リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「マウス神経幹細胞Radial glial cell の維持と姉妹細胞の非対称性を生むNotch の活性化機構」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

マウス神経幹細胞Radial glial cell の維持と姉妹細胞の非対称性を生むNotch の活性化機構

間瀬, 俊 京都大学 DOI:10.14989/doctor.k23337

2021.03.23

概要

マウスの⼤脳背側の神経発⽣では、神経幹細胞が対称分裂で増殖し、その後⾮対称分裂によって神経細胞を⽣み出す。未分化性を維持しながら⾮対称分裂を継続するためには、その間途切れることなく神経幹細胞が周囲の細胞から Notch シグナルを受容する必要がある。神経幹細胞は Notch1, Notch2, Notch3 の 3 つの Notch シグナルの受容体遺伝⼦を発現するが、ホモログごとの役割は不明な点が多い。また、Notch は⼤脳背側の主なリガンド Delta-like1(Dll1)で活性化されるが、形態が異なる姉妹細胞間で、⾮対称に Notch が活性化される仕組みや、Notch シグナルの活性化部位については未だ定説がない。

第⼀部では、神経幹細胞で発現する Notch1 と Notch2 が主要な Notch シグナルの受容体であることを⽰した。本研究では発⽣期の⼤脳背側で特異的に Notch1, Notch2またはその両⽅の活性を失ったノックアウトマウスを作出し、Notch1 および Notch2が神経幹細胞の維持と神経発⽣に与える影響を解析した。その結果、神経発⽣初期から中期にかけて神経幹細胞の維持に主要な役割を果たすのは Notch1 であるが、神経発⽣後期には Notch2 の発現が増加することで、両者が未分化性維持に同等の役割を発揮することを明らかにした。

第⼆部では、神経幹細胞が脳室帯より基底膜側で周辺の細胞から Notch シグナルを受容し得ることを⽰した。Notch はリガンドとの結合がトリガーとなって、酵素的な切断を受ける結果、活性化型の細胞内ドメインは主に核に移⾏し、転写因⼦として働く。古典的なモデルでは、Notch は脳室⾯に近い接着帯周辺で活性化されると考えられてきた。本研究では活性化型 Notch が脳室帯より基底膜側に伸びる神経幹細胞の放射状繊維に広く分布することを発⾒した。この活性化型 Notch は、Notch の切断酵素の活性を阻害すると消失した。⼀⽅、Dll1 は神経細胞へ分化する初期段階の細胞で強く発現し、野⽣型マウスでは脳室帯内の細胞質で主に観察される。Notch1/2 ダブルノックアウトマウスを観察したところ、Dll1 が脳室帯内側の細胞膜と思われる領域に分布した。これは野⽣型マウスの神経前駆細胞では、⺟細胞から持ち越した Notch1と Notch2 が同⼀細胞上の Dll1 を cis-inhibition することで、脳室帯内側に分布する Dll1 は Notch シグナル伝達への寄与が⼩さい可能性が⽰唆された。さらに Notch1 ノックアウトマウスでは、脳室帯より基底膜側の神経前駆細胞で Dll1 が細胞膜と思われる領域に局在した。神経幹細胞の⼀部に Notch1 を発現させると、この Dll1 の局在は隣接細胞から消失することから、野⽣型では神経前駆細胞に隣接する細胞の Notchの活性化( trans-activation)に使われていることが⽰唆された。さらに、脳室帯より基底膜側で⽣じる Notch-Dll1 の trans-activation が、神経幹細胞の未分化性維持に⼗分であることも⽰した。これらのことから、脳室帯の Notch シグナルだけでなく、脳室帯から神経層へ移動する神経前駆細胞の Dll1 による Notch 活性化が、神経幹細胞の維持に重要であることが⽰唆された。

本研究は、第⼀部でNotch1およびNotch2の発現量の経時変化が、⼤脳背側の神経幹細胞の未分化性維持に果たす役割を明らかにし、第⼆部では、新たなNotch活性化空間を発⾒したことで、⼤脳背側の発⽣におけるNotchシグナルの動態と神経幹細胞の形態の機能的必然性を説明する新たな時空間的モデルを提⽰した。

この論文で使われている画像

参考文献

Aaku-Saraste, E., Hellwig, A., Huttner, W.B., 1996. Loss of occludin and functional tight junctions, but not ZO-1, during neural tube closure - Remodeling of the neuroepithelium prior to neurogenesis. Dev. Biol. 180, 664–679. https://doi.org/10.1006/dbio.1996.0336

Alexandre, P., Reugels, A.M., Barker, D., Blanc, E., Clarke, J.D.W., 2010. Neurons derive from the more apical daughter in asymmetric divisions in the zebrafish neural tube. Nat. Neurosci. 13, 673–679. https://doi.org/10.1038/nn.2547

Andersson, E.R., Sandberg, R., Lendahl, U., 2011. Notch signaling: Simplicity in design, versatility in function. Development 138, 3593–3612. https://doi.org/10.1242/dev.063610

Anthony, T.E., Klein, C., Fishell, G., Heintz, N., 2004. Radial Glia Serve as Neuronal Progenitors in All Regions of the Central Nervous System has shown that they can be divided into multiple antigen- ically distinct subpopulations that differ in their cell cycle kinetics, with each subpopulation changing in a . Neuron 41, 881–890.

