リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Search for direct Chargino production based on a disappearing-track signature at √s = 13 TeV with the ATLAS detector」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Search for direct Chargino production based on a disappearing-track signature at √s = 13 TeV with the ATLAS detector

齊藤, 真彦 東京大学 DOI:10.15083/0002004313

2022.06.22

概要

The discovery of the Higgs boson in 2012 was a milestone on the elementary particle physics, resulting in the reconfirmation of the validity of the Standard Model. The Standard Model is, however, not a perfect nor an ultimate theory because it contains an artificial tuning like the anthropic principle and cannot explain 95% of the energy in our universe. Importance of the searches for new physics beyond the Standard Model is increasing since there is still no clear hint indicating new theories close to the ultimate theory.

One of the most well-motivated theories is a supersymmetric theory, which solves many problems in the Standard Model. Although the supersymmetric theory has a huge number of model parameters, the properties of the supersymmetric theory are expected according to the precise agreements between nature and the Standard Model and a few unexpected deviations, including the existence of dark matter. One of the wellmotivated scenarios in the supersymmetric theories is the case where superpartners of the W boson or the Higgs boson is the lightest supersymmetric particle. Such scenarios can be satisfied with constraints from the Higgs boson mass, dark-matter relic density and the flavour physics.

Despite the motivation, it is known to be hard to search for such a scenario in hadron collider experiments within the traditional searches based on only energetic jets, leptons and the missing transverse momentum due to the lack of energetic particles from a cascade decay from the supersymmetric particles. On the other hand, instead of the energetic signatures, such a model predicts a charged meta-stable supersymmetric particle with a lifetime of O(0.01–0.1) ns. Since such a lifetime corresponds to the decay radius of O(1–10) cm, which is smaller than the size of a track detector (tracker) in the ATLAS detector, the charged supersymmetric particles can be observed as suddenly disappearing in the tracker after running some macroscopic distances. Such a signature is called a disappearing track. Since the Standard Model particles do not produce a disappearing track, a requirement for the disappearing track has strong rejection power for the Standard Model particles.

The past experiments using disappearing track signature did not have adequate signal acceptance because it was difficult to reconstruct the short tracks comparable with the typical decay radius (O(1–10) cm) due to the tracker layout. The ATLAS experiment upgraded the tracker in the long-shutdown in 2013–2014, making it possible to reconstruct shorter tracks with the track length of 12 cm, called “pixel tracklet”, as shown in Fig. 1. The shorter tracks and the improvements in various parts in the analysis including the track reconstruction, measurements of the tracking performance and the background estimation technique, significantly improve the sensitivity for the supersymmetric particles.

This thesis presents the latest results which are most sensitive to the wino/higgsino LSP scenario, focusing on the direct chargino and neutralino pair production, using 80 fb−1 of pp collision data collected by the LHC/ATLAS experiments at √ s = 13 TeV. Signal extraction is performed based on a tracklet pT shape fitting; most of the pT templates are directly derived from observed data. No significant excess from the Standard Model prediction is found in the signal enhanced region. This result gives a new constraint for the pure wino/higgsino LSP scenarios; the chargino mass up to 490 GeV is excluded in the pure wino LSP scenario, and the chargino mass up to 170 GeV is excluded in the pure higgsino LSP scenario as shown in Fig. 2.

The current LHC does not have a sensitivity to explore the entire chargino-mass parameter space which is viable from the cosmology; the chargino mass up to 3 TeV for the pure wino scenario and 1 TeV for the pure higgsino scenario are motivated. This thesis discusses the discovery sensitivity for such charginos with next-generation colliders: the High-Luminosity LHC and the Future Circular Collider. The Future Circular Collider has the sufficient potential to discover the charginos motivated from the dark-matter relic density

参考文献

[1] ATLAS Collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [1207.7214].

[2] CMS Collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [1207.7235].

[3] S. P. Martin, A Supersymmetry primer, hep-ph/9709356.

