (Academic Press, New York, 1957).

[98] A. H. Wilson, The Theory of Metals, 2nd Edition (Cambridge University Press, Cam- bridge, 1953).

[99] W. G. Baber, P. R. Soc. A 158, 383 (1937).

[100] A. H. MacDonald, R. Taylor, and D. J. W. Geldart, Phys. Rev. B 23, 2718 (1981).

[101] K. Andres, J. E. Graebner, and H. R. Ott, Phys. Rev. Lett. 35, 1779 (1975).

[102] W. Lieke, U. Rauchschwalbe, C. B. Bredl, F. Steglich, J. Aarts, and F. R. de Boer, J. Appl. Phys. 53, 2111 (1982).

[103] T. Furuno, N. Sato, S. Kunii, T. Kasuya, W. Sasaki, J. Phys. Soc. Jpn. 54, 1899 (1985).

[104] N. Sato, A. Sumiyama, S. Kunii, H. Nagano, and T. Kasuya, J. Phys. Soc. Jpn. 54, 1923 (1985).

[105] J. F. Goff, J. Appl. Phys. 35, 2919 (1964).

[106] A. H. Thompson, Phys. Rev. Lett. 35, 1786 (1975).

[107] Y. Tokura, Y. Taguchi, Y. Okada, Y. Fujishima, T. Arima, K. Kumagai, and Y. Iye, Phys. Rev. Lett. 70, 2126 (1993).

[108] D. Varshney, N. Dodiya, M. W. Shaikh, J. Alloy. Compd. 509, 7447 (2011).

[109] H. Imai, Y. Shimakawa, and Y. Kubo, Phys. Rev. B 64, 241104(R) (2001).

[110] E. Conwell and V. F. Weisskopf, Phys. Rev. 77, 388 (1950).

[111] H. Brooks, Adv. Electron El. Phys. 7, 85 (1955).

[112] A. Nishida, O. Miura, C.-H. Lee, Y. Mizuguchi, Appl. Phys. Express 8, 111801 (2015).

[113] H. Preston-Thomas, Metrologia 27, 3 (1990).

[114] J. Ancsin and E.G. Murdock, Metrologia 27, 201 (1990).

[115] C. Herring, Bell Syst. Tech. J. 34, 237 (1955).

[116] N. F. Mott and H. Jones, The Theory of the Properties of Metals and Alloys (Clarendon Press, Oxford, 1936).

[117] M. Jonson and G. D. Mahan, Phys. Rev. B 21, 4223 (1980).

[118] H. Kontani, Phys. Rev. B 67, 014408 (2003).

[119] J. S. Tse and D. D. Klug, in Thermoelectrics Handbook: Macro to Nano, ed. D. M. Rowe (CRC, Boca Raton, 2006).

[120] Y. Goto, J. Kajitani, Y. Mizuguchi, Y. Kamihara, and M. Matoba, J. Phys. Soc. Jpn. 84, 085003 (2015).

[121] U. Birkholz, Z. Naturforsch. Pt. A 13, 780 (1958) (in German).

[122] R. E. Fryer, C. C. Lee, V. Rowe, and P. A. Schroeder, Physica 31, 1491 (1965).

[123] L.-D. Zhao, C. Chang, G. Tan, and M. G. Kanatzidis, Energy Environ. Sci. 9, 3044 (2016).

[124] T. Nishimura, H. Sakai, H. Mori, K. Akiba, H. Usui, M. Ochi, K. Kuroki, A.Miyake, M. Tokunaga, Y. Uwatoko, K. Katayama, H. Murakawa, and N. Hanasaki, Phys. Rev. Lett. 122, 226601 (2019).

[125] G. S. Nolas, J. Sharp, and H. J. Goldsmid, Thermoelectrics (Springer, Berlin, 2010).

[126] H. J. Goldsmid, Thermoelectric Refrigeration (Plenum Press, New York, 1964).

[127] T. Hoashi, J. Inst. Electr. Eng. Jpn. 47, 595 (1927) (in Japanese).

[128] J. Millman, P. I.R.E. 28, 413 (1940).