Baek, C., Freem, L., Go, R., Sang, H., Morin, X., Tozer, S., Normale, E., 2018. Mib1 prevents Notch Cis - inhibition to defer differentiation and preserve neuroepithelial integrity during neural delamination.

Barton, A., Fendrik, A.J., 2013. Sustained vs . oscillating expressions of Ngn2 , Dll1 and Hes1 : A model of neural differentiation of embryonic telencephalon. J. Theor. Biol. 328, 1–8. https://doi.org/10.1016/j.jtbi.2013.03.004

Bettenhausen, B., Hrabe de Angelis, M., Simon, D., Guenet, J.L., Gossler, A., 1995. Transient and restricted expression during mouse embryogenesis of Dll1, a murine gene closely related to Drosophila Delta. Development 121, 2407–2418.

Bray, S.J., 2016. Notch signalling in context. Nat. Publ. Gr. 17, 722–735. https://doi.org/10.1038/nrm.2016.94

Cadiñanos, J., Bradley, A., 2007. Generation of an inducible and optimized piggyBac transposon systemy. Nucleic Acids Res. 35. https://doi.org/10.1093/nar/gkm446

Campos, L.S., Duarte, A.J., Branco, T., Henrique, D., 2001. mDll1 and mDll3 expression in the developing mouse brain: Role in the establishment of the early cortex. J. Neurosci. Res. 64, 590–598. https://doi.org/10.1002/jnr.1111

Carrieri, F.A., Murray, P.J., Ditsova, D., Ferris, M.A., Davies, P., Dale, J.K., 2019. CDK 1 and CDK 2 regulate NICD 1 turnover and the periodicity of the segmentation clock . EMBO Rep. 20, 1–22. https://doi.org/10.15252/embr.201846436

Chenn, A., Walsh, C.A., 2002. Regulation of cerebral cortical size by control of cell cycle exit in neural precursors. Science (80-. ). 297, 365–369. https://doi.org/10.1126/science.1074192

Cohen, M., Georgiou, M., Stevenson, N.L., Miodownik, M., Baum, B., 2010. Dynamic Filopodia Transmit Intermittent Delta-Notch Signaling to Drive Pattern Refinement during Lateral Inhibition. Dev. Cell 19, 78–89. https://doi.org/10.1016/j.devcel.2010.06.006

Collier, J.R., Monk, N.A.M., Maini, P.K., Lewis, J.H., 1996. Pattern formation by lateral inhibition with feedback: A mathematical model of delta-notch intercellular signalling. J. Theor. Biol. 183, 429–446. https://doi.org/10.1006/jtbi.1996.0233

Conlon, R.A., Reaume, A.G., Rossant, J., 1995. Notch 1 is required for the coordinate segmentation of somites. Development 121, 1533–1545.

Couturier, L., Vodovar, N., Schweisguth, F., 2012. Endocytosis by Numb breaks Notch symmetry at cytokinesis. Nat. Publ. Gr. 14, 131–139. https://doi.org/10.1038/ncb2419

Dang, L., Yoon, K., Wang, M., Gaiano, N., 2006. Notch3 signaling promotes radial glial/progenitor character in the mammalian telencephalon. Dev. Neurosci. 28, 58–69. https://doi.org/10.1159/000090753

Das, R.M., Storey, K.G., 2012. scientific report. EMBO Rep. 13, 448–454. https://doi.org/10.1038/embor.2012.42

De Angelis, M.H., McIntyre, J., Gossler, A., 1997. Maintenance of somite borders in mice requires the Delta homologue Dll1. Nature. https://doi.org/10.1038/386717a0

De Celis, J.F., Bray, S.J., 2000. The Abruptex domain of Notch regulates negative interactions between Notch, its ligands and Fringe. Development 127, 1291–1302.

De Joussineau, C., Soulé, J., Martin, M., Anguille, C., Montcourrier, P., Alexandre, D., 2003. Delta- promoted filopodia mediate long-range lateral inhibition in Drosophila. Nature 426, 555–559. https://doi.org/10.1038/nature02157

Del Álamo, D., Rouault, H., Schweisguth, F., 2011. Mechanism and significance of cis-inhibition in notch signalling. Curr. Biol. 21, 40–47. https://doi.org/10.1016/j.cub.2010.10.034

Dong, Z., Yang, N., Yeo, S., Chitnis, A., Guo, S., 2012. Article Intralineage Directional Notch Signaling Regulates Self-Renewal and Differentiation of Asymmetrically Dividing Radial Glia. Neuron 74, 65–78. https://doi.org/10.1016/j.neuron.2012.01.031