[4] K. Abe, Y. Haga, Y. Hayato, M. Ikeda, K. Iyogi, J. Kameda et al., Search for proton decay via p → e +π 0 and p → µ +π 0 in 0.31 megaton · years exposure of the super-kamiokande water cherenkov detector, Phys. Rev. D 95 (2017) 012004.

[5] L. J. Hall, D. Pinner and J. T. Ruderman, A natural susy higgs near 125 gev, Journal of High Energy Physics 2012 (2012) 131.

[6] Planck Collaboration, Planck 2018 results. VI. Cosmological parameters, Submitted to A&A (2018) [1807.06209].

[7] N. Arkani-Hamed, A. Delgado and G. Giudice, The well-tempered neutralino, Nuclear Physics B 741 (2006) 108 .

[8] A. M. Baldini, Y. Bao, E. Baracchini, C. Bemporad, F. Berg, M. Biasotti et al., Search for the lepton flavour violating decay µ + → e +γ with the full dataset of the meg experiment, The European Physical Journal C 76 (2016) 434.

[9] L. Randall and R. Sundrum, Out of this world supersymmetry breaking, Nuclear Physics B 557 (1999) 79 .

[10] M. Ibe and T. T. Yanagida, The lightest higgs boson mass in pure gravity mediation model, Physics Letters B 709 (2012) 374 .

[11] M. Ibe, S. Matsumoto and T. T. Yanagida, Pure gravity mediation with m3/2 = 10 − −100 TeV, Phys. Rev. D 85 (2012) 095011.

[12] B. Bhattacherjee, B. Feldstein, M. Ibe, S. Matsumoto and T. T. Yanagida, Pure gravity mediation of supersymmetry breaking at the large hadron collider, Phys. Rev. D 87 (2013) 015028.

[13] T. Gherghetta, G. F. Giudice and J. D. Wells, Phenomenological consequences of supersymmetry with anomaly induced masses, Nuclear Physics B 559 (1999) 27 .

[14] S. Thomas and J. D. Wells, Phenomenology of massive vectorlike doublet leptons, Phys. Rev. Lett. 81 (1998) 34.

[15] M. Cirelli, N. Fornengo and A. Strumia, Minimal dark matter, Nuclear Physics B 753 (2006) 178 [0512090].

[16] M. Ibe, S. Matsumoto and R. Sato, Mass splitting between charged and neutral winos at two-loop level, Physics Letters B 721 (2013) 252 [1212.5989].

[17] J. McKay and P. Scott, Two-loop mass splittings in electroweak multiplets: Winos and minimal dark matter, Phys. Rev. D 97 (2018) 055049.

[18] N. Nagata and S. Shirai, Higgsino dark matter in high-scale supersymmetry, Journal of High Energy Physics 2015 (2015) 29.

[19] C.-H. Chen, M. Drees and J. F. Gunion, Erratum: Nonstandard string-susy scenario and its phenomenological implications [phys. rev. d 55, 330 (1997)], Phys. Rev. D 60 (1999) 039901 [9902309].

[20] ATLAS Collaboration, Search for charginos nearly mass degenerate with the lightest neutralino based on a disappearing-track signature in pp collisions at √ s = 8 TeV with the ATLAS detector, Phys. Rev. D 88 (2013) 112006 [1310.3675].

[21] CMS Collaboration, Search for disappearing tracks as a signature of new long-lived particles in proton-proton collisions at √ s = 13 TeV, Journal of High Energy Physics 2018 (2018) 16.

[22] L. Evans and P. Bryant, LHC machine, Journal of Instrumentation 3 (2008) S08001.

[23] ATLAS Collaboration, The ATLAS Experiment at the CERN Large Hadron Collider, JINST 3 (2008) S08003.

[24] CMS Collaboration, The CMS experiment at the CERN LHC, Journal of Instrumentation 3 (2008) S08004.

[25] ALICE Collaboration, The ALICE experiment at the CERN LHC, Journal of Instrumentation 3 (2008) S08002.

[26] LHCb Collaboration, The LHCb detector at the LHC, Journal of Instrumentation 3 (2008) S08005.