[129] G. Wiedemann and R. Franz, Ann. Phys.-Berlin 165, 497 (1853) (in German).

[130] L. Lorenz, Ann, Phys.-Berlin 223, 429 (1872) (in German).

[131] A. Sommerfeld, Naturwissenschaften 15, 825 (1927) (in German).

[132] A. Sommerfeld, Naturwissenschaften 16, 374 (1928) (in German).

[133] P. J. Price, Philos. Mag. 46, 1252 (1955).

[134] G. D. Mahan, Solid State Phys. 51, 81 (1998).

[135] M. Cutler, J. F. Leavy, and R. L. Fitzpatrick, Phys. Rev. 133, A1143 (1964).

[136] F. D. Rosi, B. Abeles, and R. V. Jensen, J. Phys. Chem. Solids 10, 191 (1959).

[137] H. J. Goldsmid, R. T. Delves, G.E.C. Journal 28, 102 (1961).

[138] Mo¨ssbauer Effect Data Center, https://medc.dicp.ac.cn/Resources-isotopes/Resource- Eu.php (Accessed in May 2021).

[139] N. N. Greenwood and T. C. Gibb, Mo¨ssbauer Spectroscopy, Tin-119 (1971) pp. 371– 432.

[140] F. Grandjean and G. J. Long, Mo¨ssbauer Spectroscopy of Europium-Containing Com- pounds (1989). p. 526

[141] Mo¨ssbauer Effect Data Center, https://medc.dicp.ac.cn/Resources-isotopes/Resource- Sn.php (Accessed in May 2021).

[142] I. Nowik, M. Campagna, and G. K. Wertheim, Phys. Rev. Lett. 38, 43 (1977).

[143] M. Loewenhaupt and S. Hu¨fner, Phys. Lett. 30A, 309 (1969).

[144] G. Wortmann, W. Krone, E.V. Sampathkumaran, and G. Kaindl, Hyperfine Interact. 28, 581 (1986).

[145] G. P. Srivastava, The Physics of Phonons (Taylor & Francis Group, New York, 1990).

[146] L. Chaput, A. Togo, I. Tanaka, and G. Hug, Phys. Rev. B 84, 094302 (2011).

[147] A. Togo, L. Chaput, and I. Tanaka, Phys. Rev. B 91, 094306 (2015).

[148] K. Suekuni, C. H. Lee, H. I. Tanaka, E. Nishibori, A. Nakamura, H. Kasai, H. Mori, H. Usui, M. Ochi, T. Hasegawa, M. Nakamura, S. Ohira-Kawamura, T. Kikuchi, K. Kaneko, H. Nishiate, K. Hashikuni, Y. Kosaka, K. Kuroki, and T. Takabatake, Adv. Mater. 30, 1706230 (2018).

[149] Y. Mizuguchi, A. Miura, A. Nishida, O. Miura, K. Tadanaga, N. Kumada, C. H. Lee, E. Magome, C. Moriyoshi, and Y. Kuroiwa, J. Appl. Phys. 119, 155103 (2016).

[150] C. H. Lee, A. Nishida, T. Hasegawa, H. Nishiate, H. Kunioka, S. Ohira-Kawamura, M. Nakamura, K. Nakajima, and Y. Mizuguchi, Appl. Phys. Lett. 112, 023903 (2018).

[151] J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

[152] G. Kresse and J. Fu¨rthmuller, Comp. Mater. Sci. 6, 15 (1996).

[153] G. Kresse and J. Fu¨rthmuller, Phys. Rev. B 54, 11169 (1996).

[154] P. Sarangapani, A. G. Akkala, S. Steiger, H.-H. Park, Y. Borga, T. C. Kubis, M. Povolotskyi, and G. Klimeck (2014), “Brillouin Zone Viewer,” https://nanohub.org/resources/brillouin (DOI: 10.21981/D3DB7VQ35).

[155] W. Setyawan and S. Curtarolo, Comp. Mater. Sci. 49, 299 (2010).

[156] S. Grimme, J. Comput. Chem. 27, 1787 (2006).

[157] R. Kniep, Eduard Zintl: His Life and Scholarly Work in Chemistry, Structure, and Bonding of Zintl Phases and Ions edited by S. M. Kauzlarich (VCH, New York, 1996).