Engler, A., Rolando, C., Giachino, C., Saotome, I., Erni, A., Brien, C., Zhang, R., Zimber-Strobl, U., Radtke, F., Artavanis-Tsakonas, S., Louvi, A., Taylor, V., 2018. Notch2 Signaling Maintains NSC Quiescence in the Murine Ventricular-Subventricular Zone. Cell Rep. 22, 992–1002. https://doi.org/10.1016/j.celrep.2017.12.094

Feng, L., Hatten, M.E., Heintz, N., 1994. Brain lipid-binding protein (BLBP): A novel signaling system in the developing mammalian CNS. Neuron 12, 895–908. https://doi.org/https://doi.org/10.1016/0896- 6273(94)90341-7

Fujita, I., Shitamukai, A., Kusumoto, F., Mase, S., Suetsugu, T., Omori, A., Kato, K., Abe, T., Shioi, G., Konno, D., Matsuzaki, F., 2020. Endfoot regeneration restricts radial glial state and prevents translocation into the outer subventricular zone in early mammalian brain development. Nat. Cell Biol. 22, 26–37. https://doi.org/10.1038/s41556-019-0436-9

Gaiano, N., Nye, J.S., Fishell, G., 2000. Radial glial identity is promoted by Notch1 signaling in the murine forebrain. Neuron 26, 395–404. https://doi.org/10.1016/S0896-6273(00)81172-1

Gänzler-Odenthal, S.I.I., Redies, C., 1998. Blocking N-cadherin function disrupts the epithelial structure of differentiating neural tissue in the embryonic chicken brain. J. Neurosci. 18, 5415–5425. https://doi.org/10.1523/jneurosci.18-14-05415.1998

Geffers, I., Serth, K., Chapman, G., Jaekel, R., Schuster-Gossler, K., Cordes, R., Sparrow, D.B., Kremmer, E., Dunwoodie, S.L., Klein, T., Gossler, A., 2007. Divergent functions and distinct localization of the Notch ligands DLL1 and DLL3 in vivo. J. Cell Biol. 178, 465–476. https://doi.org/10.1083/jcb.200702009

Götz, M., Huttner, W.B., 2005. The cell biology of neurogenesis. Nat. Rev. Mol. Cell Biol. 6, 777–788. https://doi.org/10.1038/nrm1739

Guo, H., Hong, S., Jin, X.L., Chen, R.S., Avasthi, P.P., Tu, Y. Te, Ivanco, T.L., Li, Y., 2000. Specificity and efficiency of cre-mediated recombination in Emx1-cre knock-in mice. Biochem. Biophys. Res. Commun. 273, 661–665. https://doi.org/10.1006/bbrc.2000.2870

Hamada, Y., Kadokawa, Y., Okabe, M., Ikawa, M., Coleman, J.R., Tsujimoto, Y., 1999. Mutation in ankyrin repeats of the mouse Notch2 gene induces early embryonic lethality. Development 126, 3415–3424.

Hartfuss, E., Galli, R., Heins, N., Götz, M., 2001. Characterization of CNS precursor subtypes and radial glia. Dev. Biol. 229, 15–30. https://doi.org/10.1006/dbio.2000.9962

Hatakeyama, J., Bessho, Y., Katoh, K., Ookawara, S., Fujioka, M., Guillemot, F., Kageyama, R., 2004. Hes genes regulate size, shape and histogenesis of the nervous system by control of the timing of neural stem cell differentiation. Development 131, 5539–5550. https://doi.org/10.1242/dev.01436

Hatakeyama, J., Wakamatsu, Y., Nagafuchi, A., Kageyama, R., Shigemoto, R., 2014. Cadherin-based adhesions in the apical endfoot are required for active Notch signaling to control neurogenesis in vertebrates 1671–1682. https://doi.org/10.1242/dev.102988

Heitzler, P., Simpson, P., 1991. The choice of cell fate in the epidermis of Drosophila. Cell 64, 1083–1092. https://doi.org/10.1016/0092-8674(91)90263-X

Hevner, R.F., 2019. Intermediate progenitors and Tbr2 in cortical development. J. anat. https://doi.org/10.1111/joa.12939

Hevner, R.F., Hodge, R.D., Daza, R.A.M., Englund, C., 2006. Transcription factors in glutamatergic neurogenesis: Conserved programs in neocortex, cerebellum, and adult hippocampus. Neurosci. Res. 55, 223–233. https://doi.org/10.1016/j.neures.2006.03.004

Higuchi, M., Kiyama, H., Hayakawa, T., Hamada, Y., Tsujimoto, Y., 1995. Differential expression of Notch1 and Notch2 in developing and adult mouse brain. Mol. Brain Res. 29, 263–272. https://doi.org/10.1016/0169-328X(94)00257-F

Hitoshi, S., Alexson, T., Tropepe, V., Donoviel, D., Elia, A.J., Nye, J.S., Conlon, R.A., Mak, T.W., Bernstein, A., Van Der Kooy, D., 2002. Notch pathway molecules are essential for the maintenance, but not the generation, of mammalian neural stem cells. Genes Dev. 16, 846–858. https://doi.org/10.1101/gad.975202

