リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Search for a heavy scalar resonance decaying into a pair of photon-jets in pp collisions at √s = 13 TeV」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Search for a heavy scalar resonance decaying into a pair of photon-jets in pp collisions at √s = 13 TeV

加納, 勇也 東京大学 DOI:10.15083/0002004265

2022.06.22

概要

The Standard Model of particle physics is well established, but several unsolved problems remain, such as the hierarchy problem and the strong CP problem. They suggest the existence of physics beyond the Standard Model, but hints of new physics are not yet observed by past researches. At the energy-frontier pp collision experiments at the LHC, it is all the more important to search for new physics in a completely new final state. This thesis describes such a search in a novel final state called a “photon-jet” using pp collisions at √ s = 13 TeV. A photon-jet is a group of collimated photons that share close trajectories. Photon-jets can arise from a boson with a mass of O(100) GeV decaying into lighter bosons with a mass of O(1) GeV, that consecutively decays into photons. In such a case, the lighter boson is boosted, leading to collimated photons. The existence of photon-jets is well motivated by several beyond-the-StandardModel scenarios that predict two or more new bosons, including the supersymmetry and the Peccei-Quinn mechanism. This research aims to look into a parameter space which conventional searches had limited sensitivity to, by employing an optimized event selection strategy based on shower shapes observed in the electromagnetic calorimeter.

The result of a search for a new heavy scalar resonance decaying into a pair of photon-jets using pp collisions at √ s = 13 TeV is presented. The dataset was collected with the ATLAS detector in 2015 and 2016, corresponding to an integrated luminosity of 36.7 fb−1 . Candidate events of a resonance decaying into a pair of photon-jets are selected from events with two high-momentum reconstructed photons, where each reconstructed photon corresponds to a photon-jet in the case of signal events. This search is performed in a largely model-independent way, so that the search is sensitive to beyond-the-StandardModel scenarios leading to a pair of photon-jets in general. No significant excess of events from the Standard Model expectation is observed.

The result of a null observation is interpreted in the context of beyond-the-Standard-Model scenarios which assume a scalar resonance decaying into a final state with photons. One scenario assumes a scalar resonance X with a mass of O(100) GeV, with a narrow width, and produced by the gluon–gluon fusion process; X decays into a pair of spin-0 particles a with a mass of O(1) GeV that decays into a pair of photons, via X → aa → 4γ. Another scenario assumes the decay of the a particle into three neutral pions, via X → aa → 6π 0 → 12γ. Upper limits on the product of the production cross section and the branching ratios are evaluated for the region 200 GeV < mX < 2 TeV and ma < 0.01 × mX using an asymptotic approximation. They are found to be as low as 0.2 fb for mX = 2 TeV. Some scenarios predict photon-jets produced from a decay of a long-lived boson; the results are interpreted for such a case as well. The results are interpreted in the context of the Next-to-Minimal Supersymmetric Standard Model for the process H → aa → 4γ, where H is a new scalar Higgs boson with a mass larger than 200 GeV, and a is a pseudoscalar Higgs boson with a mass of O(1) GeV.

This thesis presents the first result of a search for a heavy (> 200 GeV) resonance decaying into photon-jets. The important feature of this research is the optimization of the search strategy utilizing the shower shape observed in the electromagnetic calorimeter. This research is a new frontier of direct searches using a novel final state. This result places constraints on the subset of the parameter space of the Next-to-Minimal Supersymmetric Standard Model that has not been looked into before.

この論文で使われている画像

参考文献

[1] K. G. Wilson, Renormalization Group and Strong Interactions, Phys. Rev. D 3 (8 1971) 1818, url: https://link.aps.org/doi/10.1103/PhysRevD.3.1818.

[2] G. ’t Hooft, Naturalness, chiral symmetry, and spontaneous chiral symmetry breaking, NATO Sci. Ser. B 59 (1980) 135.

[3] R. D. Peccei and H. R. Quinn, CP Conservation in the Presence of Pseudoparticles, Phys. Rev. Lett. 38 (25 1977) 1440, url: https://link.aps.org/doi/10.1103/PhysRevLett.38.1440.

[4] R. D. Peccei and H. R. Quinn, Constraints imposed by CP conservation in the presence of pseudoparticles, Phys. Rev. D 16 (6 1977) 1791, url: https://link.aps.org/doi/10.1103/PhysRevD.16.1791.

[5] S. D. Ellis, T. S. Roy and J. Scholtz, Phenomenology of photon-jets, Phys. Rev. D 87 (2013) 014015, arXiv: 1210.3657 [hep-ph].