[158] E. Zintl, Naturwissenschaften 17, 782 (1929) (in German).

[159] E. Zintl, J. Goubeau, and W. Dullenkopf, Z. Phys. Chem. A-Chem. T. 154, 1 (1931) (in German).

[160] E. Zintl and A. Harder, Z. Phys. Chem. A-Chem. T. 154 , 47 (1931) (in German).

[161] E. Zintl and W. Dullenkopf, Z. Phys. Chem. B-Chem. E. 16, 183 (1932) (in German).

[162] E. Zintl and W. Dullenkopf, Z. Phys. Chem. B-Chem. E. 16, 195 (1932) (in German).

[163] E. Zintl and A. Harder, Z. Phys. Chem. B-Chem. E. 16, 206 (1932) (in German).

[164] E. Zintl and H. Kaiser, Z. Anorg. Allg. Chem. 211, 113 (1933) (in German).

[165] E. Zintl and S. Neumayr, Z. Elktrochem. Angew. P. 39, 81 (1933) (in German).

[166] E. Zintl and S. Neumayr, Z. Elktrochem. Angew. P. 39, 84 (1933) (in German).

[167] E. Zintl and S. Neumayr, Z. Elktrochem. Angew. P. 39, 86 (1933) (in German).

[168] E. Zintl and G. Brauer, Z. Phys. Chem. B-Chem. E. 20, 245 (1933) (in German).

[169] E. Zintl and S. Neumayr, Z. Phys. Chem. B-Chem. E. 20, 272 (1933) (in German).

[170] E. Zintl and E. Husemann, Z. Phys. Chem. B-Chem. E. 21, 138 (1933) (in German).

[171] E. Zintl and A. Schneider, Z. Elktrochem. Angew. P. 41, 294 (1935) (in German).

[172] E. Zintl and G. Brauer, Z. Elktrochem. Angew. P. 41, 297 (1935) (in German).

[173] E. Zintl and A. Schneider, Z. Elktrochem. Angew. P. 41, 764 (1935) (in German).

[174] E. Zintl and A. Harder, Z. Elktrochem. Angew. P. 41, 767 (1935) (in German).

[175] E. Zintl and A. Schneider, Z. Elktrochem. Angew. P. 41, 771 (1935) (in German).

[176] E. Zintl and G. Woltersdorf, Z. Elktrochem. Angew. P. 41, 876 (1935) (in German).

[177] G. Brauer and W. Haucke, Z. Phys. Chem. B-Chem. E. 33, 304 (1936) (in German).

[178] E. Zintl and O. Treusch, Z. Phys. Chem. B-Chem. E. 34, 225 (1936) (in German).

[179] E. Zintl and A. Harder, Z. Phys. Chem. B-Chem. E. 34, 238 (1936) (in German).

[180] E. Zintl, A. Harder, and W. Haucke, Z. Phys. Chem. B-Chem. E. 35, 354 (1937) (in German).

[181] G. Brauer and E. Zintl, Z. Phys. Chem. B-Chem. E. 37, 323 (1937) (in German).

[182] W. Haucke, Z. Elktrochem. Angew. P. 43, 712 (1937) (in German).

[183] E. Zintl and W. Haucke, Z. Elktrochem. Angew. P. 44, 104 (1938) (in German).

[184] E. Zintl, Angew. Chem.-Ger. Edit. 52, 1 (1939) (in German).

[185] H. Scha¨fer, B. Eisenmann, and W. Mu¨ller, Angew. Chem. Int. Edit. 12, 694 (1973).

[186] H. Scha¨fer, Annu. Rev. Mater. Sci. 15, 1 (1985).

[187] S. C. Sevov, Chap. 6 in Intermetallic Compounds: Principles and Practice: Progress, Vol. 3 edited by J. H. Westbrook and R. L. Fleischer (Wiley, Chichester, 2002).

[188] S. M. Kauzlarich, in Encyclopedia of Inorganic Chemistry (Wiley, online, 2006) Zintl compounds.