Hozumi, K., Negishi, N., Suzuki, D., Abe, N., Sotomaru, Y., Tamaoki, N., Mailhos, C., Ish-Horowicz, D., Habu, S., Owen, M.J., 2004. Delta-like 1 is necessary for the generation of marginal zone B cells but not T cells in vivo. Nat. Immunol. 5, 638–644. https://doi.org/10.1038/ni1075

Hsu, Y., Fuchs, E., 2012. REVIEWS A family business : stem cell progeny join the niche to regulate homeostasis. Nat. Publ. Gr. 13, 103–114. https://doi.org/10.1038/nrm3272

Huang, H.-P., Liu, M., El-Hodiri, H.M., Chu, K., Jamrich, M., Tsai, M.-J., 2000. Regulation of the Pancreatic Islet-Specific GeneBETA2 (neuroD) by Neurogenin 3. Mol. Cell. Biol. 20, 3292–3307. https://doi.org/10.1128/mcb.20.9.3292-3307.2000

Imayoshi, I., Isomura, A., Harima, Y., Kawaguchi, K., Kori, H., Miyachi, H., Fujiwara, T., Ishidate, F., Kageyama, R., 2013. Oscillatory Control of Factors Determining Multipotency and Fate in Mouse Neural Progenitors 342, 1203–1208.

Imayoshi, I., Ohtsuka, T., Metzger, D., Chambon, P., Kageyama, R., 2006. Temporal regulation of Cre recombinase activity in neural stem cells. Genesis 44, 233–238. https://doi.org/10.1002/dvg.20212

Irvin, D.K., Zurcher, S.D., Nguyen, T., Weinmaster, G., Kornblum, H.I., 2001. Expression patterns of Notch1, Notch2, and Notch3 suggest multiple functional roles for the Notch-DSL signaling system during brain development. J. Comp. Neurol. 436, 167–181. https://doi.org/10.1002/cne.1059

Ishibashi, M., 1995. Enhancer of split. Genes Dev. 1, 3136–3148. https://doi.org/10.1111/j.0906- 7590.2005.03957.x

Jay, D.G., 1988. Selective destruction of protein function by chromophore-assisted laser inactivation. Proc. Natl. Acad. Sci. U. S. A. 85, 5454–5458. https://doi.org/10.1073/pnas.85.15.5454

Kageyama, R., Ohtsuka, T., Shimojo, H., Imayoshi, I., 2008. Dynamic Notch signaling in neural progenitor cells and a revised view of lateral inhibition. Nat. Neurosci. 11, 1247–1251. https://doi.org/10.1038/nn.2208

Kakuda, S., Lopilato, R.K., Ito, A., Haltiwanger, R.S., 2020. Canonical Notch ligands and Fringes have distinct effects on NOTCH1 and NOTCH2. J. Biol. Chem. jbc.RA120.014407. https://doi.org/10.1074/jbc.ra120.014407

Kawaguchi, A., Ikawa, T., Kasukawa, T., Ueda, H.R., Kurimoto, K., Saitou, M., Matsuzaki, F., 2008. Single-cell gene profiling defines differential progenitor subclasses in mammalian neurogenesis. Development 135, 3113–3124. https://doi.org/10.1242/dev.022616

Kawaguchi, D., Furutachi, S., Kawai, H., Hozumi, K., Gotoh, Y., 2013. Dll1 maintains quiescence of adult neural stem cells and segregates asymmetrically during mitosis. Nat. Commun. 4, 1–12. https://doi.org/10.1038/ncomms2895

Kawaguchi, D., Yoshimatsu, T., Hozumi, K., Gotoh, Y., 2008. Selection of differentiating cells by different levels of delta-like 1 among neural precursor cells in the developing mouse telencephalon. Development 135, 3849–3858. https://doi.org/10.1242/dev.024570

Kawamoto, S., Niwa, H., Tashiro, F., Sano, S., Kondoh, G., Takeda, J., Tabayashi, K., Miyazaki, J.I., 2000. A novel reporter mouse strain that expresses enhanced green fluorescent protein upon Cre-mediated recombination. FEBS Lett. 470, 263–268. https://doi.org/10.1016/S0014-5793(00)01338-7

Klein, T., Brennan, K., Martinez Arias, A., 1997. An intrinsic dominant negative activity of serrate that is modulated during wing development in Drosophila. Dev. Biol. 189, 123–134. https://doi.org/10.1006/dbio.1997.8564

Konno, D., Shioi, G., Shitamukai, A., Mori, A., Kiyonari, H., Miyata, T., Matsuzaki, F., 2008. Neuroepithelial progenitors undergo LGN-dependent planar divisions to maintain self-renewability during mammalian neurogenesis. Nat. Cell Biol. 10, 93–101. https://doi.org/10.1038/ncb1673