[6] S. D. Ellis, T. S. Roy and J. Scholtz, Jets and Photons, Phys. Rev. Lett. 110 (2013) 122003, arXiv: 1210.1855 [hep-ph].

[7] B. C. Allanach, D. Bhatia and A. M. Iyer, Dissecting Multi-Photon Resonances at the Large Hadron Collider, Eur. Phys. J. C77 (2017) 595, arXiv: 1706.09039 [hep-ph].

[8] ATLAS Collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1, arXiv: 1207.7214 [hep-ex].

[9] CMS Collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30, arXiv: 1207.7235 [hep-ex].

[10] F. Domingo, S. Heinemeyer, J. S. Kim and K. Rolbiecki, The NMSSM lives: with the 750 GeV diphoton excess, Eur. Phys. J. C 76 (2016) 249, arXiv: 1602.07691 [hep-ph].

[11] U. Ellwanger and C. Hugonie, A 750 GeV Diphoton Signal from a Very Light Pseudoscalar in the NMSSM, JHEP 05 (2016) 114, arXiv: 1602.03344 [hep-ph].

[12] C.-W. Chiang, H. Fukuda, M. Ibe and T. T. Yanagida, 750 GeV diphoton resonance in a visible heavy QCD axion model, Phys. Rev. D 93 (2016) 095016, arXiv: 1602.07909 [hep-ph].

[13] L. Aparicio, A. Azatov, E. Hardy and A. Romanino, Diphotons from diaxions, JHEP 05 (2016) 077, arXiv: 1602.00949 [hep-ph].

[14] N. Toro and I. Yavin, Multiphotons and photon jets from new heavy vector bosons, Phys. Rev. D 86 (2012) 055005, arXiv: 1202.6377 [hep-ph].

[15] M. Chala, M. Duerr, F. Kahlhoefer and K. Schmidt-Hoberg, Tricking Landau–Yang: How to obtain the diphoton excess from a vector resonance, Phys. Lett. B755 (2016) 145, arXiv: 1512.06833 [hep-ph].

[16] B. M. Dillon, C. Han, H. M. Lee and M. Park, KK graviton resonance and cascade decays in warped gravity, Int. J. Mod. Phys. A32 (2017) 1745006, arXiv: 1606.07171 [hep-ph].

[17] S. P. Martin, ‘A Supersymmetry Primer’, Perspectives on Supersymmetry II, 2010 1, arXiv: hep-ph/9709356 [hep-ph], url: https://www.worldscientific.com/doi/abs/10.1142/9789814307505_0001.

[18] U. Ellwanger, C. Hugonie and A. M. Teixeira, The Next-to-Minimal Supersymmetric Standard Model, Phys. Rept. 496 (2010) 1, arXiv: 0910.1785 [hep-ph].

[19] P. Langacker, The Physics of Heavy Z 0 Gauge Bosons, Rev. Mod. Phys. 81 (2009) 1199, arXiv: 0801.1345 [hep-ph].

[20] L. Randall and R. Sundrum, A Large mass hierarchy from a small extra dimension, Phys. Rev. Lett. 83 (1999) 3370, arXiv: hep-ph/9905221 [hep-ph].

[21] J. Chang, K. Cheung and C.-T. Lu, Interpreting the 750 GeV diphoton resonance using photon jets in hidden-valley-like models, Phys. Rev. D 93 (2016) 075013, arXiv: 1512.06671 [hep-ph].

[22] M. Bauer, M. Neubert and A. Thamm, Collider Probes of Axion-Like Particles, JHEP 12 (2017) 044, arXiv: 1708.00443 [hep-ph].

[23] ATLAS Collaboration, Search for new phenomena in events with at least three photons collected in pp collisions at √ s = 8 TeV with the ATLAS detector, Eur. Phys. J. C 76 (2016) 210, arXiv: 1509.05051 [hep-ex].

[24] ATLAS Collaboration, Search for a Higgs boson decaying to four photons through light CP-odd scalar coupling using 4.9 fb−1 of 7 TeV pp collision data taken with ATLAS detector at the LHC, ATLAS-CONF-2012-079, url: http://cds.cern.ch/record/1460391.

[25] ATLAS Collaboration, Search for resonances in diphoton events at √ s=13 TeV with the ATLAS detector, JHEP 09 (2016) 001, arXiv: 1606.03833 [hep-ex].

[26] N. Aghanim et al., Planck 2018 results. VI. Cosmological parameters, (2018), arXiv: 1807.06209 [astro-ph.CO].