[189] O. Janka and S. M. Kauzlarich, Zintl Compounds in Encyclopedia of Inorganic and Bioinorganic Chemistry (Wiley, online, 2013).

[190] W. Hume-Rothery, J. I. Met. 35, 295 (1926).

[191] A. Westgren and G. Phragme´n, Z. Metallkd. 18, 279 (1926).

[192] F. Laves, Naturwissenschaften 29, 244 (1941) (in German).

[193] W. Klemm and H. Fricke, Z. Anorg. Allg. Chem. 282, 162 (1955) (in German).

[194] W. Klemm, P. Chem. Soc. London 12, 329 (1958).

[195] W. Klemm and E. Busmann, Z. Anorg. Allg. Chem. 319, 297 (1963) (in German).

[196] H. Scha¨fer and B. Eisenmann, Rev. Inorg. Chem. 3, 29 (1981).

[197] W. Bronger, Pure Appl. Chem. 57, 1363 (1985).

[198] S. M. Kauzlarich, T. Y. Kuromoto, and M. M. Olmstead, J. Am. Chem. Soc. 111, 8041 (1989).

[199] S. M. Kauzlarich, Comment. Inorg. Chem. 10, 75 (1990).

[200] S. M. Kauzlarich, Transition Metal Zintl Compounds in Chemistry, Structure, and Bonding of Zintl Phases and Ions edited by S. M. Kauzlarich (VCH, New York, 1996).

[201] B. Eisenmann and H. Scha¨fer, Z. Anorg. Allg. Chem. 403, 163 (1974) (in German).

[202] W. Jeitschko and M. Reehuis, J. Phys. Chem. Solids 48, 667 (1987).

[203] B. Eisenmann and H. Scha¨fer, Z. Naturforsch. B 36, 415 (1981) (in German).

[204] Y. Kamihara, H. Hiramatsu, M. Hirano, R. Kawamura, H. Yanagi, T. Kamiya, and H. Hosono, J. Am. Chem. Soc. 128, 10012 (2006).

[205] Y. Kamihara, T. Watanabe, M. Hirano, and H. Hosono, J. Am. Chem. Soc. 130, 3296 (2008).

[206] Y. Kamihara, T. Nomura, M. Hirano, J. E. Kim, K. Kato, M. Takata, Y. Kobayashi, S. Kitao, S. Higashitaniguchi, Y. Yoda, M. Seto, and H. Hosono, New J. Phys. 12, 033005 (2010).

[207] M. Fujioka, S. J. Denholme, T. Ozaki, H. Okazaki, K. Deguchi, S. Demura, H. Hara, T. Watanabe, H. Takeya, T. Yamaguchi, H. Kumakura, and T. Takano, Supercond. Sci. Technol. 26, 085023 (2013).

[208] Y. Kamihara and H. Hosono, Superconductivity in Iron Oxypnictide Induced by F- Doping Photonic and Electronic Properties of Fluoride Materials: Progress in Fluo- rine Science Series edited by A. Tressaud and K. Peoppelmeier (Elsevier, Amsterdam, 2016).

[209] P. J. W. Moll, R. Puzniak, F. Balakirev, K. Rogacki, J. Karpinski, N. D. Zhigadlo, and B. Batlogg, Nat. Mater. 9, 628 (2010).

[210] T. Tamegai, Y. Nakajima, Y. Tsuchiya, A. Iyo, K. Miyazawa, P. M. Shirage, H. Kito, and H. Eisaki, Physica C 469, 915 (2009).

[211] Y. Muraba, S. Iimura, S. Matsuishi, and H. Hosono, Inorg. Chem. 54, 11567 (2015).

[212] A. Yamamoto, A. A. Polyanskii, J. Jiang, F. Kametani, C. Tarantini, F. Hunte, J. Jaroszynski, E. E. Hellstrom, P. J. Lee, A. Gurevich, D. C. Larbalestier, Z. A. Ren, J. Yang, Z. L. Dong, W. Lu, and Z. X. Zhao, Supercond. Sci. Technol. 21, 095008 (2008).