Koo, B.K., Lim, H.S., Song, R., Yoon, M.J., Yoon, K.J., Moon, J.S., Kim, Y.W., Kwon, M.C., Yoo, K.W., Kong, M.P., Lee, J., Chitnis, A.B., Kim, C.H., Kong, Y.Y., 2005. Mind bomb 1 is essential for generating functional Notch ligands to activate Notch. Development 132, 3459–3470. https://doi.org/10.1242/dev.01922

Kopan, R., Ilagan, M.X.G., 2009. The Canonical Notch Signaling Pathway: Unfolding the Activation Mechanism. Cell 137, 216–233. https://doi.org/10.1016/j.cell.2009.03.045

Krebs, L.T., Iwai, N., Nonaka, S., Welsh, I.C., Lan, Y., Jiang, R., Saijoh, Y., O’Brien, T.P., Hamada, H., Gridley, T., 2003a. Notch signaling regulates left-right asymmetry determination by inducing Nodal expression. Genes Dev. 17, 1207–1212. https://doi.org/10.1101/gad.1084703

Krebs, L.T., Xue, Y., Norton, C.R., Shutter, J.R., Maguire, M., Sundberg, J.P., Gallahan, D., Closson, V., Kitajewski, J., Callahan, R., Smith, G.H., Stark, K.L., Gridley, T., 2000. Notch signaling is essential for vascular morphogenesis in mice. Genes Dev. 14, 1343–1352. https://doi.org/10.1101/gad.14.11.1343

Krebs, L.T., Xue, Y., Norton, C.R., Sundberg, J.P., Beatus, P., Lendahl, U., Joutel, A., Gridley, T., 2003b. Characterization of Notch3-Deficient Mice: Normal Embryonic Development and Absence of Genetic Interactions with a Notch1 Mutation. Genesis 37, 139–143. https://doi.org/10.1002/gene.10241

Kressmann, S., Campos, C., Castanon, I., Fürthauer, M., González-gaitán, M., 2015. Directional Notch trafficking in Sara endosomes during asymmetric cell division in the spinal cord 17. https://doi.org/10.1038/ncb3119

Kulkeaw, K., Mizuochi, C., Horio, Y., Osumi, N., Tsuji, K., Sugiyama, D., 2009. Application of whole mouse embryo culture system on stem cell research. Stem Cell Rev. Reports 5, 175–180. https://doi.org/10.1007/s12015-009-9064-2

Lindsell, C.E., Boulter, J., DiSibio, G., Gossler, A., Weinmaster, G., 1996. Expression patterns of Jagged, Delta1, Notch1, Notch2, and Notch3 genes identify ligand-receptor pairs that may function in neural development. Mol. Cell. Neurosci. 8, 14–27. https://doi.org/10.1006/mcne.1996.0040

Liu, Z., Chen, S., Boyle, S., Zhu, Y., Zhang, A., Piwnica-Worms, D.R., Ilagan, M.X.G., Kopan, R., 2013. The extracellular domain of notch2 increases its cell-surface abundance and ligand responsiveness during kidney development. Dev. Cell 25, 585–598. https://doi.org/10.1016/j.devcel.2013.05.022

Lui, J.H., Hansen, D. V., Kriegstein, A.R., 2011. Development and evolution of the human neocortex. Cell 146, 18–36. https://doi.org/10.1016/j.cell.2011.06.030

Luis, J., Pompa, D., Wakeham, A., Correia, K.M., Samper, E., Brown, S., Aguilera, R.J., Nakano, T., Honjo, T., Mak, T.W., Rossant, J., Conlon, R.A., 1997. Conservation of the Notch signalling pathway in mammalian neurogenesis. Development 124, 1139–1148.

Mase, S., Shitamukai, A., Wu, Q., Morimoto, M., Gridley, T., Matsuzaki, F., 2020. Notch1 and Notch2 collaboratively maintain radial glial cells in mouse neurogenesis. Neurosci. Res. 1–11. https://doi.org/10.1016/j.neures.2020.11.007

Matsuda, M., Chitnis, A.B., 2009. Interaction with Notch determines endocytosis of specific Delta ligands in zebrafish neural tissue. Development 136, 197–206. https://doi.org/10.1242/dev.027938

McCright, B., Gao, X., Shen, L., Lozier, J., Lan, Y., Maguire, M., Herzlinger, D., Weinmaster, G., Jiang, R., Gridley, T., 2001. Defects in development of the kidney, heart and eye vasculature in mice homozygous for a hypomorphic Notch2 mutation. Development 128, 491–502.

McCright, B., Lozier, J., Gridley, T., 2006. Generation of new Notch2 mutant alleles. Genesis 44, 29–33. https://doi.org/10.1002/gene.20181

Miyata, T., Kawaguchi, A., Okano, H., Ogawa, M., 2001. Asymmetric inheritance of radial glial fibers by cortical neurons. Neuron 31, 727–741. https://doi.org/10.1016/S0896-6273(01)00420-2

Moore, D.L., Pilz, G.A., Barral, Y., Jessberger, S., 2015. A mechanism for the segregation of age in mammalian neural stem cells. Science (80-. ). 349, 1334–1338. https://doi.org/doi:10.1126/science.aac9868.