[27] N. Arkani-Hamed, A. Delgado and G. F. Giudice, The Well-tempered neutralino, Nucl. Phys. B741 (2006) 108, arXiv: hep-ph/0601041 [hep-ph].

[28] G. Aad et al., Summary of the ATLAS experiment’s sensitivity to supersymmetry after LHC Run 1 — interpreted in the phenomenological MSSM, JHEP 10 (2015) 134, arXiv: 1508.06608 [hep-ex].

[29] A. Djouadi et al., The post-Higgs MSSM scenario: Habemus MSSM?, Eur. Phys. J. C73 (2013) 2650, arXiv: 1307.5205 [hep-ph].

[30] ATLAS Collaboration, Summary plots from the ATLAS Higgs physics group, url: https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CombinedSummaryPlots/HIGGS/.

[31] ATLAS Collaboration, Summary plots from the ATLAS Supersymmetry physics group, url: https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CombinedSummaryPlots/SUSY/

[32] B. A. Dobrescu and K. T. Matchev, Light axion within the next-to-minimal supersymmetric standard model, JHEP 09 (2000) 031, arXiv: hep-ph/0008192 [hep-ph].

[33] L. O’Raifeartaigh, Spontaneous Symmetry Breaking for Chiral Scalar Superfields, Nucl. Phys. B96 (1975) 331.

[34] A. Arhrib, K. Cheung, T.-J. Hou and K.-W. Song, Associated production of a light pseudoscalar Higgs boson with a chargino pair in the NMSSM, JHEP 03 (2007) 073, arXiv: hep-ph/0606114 [hep-ph].

[35] M. Guchait and J. Kumar, Diphoton Signal of light pseudoscalar in NMSSM at the LHC, Phys. Rev. D95 (2017) 035036, arXiv: 1608.05693 [hep-ph].

[36] G. Belanger, B. Dumont, U. Ellwanger, J. F. Gunion and S. Kraml, Status of invisible Higgs decays, Phys. Lett. B723 (2013) 340, arXiv: 1302.5694 [hep-ph].

[37] F. Domingo and G. Weiglein, NMSSM interpretations of the observed Higgs signal, JHEP 04 (2016) 095, arXiv: 1509.07283 [hep-ph].

[38] F. Domingo, Decays of a NMSSM CP-odd Higgs in the low-mass region, JHEP 03 (2017) 052, arXiv: 1612.06538 [hep-ph].

[39] L. Evans and P. Bryant, LHC Machine, JINST 3 (2008) S08001.

[40] ATLAS Collaboration, The ATLAS Experiment at the CERN Large Hadron Collider, JINST 3 (2008) S08003.

[41] CMS Collaboration, The CMS Experiment at the CERN LHC, JINST 3 (2008) S08004.

[42] CERN, The CERN accelerator complex - August 2018, 2018, url: https://cds.cern.ch/record/2636343.

[43] ATLAS Collaboration, ATLAS Insertable B-Layer Technical Design Report, ATLAS-TDR-19, 2010, url: https://cds.cern.ch/record/1291633, ATLAS Insertable B-Layer Technical Design Report Addendum, ATLAS-TDR-19-ADD-1, 2012, URL: https://cds.cern.ch/record/1451888.

[44] M. Aaboud et al., Measurement of the photon identification efficiencies with the ATLAS detector using LHC Run 2 data collected in 2015 and 2016, Submitted to: Eur. Phys. J. (2018), arXiv: 1810.05087 [hep-ex].

[45] ATLAS Collaboration, Event display photon / pi0, url: https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/EGAMMA/PublicPlots/ 20100721/display-photons/index.html.

[46] G. Avoni et al., The new LUCID-2 detector for luminosity measurement and monitoring in ATLAS, Journal of Instrumentation 13 (2018) P07017, url: http://stacks.iop.org/1748-0221/13/i=07/a=P07017.

[47] ATLAS Collaboration, Luminosity determination in pp collisions at √ s = 8 TeV using the ATLAS detector at the LHC, Eur. Phys. J. C 76 (2016) 653, arXiv: 1608.03953 [hep-ex].

[48] ATLAS Collaboration, Performance of the ATLAS trigger system in 2015, Eur. Phys. J. C 77 (2017) 317, arXiv: 1611.09661 [hep-ex].

[49] ATLAS Collaboration, LuminosityPublicResultsRun2, url: https: //twiki.cern.ch/twiki/bin/view/AtlasPublic/LuminosityPublicResultsRun2.