[27] ATLAS Collaboration, Study of the material of the ATLAS inner detector for Run 2 of the LHC, JINST 12 (2017) P12009 [1707.02826].

[28] M. Capeans, G. Darbo, K. Einsweiller, M. Elsing, T. Flick, M. Garcia-Sciveres et al., ATLAS Insertable B-Layer Technical Design Report, Tech. Rep. CERN-LHCC-2010-013. ATLAS-TDR-19, Sep, 2010.

[29] G. Avoni, M. Bruschi, G. Cabras, D. Caforio, N. Dehghanian, A. Floderus et al., The new LUCID-2 detector for luminosity measurement and monitoring in ATLAS, Journal of Instrumentation 13 (2018) P07017.

[30] S. van der Meer, Calibration of the effective beam height in the ISR, Tech. Rep. CERN-ISR-PO-68-31. ISR-PO-68-31, CERN, Geneva, 1968.

[31] ATLAS Collaboration, Luminosity determination in pp collisions at √ s = 8 TeV using the ATLAS detector at the LHC, Eur. Phys. J. C 76 (2016) 653 [1608.03953].

[32] ATLAS Collaboration, Performance of the ATLAS trigger system in 2015, Eur. Phys. J. C 77 (2017) 317 [1611.09661].

[33] S. Agostinelli, J. Allison, K. Amako, J. Apostolakis, H. Araujo, P. Arce et al., Geant4 a simulation toolkit, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 506 (2003) 250 .

[34] J. Allison, K. Amako, J. Apostolakis, H. Araujo, P. A. Dubois, M. Asai et al., Geant4 developments and applications, IEEE Transactions on Nuclear Science 53 (2006) 270.

[35] J. Allison, K. Amako, J. Apostolakis, P. Arce, M. Asai, T. Aso et al., Recent developments in geant4, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 835 (2016) 186 .

[36] T. Sj¨ostrand, S. Ask, J. R. Christiansen, R. Corke, N. Desai, P. Ilten et al., An Introduction to PYTHIA 8.2, Comput. Phys. Commun. 191 (2015) 159 [1410.3012].

[37] A. Ryd, D. Lange, N. Kuznetsova, S. Versille, M. Rotondo, D. P. Kirkby et al., EvtGen: A Monte Carlo Generator for B-Physics, .

[38] R. D. Ball, V. Bertone, S. Carrazza, C. S. Deans, L. D. Debbio, S. Forte et al., Parton distributions with lhc data, Nuclear Physics B 867 (2013) 244 .

[39] ATLAS Collaboration, “The Pythia 8 A3 tune description of ATLAS minimum bias and inelastic measurements incorporating the Donnachie–Landshoff diffractive model.” ATL-PHYS-PUB-2016-017, 2016.

[40] F. E. Paige, S. D. Protopopescu, H. Baer and X. Tata, ISAJET 7.69: A Monte Carlo event generator for pp, pp¯ , and e +e − reactions, hep-ph/0312045.

[41] H. Fukuda, N. Nagata, H. Otono and S. Shirai, Higgsino dark matter or not: Role of disappearing track searches at the lhc and future colliders, Physics Letters B 781 (2018) 306 .

[42] J. Alwall, R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, O. Mattelaer et al., The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations, JHEP 07 (2014) 079 [1405.0301].

[43] ATLAS Collaboration, “ATLAS Pythia 8 tunes to 7 TeV data.” ATL-PHYS-PUB-2014-021, 2014.

[44] J. Debove, B. Fuks and M. Klasen, Transverse-momentum resummation for gaugino-pair production at hadron colliders, Physics Letters B 688 (2010) 208 .

[45] J. Debove, B. Fuks and M. Klasen, Threshold resummation for gaugino pair production at hadron colliders, Nuclear Physics B 842 (2011) 51 .

[46] J. Debove, B. Fuks and M. Klasen, Joint resummation for gaugino pair production at hadron colliders, Nuclear Physics B 849 (2011) 64 .

[47] B. Fuks, M. Klasen, D. R. Lamprea and M. Rothering, Gaugino production in proton-proton collisions at a center-of-mass energy of 8 TeV, JHEP 10 (2012) 081 [1207.2159].