Morimoto, M., Nishinakamura, R., Saga, Y., Kopan, R., 2012. Different assemblies of Notch receptors coordinate the distribution of the major bronchial Clara , ciliated and neuroendocrine cells 4373, 4365–4373. https://doi.org/10.1242/dev.083840

Nelson, B.R., Gumuscu, B., Hartman, B.H., Reh, T.A., 2006. Notch activity is downregulated just prior to retinal ganglion cell differentiation. Dev. Neurosci. 28, 128–141. https://doi.org/10.1159/000090759

Nelson, B.R., Hodge, R.D., Bedogni, F., Hevner, R.F., 2013. Dynamic Interactions between Intermediate Neurogenic Progenitors and Radial Glia in Embryonic Mouse Neocortex : Potential Role in Dll1- Notch Signaling 33, 9122–9139. https://doi.org/10.1523/JNEUROSCI.0791-13.2013

Nichols, J.T., Miyamoto, A., Olsen, S.L., D’Souza, B., Yao, C., Weinmaster, G., 2007. DSL ligand endocytosis physically dissociates Notch1 heterodimers before activating proteolysis can occur. J. Cell Biol. 176, 445–458. https://doi.org/10.1083/jcb.200609014

Niwa, H., Yamamura, K., Miyazaki, J., 1991. Efficient selection for high-expression transfectants with a novel eukaryotic vector. Gene 108, 193–199. https://doi.org/https://doi.org/10.1016/0378- 1119(91)90434-D

Noctor, S.C., Flint, A.C., Weissman, T.A., Dammerman, R.S., Kriegstein, A.R., 2001. Neurons derived from radial glial cells establish radial units in neocortex. Nature 409, 714–720. https://doi.org/10.1038/35055553

Ochiai, W., Nakatani, S., Takahara, T., Kainuma, M., Masaoka, M., Minobe, S., Namihira, M., Nakashima, K., Sakakibara, A., Ogawa, M., Miyata, T., 2009. Periventricular notch activation and asymmetric Ngn2 and Tbr2 expression in pair-generated neocortical daughter cells. Mol. Cell. Neurosci. 40, 225–233. https://doi.org/10.1016/j.mcn.2008.10.007

Ohlstein, B., Spradling, A.C., 2007. Multipotent drosophila intestinal stem cells specify daughter cell fates by differential Notch signaling. Science (80-. ). 315, 988–993.

Ohtsuka, T., 1999. Hes1 and Hes5 as Notch effectors in mammalian neuronal differentiation. EMBO J. 18, 2196–2207. https://doi.org/10.1093/emboj/18.8.2196

Ohtsuka, T., Imayoshi, I., Shimojo, H., Nishi, E., Kageyama, R., McConnell, S.K., 2006. Visualization of embryonic neural stem cells using Hes promoters in transgenic mice. Mol. Cell. Neurosci. 31, 109–122. https://doi.org/10.1016/j.mcn.2005.09.006

Pierfelice, T., Alberi, L., Gaiano, N., 2011. Notch in the Vertebrate Nervous System: An Old Dog with New Tricks. Neuron 69, 840–855. https://doi.org/10.1016/j.neuron.2011.02.031

Radtke, F., Wilson, A., Stark, G., Bauer, M., Van Meerwijk, J., MacDonald, H.R., Aguet, M., 1999. Deficient T cell fate specification in mice with an induced inactivation of Notch1. Immunity 10, 547–558. https://doi.org/10.1016/S1074-7613(00)80054-0

Rajan, A., Tien, A.C., Haueter, C.M., Schulze, K.L., Bellen, H.J., 2009. The Arp2/3 complex and WASp are required for apical trafficking of Delta into microvilli during cell fate specification of sensory organ precursors. Nat. Cell Biol. 11, 815–824. https://doi.org/10.1038/ncb1888

Rašin, M.R., Gazula, V.R., Breunig, J.J., Kwan, K.Y., Johnson, M.B., Liu-Chen, S., Li, H.S., Jan, L.Y., Jan, Y.N., Rakic, P., Šestan, N., 2007. Numb and Numbl are required for maintenance of cadherin-based adhesion and polarity of neural progenitors. Nat. Neurosci. 10, 819–827. https://doi.org/10.1038/nn1924

Rhyu, M.S., Jan, L.Y., Jan, Y.N., 1994. Asymmetric distribution of numb protein during division of the sensory organ precursor cell confers distinct fates to daughter cells. Cell 76, 477–491. https://doi.org/10.1016/0092-8674(94)90112-0

Robinson, C.R., Sauer, R.T., 1998. Optimizing the stability of single-chain proteins by linker length and composition mutagenesis. Proc. Natl. Acad. Sci. U. S. A. 95, 5929–5934. https://doi.org/10.1073/pnas.95.11.5929

Sakamoto, K., Ohara, O., Takagi, M., Takeda, S., Katsube, K. ichi, 2002. Intracellular cell-autonomous association of Notch and its ligands: A novel mechanism of Notch signal modification. Dev. Biol. 241, 313–326. https://doi.org/10.1006/dbio.2001.0517

Sauer, F.C., 1935. Mitosis in the neural tube. J. Comp. Neurol. 62, 377–405. https://doi.org/https://doi.org/10.1002/cne.900620207

Scadden, D.T., 2006. The stem-cell niche as an entity of action. Nature 441, 1075–1079. https://doi.org/10.1038/nature04957

Schofield, R., 1978. The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells 4, 7–25.