[50] M. Aaboud et al., Electron reconstruction and identification in the ATLAS experiment using the 2015 and 2016 LHC proton-proton collision data at √ s = 13 TeV, Submitted to: Eur. Phys. J. (2019), arXiv: 1902.04655 [physics.ins-det].

[51] W. Lampl et al., Calorimeter clustering algorithms: Description and performance, (2008).

[52] The Optimization of ATLAS Track Reconstruction in Dense Environments, tech. rep. ATL-PHYS-PUB-2015-006, CERN, 2015, url: https://cds.cern.ch/record/2002609.

[53] M. Aaboud et al., Performance of the ATLAS Track Reconstruction Algorithms in Dense Environments in LHC Run 2, Eur. Phys. J. C77 (2017) 673, arXiv: 1704.07983 [hep-ex].

[54] R. Frühwirth, Application of Kalman filtering to track and vertex fitting, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 262 (1987) 444, issn: 0168-9002, url: http://www.sciencedirect.com/science/article/pii/0168900287908874.

[55] T. G. Cornelissen et al., The global χ2track fitter in ATLAS, Journal of Physics: Conference Series 119 (2008) 032013, url: https://doi.org/10.1088%2F1742-6596%2F119%2F3%2F032013.

[56] Improved electron reconstruction in ATLAS using the Gaussian Sum Filter-based model for bremsstrahlung, tech. rep. ATLAS-CONF-2012-047, CERN, 2012, url: https://cds.cern.ch/record/1449796.

[57] M. Aaboud et al., Electron and photon energy calibration with the ATLAS detector using 2015-2016 LHC proton-proton collision data, Submitted to: JINST (2018), arXiv: 1812.03848 [hep-ex].

[58] J. Saxon, ‘Discovery of the Higgs Boson, Measurements of its Production, and a Search for Higgs Boson Pair Production’, PhD thesis, 2014, url: https://cds.cern.ch/record/1746004.

[59] ATLAS Collaboration, Electron and photon energy calibration with the ATLAS detector using LHC Run 1 data, Eur. Phys. J. C 74 (2014) 3071, arXiv: 1407.5063 [hep-ex].

[60] J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations, JHEP 07 (2014) 079, arXiv: 1405.0301 [hep-ph].

[61] R. D. Ball et al., Parton distributions for the LHC Run II, JHEP 04 (2015) 040, arXiv: 1410.8849 [hep-ph].

[62] T. Sjöstrand, S. Mrenna and P. Z. Skands, A brief introduction to PYTHIA 8.1, Comput. Phys. Commun. 178 (2008) 852, arXiv: 0710.3820 [hep-ph].

[63] ATLAS Collaboration, ATLAS Pythia 8 tunes to 7 TeV data, ATL-PHYS-PUB-2014-021, 2014, url: https://cds.cern.ch/record/1966419.

[64] T. Gleisberg et al., Event generation with SHERPA 1.1, JHEP 02 (2009) 007, arXiv: 0811.4622 [hep-ph].

[65] S. Schumann and F. Krauss, A Parton shower algorithm based on Catani-Seymour dipole factorisation, JHEP 03 (2008) 038, arXiv: 0709.1027 [hep-ph].

[66] S. Hoeche, F. Krauss, S. Schumann and F. Siegert, QCD matrix elements and truncated showers, JHEP 05 (2009) 053, arXiv: 0903.1219 [hep-ph].

[67] H.-L. Lai et al., New parton distributions for collider physics, Phys. Rev. D 82 (2010) 074024, arXiv: 1007.2241 [hep-ph].

[68] ATLAS Collaboration, Summary of ATLAS Pythia 8 tunes, ATL-PHYS-PUB-2012-003, 2012, url: https://cds.cern.ch/record/1474107.

[69] A. Martin, W. Stirling, R. Thorne and G. Watt, Parton distributions for the LHC, Eur. Phys. J. C 63 (2009) 189, arXiv: 0901.0002 [hep-ph].

[70] ATLAS Collaboration, The ATLAS Simulation Infrastructure, Eur. Phys. J. C 70 (2010) 823, arXiv: 1005.4568 [physics.ins-det].

[71] S. Agostinelli et al., Geant4: A Simulation toolkit, Nucl. Instrum. Meth. A 506 (2003) 250.

[72] ATLAS Collaboration, Search for pairs of highly collimated photon-jets in pp collisions at √ s = 13 TeV with the ATLAS detector, Phys. Rev. D 99 (2019) 012008, arXiv: 1808.10515 [hep-ex].