[48] B. Fuks, M. Klasen, D. R. Lamprea and M. Rothering, Precision predictions for electroweak superpartner production at hadron colliders with Resummino, Eur. Phys. J. C 73 (2013) 2480 [1304.0790].

[49] C. Borschensky, M. Kr¨amer, A. Kulesza, M. Mangano, S. Padhi, T. Plehn et al., Squark and gluino production cross sections in pp collisions at √ s = 13, 14, 33 and 100tev, The European Physical Journal C 74 (2014) 3174.

[50] T. Gleisberg, S. Hoeche, F. Krauss, M. Schonherr, S. Schumann, F. Siegert et al., Event generation with SHERPA 1.1, JHEP 02 (2009) 007 [0811.4622].

[51] The NNPDF collaboration, R. D. Ball, V. Bertone, S. Carrazza, C. S. Deans, L. Del Debbio et al., Parton distributions for the lhc run ii, Journal of High Energy Physics 2015 (2015) 40.

[52] Y. Li and F. Petriello, Combining qcd and electroweak corrections to dilepton production in the framework of the fewz simulation code, Phys. Rev. D 86 (2012) 094034.

[53] S. Frixione, G. Ridolfi and P. Nason, A positive-weight next-to-leading-order monte carlo for heavy flavour hadroproduction, Journal of High Energy Physics 2007 (2007) 126.

[54] S. Alioli, P. Nason, C. Oleari and E. Re, NLO single-top production matched with shower in POWHEG: s- and t-channel contributions, JHEP 09 (2009) 111 [0907.4076].

[55] R. Frederix, E. Re and P. Torrielli, Single-top t-channel hadroproduction in the four-flavour scheme with powheg and amc@nlo, Journal of High Energy Physics 2012 (2012) 130.

[56] E. Re, Single-top wt-channel production matched with parton showers using the powheg method, The European Physical Journal C 71 (2011) 1547.

[57] P. Artoisenet, R. Frederix, O. Mattelaer and R. Rietkerk, Automatic spin-entangled decays of heavy resonances in monte carlo simulations, Journal of High Energy Physics 2013 (2013) 15.

[58] M. Czakon and A. Mitov, Top++: A program for the calculation of the top-pair cross-section at hadron colliders, Computer Physics Communications 185 (2014) 2930 .

[59] N. Kidonakis, Two-loop soft anomalous dimensions for single top quark associated production with a W- or H-, Phys. Rev. D82 (2010) 054018 [1005.4451].

[60] P. Kant, O. Kind, T. Kintscher, T. Lohse, T. Martini, S. Molbitz et al., Hathor for single top-quark production: Updated predictions and uncertainty estimates for single top-quark production in hadronic collisions, Computer Physics Communications 191 (2015) 74 .

[61] M. Aliev, H. Lacker, U. Langenfeld, S. Moch, P. Uwer and M. Wiedermann, Hathor – hadronic top and heavy quarks cross section calculator, Computer Physics Communications 182 (2011) 1034 .

[62] T. Cornelissen, M. Elsing, S. Fleischmann, W. Liebig, E. Moyse and A. Salzburger, Concepts, Design and Implementation of the ATLAS New Tracking (NEWT), Tech. Rep. ATL-SOFT-PUB-2007-007. ATL-COM-SOFT-2007-002, CERN, Geneva, Mar, 2007.

[63] A. Rosenfeld and J. L. Pfaltz, Sequential operations in digital picture processing, J. ACM 13 (1966) 471.

[64] ATLAS Collaboration, A neural network clustering algorithm for the ATLAS silicon pixel detector, JINST 9 (2014) P09009 [1406.7690].

[65] ATLAS Collaboration, “Measurement of performance of the pixel neural network clustering algorithm of the ATLAS experiment at √ s = 13 TeV.” ATL-PHYS-PUB-2015-044, 2015.

[66] ATLAS Collaboration, “Robustness of the Artificial Neural Network Clustering Algorithm of the ATLAS experiment.” ATL-PHYS-PUB-2015-052, 2015.