Shaya, O., Binshtok, U., Hersch, M., Richardson, G.P., Chen, C.S., Sprinzak, D., 2017. Short Article Cell- Cell Contact Area Affects Notch Signaling and Short Article Cell-Cell Contact Area Affects Notch Signaling and Notch-Dependent Patterning. Dev. Cell 40, 505-511.e6. https://doi.org/10.1016/j.devcel.2017.02.009

Shen, Q., Temple, S., 2002. Creating asymmetric cell divisions by skewing endocytosis. Sci. STKE 2002, 1–5. https://doi.org/10.1126/scisignal.1622002pe52

Shen, Q., Zhong, W., Jan, Y.N., Temple, S., 2002. Asymmetric Numb distribution is critical for asymmetric cell division of mouse cerebral cortical stem cells and neuroblasts. Development 129, 4843–4853.

Shimizu, K., Chiba, S., Hosoya, N., Kumano, K., Saito, T., Kurokawa, M., Kanda, Y., Hamada, Y., Hirai, H., 2000. Binding of Delta1, Jagged1, and Jagged2 to Notch2 Rapidly Induces Cleavage, Nuclear Translocation, and Hyperphosphorylation of Notch2. Mol. Cell. Biol. 20, 6913–6922. https://doi.org/10.1128/mcb.20.18.6913-6922.2000

Shimizu, K., Chiba, S., Saito, T., Kumano, K., Hirai, H., Shimizu, K., Chiba, S., Saito, T., Kumano, K., Hirai, H., Hamada, Y., 2002. Functional diversity among Notch1, Notch2, and Notch3 receptors. Biochem. Biophys. Res. Commun. 291, 775–779. https://doi.org/10.1006/bbrc.2002.6528

Shimogori, T., Lee, D.A., Miranda-Angulo, A., Yang, Y., Wang, H., Jiang, L., Yoshida, A.C., Kataoka, A., Mashiko, H., Avetisyan, M., Qi, L., Qian, J., Blackshaw, S., 2010. A genomic atlas of mouse hypothalamic development. Nat. Neurosci. 13, 767–775. https://doi.org/10.1038/nn.2545

Shimogori, T., Seth, B., 2015. Large-Scale ISH on Mouse Brain Sections for Systematic Gene Expression Analysis in Developing Mouse Diencephalon, 99th ed, In Situ Hybridization Methods. Springer Science+Business Media New York. https://doi.org/10.1007/978-1-4939-2303-8_10

Shimojo, H., Ohtsuka, T., Kageyama, R., 2008. Oscillations in Notch Signaling Regulate Maintenance of Neural Progenitors. Neuron 58, 52–64. https://doi.org/10.1016/j.neuron.2008.02.014

Shitamukai, A., Konno, D., Matsuzaki, F., 2011. Oblique radial glial divisions in the developing mouse neocortex induce self-renewing progenitors outside the germinal zone that resemble primate outer subventricular zone progenitors. J. Neurosci. 31, 3683–3695. https://doi.org/10.1523/JNEUROSCI.4773-10.2011

Siebel, C., Lendahl, U., 2017. Notch signaling in development, tissue homeostasis, and disease. Physiol. Rev. 97, 1235–1294. https://doi.org/10.1152/physrev.00005.2017

Sprinzak, D., Lakhanpal, A., LeBon, L., Garcia-Ojalvo, J., Elowitz, M.B., 2011. Mutual inactivation of Notch receptors and ligands facilitates developmental patterning. PLoS Comput. Biol. 7. https://doi.org/10.1371/journal.pcbi.1002069

Sprinzak, D., Lakhanpal, A., Lebon, L., Santat, L.A., Fontes, M.E., Anderson, G.A., Garcia-Ojalvo, J., Elowitz, M.B., 2010. Cis-interactions between Notch and Delta generate mutually exclusive signalling states. Nature 465, 86–90. https://doi.org/10.1038/nature08959

Swiatek, P.J., Lindsell, C.E., Del Amo, F.F., Weinmaster, G., Gridley, T., 1994. Notch1 is essential for postimplantation development in mice. Genes Dev. 8, 707–719. https://doi.org/10.1101/gad.8.6.707

Tabata, H., Nakajima, K., 2001. Efficient in utero gene transfer system to the developing mouse brain using electroporation: Visualization of neuronal migration in the developing cortex. Neuroscience 103, 865–872. https://doi.org/10.1016/S0306-4522(01)00016-1

Takahashi, T., Nowakowski, R.S., Caviness, V.S., 1995. The Cell Cycle of the Pseudostratified Embryonic Murine Cerebral Wall. J. Neurosci. 15, 6046–6057.