[73] CDF Collaboration, Search for new particles decaying into dijets in proton-antiproton collisions at √ s = 1.96 TeV, Phys. Rev. D 79 (2009) 112002, arXiv: 0812.4036 [hep-ex].

[74] ATLAS Collaboration, Measurement of the isolated di-photon cross-section in pp collisions at √ s = 7 TeV with the ATLAS detector, Phys. Rev. D 85 (2012) 012003, arXiv: 1107.0581 [hep-ex].

[75] G. Cowan, K. Cranmer, E. Gross and O. Vitells, Asymptotic formulae for likelihood-based tests of new physics, Eur. Phys. J. C 71 (2011) 1554, arXiv: 1007.1727 [physics.data-an], Erratum: Eur. Phys. J. C 73 (2013) 2501.

[76] A. L. Read, Presentation of search results: the CLs technique, Journal of Physics G: Nuclear and Particle Physics 28 (2002) 2693.

[77] U. Ellwanger, J. F. Gunion and C. Hugonie, NMHDECAY: A Fortran code for the Higgs masses, couplings and decay widths in the NMSSM, JHEP 02 (2005) 066, arXiv: hep-ph/0406215 [hep-ph].

[78] U. Ellwanger and C. Hugonie, NMHDECAY 2.0: An Updated program for sparticle masses, Higgs masses, couplings and decay widths in the NMSSM, Comput. Phys. Commun. 175 (2006) 290, arXiv: hep-ph/0508022 [hep-ph], url: http://www.th.u-psud.fr/NMHDECAY/nmssmtools.html.

[79] G. Degrassi and P. Slavich, On the radiative corrections to the neutral Higgs boson masses in the NMSSM, Nucl. Phys. B825 (2010) 119, arXiv: 0907.4682 [hep-ph].

[80] P. Bechtle, O. Brein, S. Heinemeyer, G. Weiglein and K. E. Williams, HiggsBounds: Confronting Arbitrary Higgs Sectors with Exclusion Bounds from LEP and the Tevatron, Comput. Phys. Commun. 181 (2010) 138, arXiv: 0811.4169 [hep-ph].

[81] P. Bechtle, O. Brein, S. Heinemeyer, G. Weiglein and K. E. Williams, HiggsBounds 2.0.0: Confronting Neutral and Charged Higgs Sector Predictions with Exclusion Bounds from LEP and the Tevatron, Comput. Phys. Commun. 182 (2011) 2605, arXiv: 1102.1898 [hep-ph].

[82] P. Bechtle et al., Recent Developments in HiggsBounds and a Preview of HiggsSignals, PoS CHARGED2012 (2012) 024, arXiv: 1301.2345 [hep-ph].

[83] P. Bechtle et al., HiggsBounds − 4: Improved Tests of Extended Higgs Sectors against Exclusion Bounds from LEP, the Tevatron and the LHC, Eur. Phys. J. C74 (2014) 2693, arXiv: 1311.0055 [hep-ph].

[84] P. Bechtle, S. Heinemeyer, O. Stal, T. Stefaniak and G. Weiglein, Applying Exclusion Likelihoods from LHC Searches to Extended Higgs Sectors, Eur. Phys. J. C75 (2015) 421, arXiv: 1507.06706 [hep-ph].

[85] R. V. Harlander, S. Liebler and H. Mantler, SusHi: A program for the calculation of Higgs production in gluon fusion and bottom-quark annihilation in the Standard Model and the MSSM, Comput. Phys. Commun. 184 (2013) 1605, arXiv: 1212.3249 [hep-ph].

[86] R. V. Harlander, S. Liebler and H. Mantler, SusHi Bento: Beyond NNLO and the heavy-top limit, Comput. Phys. Commun. 212 (2017) 239, arXiv: 1605.03190 [hep-ph].

[87] A. Buckley et al., LHAPDF6: parton density access in the LHC precision era, Eur. Phys. J. C75 (2015) 132, arXiv: 1412.7420 [hep-ph].

[88] L. A. Harland-Lang, A. D. Martin, P. Motylinski and R. S. Thorne, Parton distributions in the LHC era: MMHT 2014 PDFs, Eur. Phys. J. C75 (2015) 204, arXiv: 1412.3989 [hep-ph].

[89] A. Ariga et al., Letter of Intent for FASER: ForwArd Search ExpeRiment at the LHC, (2018), arXiv: 1811.10243 [physics.ins-det].

[90] ATLAS Collaboration, Expected photon performance in the ATLAS experiment, ATL-PHYS-PUB-2011-007, 2011, url: https://cds.cern.ch/record/1345329.

参考文献をもっと見る