[67] ATLAS Collaboration, Performance of the ATLAS track reconstruction algorithms in dense environments in LHC Run 2, Eur. Phys. J. C 77 (2017) 673 [1704.07983].

[68] R. Fruhwirth, Application of kalman filtering to track and vertex fitting, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 262 (1987) 444 .

[69] R. O. Duda and P. E. Hart, Use of the hough transformation to detect lines and curves in pictures, Commun. ACM 15 (1972) 11.

[70] ATLAS Collaboration, “Performance of primary vertex reconstruction in proton–proton collisions at √ s = 7 TeV in the ATLAS experiment.” ATLAS-CONF-2010-069, 2010.

[71] ATLAS Collaboration, “Performance of the ATLAS Inner Detector Track and Vertex Reconstruction in High Pile-Up LHC Environment.” ATLAS-CONF-2012-042, 2012.

[72] ATLAS Collaboration, Reconstruction of primary vertices at the ATLAS experiment in Run 1 proton–proton collisions at the LHC, Eur. Phys. J. C 77 (2017) 332 [1611.10235].

[73] W. Waltenberger, R. Fr¨uhwirth and P. Vanlaer, Adaptive vertex fitting, Journal of Physics G: Nuclear and Particle Physics 34 (2007) N343.

[74] ATLAS Collaboration, Topological cell clustering in the ATLAS calorimeters and its performance in LHC Run 1, Eur. Phys. J. C 77 (2017) 490 [1603.02934].

[75] M. Cacciari, G. P. Salam and G. Soyez, The anti-kt jet clustering algorithm, Journal of High Energy Physics 2008 (2008) 063.

[76] M. Cacciari, G. P. Salam and G. Soyez, Fastjet user manual, The European Physical Journal C 72 (2012) 1896.

[77] ATLAS Collaboration, Jet energy scale measurements and their systematic uncertainties in proton–proton collisions at √ s = 13 TeV with the ATLAS detector, Phys. Rev. D 96 (2017) 072002 [1703.09665].

[78] ATLAS Collaboration, Performance of pile-up mitigation techniques for jets in pp collisions at √ s = 8 TeV using the ATLAS detector, Eur. Phys. J. C 76 (2016) 581 [1510.03823].

[79] ATLAS Collaboration, “Electron efficiency measurements with the ATLAS detector using the 2012 LHC proton–proton collision data.” ATLAS-CONF-2014-032, 2014.

[80] ATLAS Collaboration, “Improved electron reconstruction in ATLAS using the Gaussian Sum Filter-based model for bremsstrahlung.” ATLAS-CONF-2012-047, 2012.

[81] ATLAS Collaboration, “Electron and photon reconstruction and performance in ATLAS using a dynamical, topological cell clustering-based approach.” ATL-PHYS-PUB-2017-022, 2017.

[82] ATLAS Collaboration, Measurement of the photon identification efficiencies with the ATLAS detector using LHC Run-1 data, Eur. Phys. J. C 76 (2016) 666 [1606.01813].

[83] ATLAS Collaboration, Measurement of the photon identification efficiencies with the ATLAS detector using LHC Run 2 data collected in 2015 and 2016, Submitted to: Eur. Phys. J. (2018) [1810.05087].

[84] ATLAS Collaboration, Electron and photon energy calibration with the ATLAS detector using 2015-2016 LHC proton-proton collision data, Submitted to: JINST (2018) [1812.03848].

[85] ATLAS collaboration, M. Aaboud et al., Electron reconstruction and identification in the ATLAS experiment using the 2015 and 2016 LHC proton-proton collision data at √ s = 13 TeV, Submitted to: Eur. Phys. J. (2019) [1902.04655].

[86] ATLAS Collaboration, “Electron efficiency measurements with the ATLAS detector using the 2015 LHC proton–proton collision data.” ATLAS-CONF-2016-024, 2016.

[87] ATLAS Collaboration, Muon reconstruction performance of the ATLAS detector in proton–proton collision data at √ s = 13 TeV, Eur. Phys. J. C 76 (2016) 292 [1603.05598].