[213] Z. S. Gao, L. Wang, Y. P. Qi, D. L. Wang, X. P. Zhang, Y. W. Ma, H. Yang, and H. H. Wen, Supercond. Sci. Technol. 21, 112001 (2008).

[214] Y. W. Ma, Z. S. Gao, Y. P. Qi, X. P. Zhang, L. Wang, Z. Y. Zhang, and D. L. Wang, Physica C 469, 651 (2009).

[215] L. Wang, Y. P. Qi, D. L. Wang, Z. S. Gao, X. P. Zhang, Z. Y. Zhang, C. L. Wang, and Y. W. Ma, Supercond. Sci. Technol. 23, 075005 (2010).

[216] Y. W. Ma, L. Wang, Y. P. Qi, Z. S. Gao, D. L. Wang, and X. P. Zhang, IEEE T. Appl. Supercon. 21, 2878 (2011).

[217] M. Fujioka, T. Kota, M. Matoba, T. Ozaki, Y. Takano, H. Kumakura, and Y. Kamihara, Appl. Phys. Express 4, 063102 (2011).

[218] Q. J. Zhang, C. L. Wang, C. Yao, H. Lin, X. P. Zhang, D. L. Wang, Y. W. Ma, S. Awaji, and K. Watanabe, J. Appl. Phys. 113 ,123902 (2013).

[219] C.-L. Wang, C. Yao, H. Lin, X.-P. Zhang, Q.-J. Zhang, D.-L. Wang, Y.-W. Ma, S. Awaji, K. Watanabe, Y. Tsuchiya, Y. Sun, and T. Tamegai, Supercond. Sci. Technol. 26, 075017 (2013).

[220] Q.-J. Zhang, C. Yao, H. Lin, X.-P. Zhang, D.-L. Wang, C.-H. Dong, P.-S. Yuan, S. Tang, Y.-W. Ma, S. Awaji, K. Watanabe, Y. Tsuchiya, amd T. Tamegai, Appl. Phys. Lett. 104, 172601 (2014).

[221] Q.-J. Zhang, H. Lin, P.-S. Yuan, X.-P. Zhang, C. Yao, D.-L. Wang, C.-H. Dong, Y.-W. Ma, S. Awaji, and K. Watanabe, Supercond. Sci. Technol. 28, 105005 (2015).

[222] Q.-J. Zhang, X.-P. Zhang, C. Yao, H. Huang, D.-L. Wang, C.-H. Dong, Y.-W Ma, H. Ogino, and S. Awaji, Supercond. Sci. Technol. 30, 065004 (2017).

[223] C. Senatore, R. Flukiger, M. Cantoni, G. Wu, R.-H. Liu, and X.-H. Chen, Phys. Rev. B 78, 054514 (2008).

[224] F. Kametani, A. A. Polyanskii, A. Yamamoto, J. Jiang, E. E. Hellstrom, A. Gurevich, D. C. Larbalestier, Z. A. Ren, J. Yang, X. L. Dong, W. Lu, and Z. X. Zhao, Supercond. Sci. Technol. 22, 015010 (2009).

[225] A. Yamamoto, J. Jiang, F. Kametani, A. Polyanskii, E. Hellstrom, D. Larbalestier, A. Martinelli, A. Palenzona, M. Tropeano, and M. Putti, Supercond. Sci. Technol. 24, 045010 (2011).

[226] N. Doebelin and R. Kleeberg, J. Appl. Crystallogr. 48, 1573 (2015).

[227] M. Fujioka, Ph.D thesis (Keio Univ. 2011).

[228] Y. Kobayashi, Graduate thesis (Keio Univ. 2021).

[229] A. Iandelli, Z. Anorg. Allg. Chem. 288, 81 (1956).

[230] A. Kjekshus and K. E. Skaug, Acta Chem. Scand. 26, 2554 (1972).

[231] K. Selte and A. Kjekshus, Acta Chem. Scand. 23, 2047 (1969).

[232] D. T. Cromer, J. Phys. Chem.-US 61, 753 (1957).

[233] M. Mitric, J. Blanusa, T. Barudzija, Z. Jaglicic, V. Kusigerski, and V. Spasojevic, J. Alloy. Compd. 485, 473 (2009).

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る