Takemoto, K., Matsuda, T., Sakai, N., Fu, D., Noda, M., Uchiyama, S., Kotera, I., Arai, Y., Horiuchi, M., Fukui, K., Ayabe, T., Inagaki, F., Suzuki, H., Nagai, T., 2013. SuperNova, a monomeric photosensitizing fluorescent protein for chromophore-assisted light inactivation. Sci. Rep. 3, 1–7. https://doi.org/10.1038/srep02629

Tokunaga, A., Kohyama, J., Yoshida, T., Nakao, K., Sawamoto, K., Okano, H., 2004. Mapping spatio- temporal activation of Notch signaling during neurogenesis and gliogenesis in the developing mouse brain. J. Neurochem. 90, 142–154. https://doi.org/10.1111/j.1471-4159.2004.02470.x

Tozer, S., Baek, C., Fischer, E., Goiame, R., Tozer, S., Baek, C., Fischer, E., Goiame, R., Morin, X., 2017. Differential Routing of Mindbomb1 via Centriolar Satellites Regulates Asymmetric Divisions of Neural Report Differential Routing of Mindbomb1 via Centriolar Satellites Regulates Asymmetric Divisions of Neural Progenitors. Neuron 1–10. https://doi.org/10.1016/j.neuron.2016.12.042

Trylinski, M., Mazouni, K., 2017. Intra-lineage Fate Decisions Involve Activation of Notch Receptors Basal to the Midbody in Drosophila Sensory Organ Precursor Cells Article Intra-lineage Fate Decisions Involve Activation of Notch Receptors Basal to the Midbody in Drosophila Sensory Organ 2239–2247. https://doi.org/10.1016/j.cub.2017.06.030

Uemura, T., Shepherd, S., Ackerman, L., Jan, L.Y., Jan, Y.N., 1989. <em>numb</em>, a gene required in determination of cell fate during sensory organ formation in Drosophila embryos. Cell 58, 349–360. https://doi.org/10.1016/0092-8674(89)90849-0

Wang, X., Le, N., Denoth-lippuner, A., Barral, Y., Kroschewski, R., 2016. Asymmetric partitioning of transfected DNA during mammalian cell division 113. https://doi.org/10.1073/pnas.1606091113

Weinmaster, G., Roberts, V.J., Lemke, G., 1991. A homolog of Drosophila Notch expressed during mammalian development. Development 113, 199–205.

Wu, Q., Shichino, Y., Abe, T., Suetsugu, T., Omori, A., Kiyonari, H., Iwasaki, S., Matsuzaki, F., 2020. Selective translation of epigenetic modifiers drives the developmental clock of neural stem cells. BioRxiv. https://doi.org/https://doi.org/10.1101/2020.10.08.330852

Yang, X., Klein, R., Tian, X., Cheng, H.T., Kopan, R., Shen, J., 2004. Notch activation induces apoptosis in neural progenitor cells through a p53-dependent pathway. Dev. Biol. 269, 81–94. https://doi.org/10.1016/j.ydbio.2004.01.014

Yokota, Y., Ring, C., Cheung, R., Pevny, L., Anton, E.S., 2007. Nap1-Regulated Neuronal Cytoskeletal Dynamics Is Essential for the Final Differentiation of Neurons in Cerebral Cortex. Neuron 54, 429–445. https://doi.org/10.1016/j.neuron.2007.04.016

Yoon, K., Nery, S., Rutlin, M.L., Radtke, F., Fishell, G., Gaiano, N., 2004. Fibroblast growth factor receptor signaling promotes radial glial identity and interacts with Notch1 signaling in telencephalic progenitors. J. Neurosci. 24, 9497–9506. https://doi.org/10.1523/JNEUROSCI.0993-04.2004

Yoon, K.J., Koo, B.K., Im, S.K., Jeong, H.W., Ghim, J., Kwon, M. chul, Moon, J.S., Miyata, T., Kong, Y.Y., 2008. Mind Bomb 1-Expressing Intermediate Progenitors Generate Notch Signaling to Maintain Radial Glial Cells. Neuron 58, 519–531. https://doi.org/10.1016/j.neuron.2008.03.018

Yusa, K., Zhou, L., Li, M.A., Bradley, A., Craig, N.L., 2011. A hyperactive piggyBac transposase for mammalian applications. Proc. Natl. Acad. Sci. U. S. A. 108, 1531–1536. https://doi.org/10.1073/pnas.1008322108

Zhou, Y., Atkins, J.B., Rompani, S.B., Bancescu, D.L., Petersen, P.H., Tang, H., Zou, K., Stewart, S.B., Zhong, W., 2007. The Mammalian Golgi Regulates Numb Signaling in Asymmetric Cell Division by Releasing ACBD3 during Mitosis. Cell 129, 163–178. https://doi.org/10.1016/j.cell.2007.02.037

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る