[88] ATLAS Collaboration, Performance of missing transverse momentum reconstruction with the ATLAS detector using proton–proton collisions at √ s = 13 TeV, 1802.08168.

[89] ATLAS Collaboration, “Emiss T performance in the ATLAS detector using 2015–2016 LHC pp collisions.” ATLAS-CONF-2018-023, 2018.

[90] ATLAS Collaboration, “Trigger Menu in 2017.” ATL-DAQ-PUB-2018-002, 2018.

[91] ATLAS Collaboration, “Non-collision backgrounds as measured by the ATLAS detector during the 2010 proton–proton run.” ATLAS-CONF-2011-137, 2011.

[92] ATLAS Collaboration, Characterisation and mitigation of beam-induced backgrounds observed in the ATLAS detector during the 2011 proton–proton run, JINST 8 (2013) P07004 [1303.0223].

[93] ATLAS Collaboration, “Selection of jets produced in 13 TeV proton–proton collisions with the ATLAS detector.” ATLAS-CONF-2015-029, 2015.

[94] ATLAS Collaboration, “2015 start-up trigger menu and initial performance assessment of the ATLAS trigger using Run-2 data.” ATL-DAQ-PUB-2016-001, 2016.

[95] ATLAS Collaboration, “Trigger Menu in 2016.” ATL-DAQ-PUB-2017-001, 2017.

[96] A. L. Read, Presentation of search results: The CL(s) technique, J. Phys. G 28 (2002) 2693.

[97] G. Cowan, K. Cranmer, E. Gross and O. Vitells, Asymptotic formulae for likelihood-based tests of new physics, Eur. Phys. J. C 71 (2011) 1554 [1007.1727].

[98] A. Wald, Tests of statistical hypotheses concerning several parameters when the number of observations is large, Transactions of the American Mathematical Society 54 (1943) 426.

[99] L. L¨onnblad and S. Prestel, Matching tree-level matrix elements with interleaved showers, Journal of High Energy Physics 2012 (2012) 19.

[100] ALEPH, DELPHI, L3, OPAL Collaboration, “Combined LEP Chargino Results, up to 208 GeV for low DM.” LEPSUSYWG/02-04.1 , 2002.

[101] ATLAS Collaboration, Search for squarks and gluinos in final states with jets and missing transverse momentum using 36 fb−1 of √ s = 13 TeV pp collision data with the ATLAS detector, Phys. Rev. D 97 (2018) 112001 [1712.02332].

[102] ATLAS Collaboration, Technical Design Report for the ATLAS Inner Tracker Pixel Detector, Tech. Rep. CERN-LHCC-2017-021. ATLAS-TDR-030, CERN, Geneva, Sep, 2017.

[103] ATLAS Collaboration, “ATLAS sensitivity to winos and higgsinos with a highly compressed mass spectrum at the HL-LHC.” ATL-PHYS-PUB-2018-031, Geneva, Nov, 2018.

[104] ATLAS collaboration, ATLAS Collaboration, “Expected performance of the ATLAS detector at the High-Luminosity LHC.” ATL-PHYS-PUB-2019-005, Geneva, Jan, 2019.

[105] ATLAS Collaboration, Search for long-lived charginos based on a disappearing-track signature in pp collisions at √ s = 13 TeV with the ATLAS detector, JHEP 06 (2018) 022 [1712.02118].

[106] M. Mangano, P. Azzi, M. Benedikt, A. Blondel, D. A. Britzger, A. Dainese et al., Future Circular Collider, Tech. Rep. CERN-ACC-2018-0056, CERN, Geneva, Dec, 2018.

[107] M. Saito, R. Sawada, K. Terashi and S. Asai, Discovery reach for wino and higgsino dark matter with a disappearing track signature at a 100 TeV pp collider, 1901.02987.

[108] S. Asai, S. Chigusa, T. Kaji, T. Moroi, M. Saito, R. Sawada et al., Studying gaugino masses in supersymmetric model at future 100 TeV pp collider, 1901.10389.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る