リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Insights into the mechanism of diurnal variations in methane emission from the stem surfaces of Alnus japonica」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Insights into the mechanism of diurnal variations in methane emission from the stem surfaces of Alnus japonica

Takahashi, Kenshi Sakabe, Ayaka Azuma, Wakana A. Itoh, Masayuki Imai, Tomoya Matsumura, Yasuki Tateishi, Makiko Kosugi, Yoshiko 京都大学 DOI:10.1111/nph.18283

2022.09

概要

Recent studies have suggested that in certain environments, tree stems emit methane (CH₄). This study explored the mechanism of CH₄ emission from the stem surfaces of Alnus japonica in a riparian wetland. Stem CH₄ emission rates and sap flux were monitored year-round, and fine-root anatomy was investigated. CH₄ emission rates were estimated using a closed-chamber method. Sap flux was measured using Granier-type thermal dissipation probes. Root anatomy was studied using both optical and cryo-scanning electron microscopy. CH₄ emissions during the leafy season exhibited a diurnally changing component superimposed upon an underlying continuum in which the diurnal variation was in phase with sap flux. We propose a model in which stem CH₄ emission involves at least two processes: a sap flux-dependent component responsible for the diurnal changes, and a sap flux-independent component responsible for the background continuum. The contribution ratios of the two processes are season-dependent. The background continuum possibly resulted from the diffusive transport of gaseous CH₄ from the roots to the upper trunk. Root anatomy analysis indicated that the intercellular space of the cortex and empty xylem cells in fine roots could serve as a passageway for transport of gaseous CH₄.

この論文で使われている画像

参考文献

Azuma W, Ishii HR, Kuroda K, Kuroda K. 2016. Function and structure of leaves contributing to increasing water storage with height in the tallest Cryptomeria japonica trees of Japan. Trees 30: 141–152.

Barba J, Bradford MA, Brewer PE, Bruhn D, Covey K, van Haren J, Megonigal JP, Mikkelsen TN, Pangala SR., Pihlatie M, Poulter B, Rivas-Ubach A, Schadt CW, Terazawa K, Warner DL, Zhang Z, Vargas R. 2019a. Methane emissions from tree stems: a new frontier in the global carbon cycle. New Phytologist 222: 18 - 28.

Barba J, Poyatos R, Vargas R. 2019b. Automated measurements of greenhouse gases fluxes from tree stems and soils: magnitudes, patterns and drivers. Scientific Reports 9: 1–13.

Carmichael MJ, Bernhardt ES, Bräuer SL, Smith WK. 2014. The role of vegetation in methane flux to the atmosphere: should vegetation be included as a distinct category in the global methane budget ? Biogeochemistry 119: 1–24.

Carmichael MJ, Helton, AM, White JC, Smith WK. 2018. Standing dead trees are a conduit for the atmospheric flux of CH4 and CO2 from wetlands. Wetlands 38: 133-143.

Covey KR, Megonigal JP. 2019. Methane production and emissions in trees and forests. New Phytologist 222: 35 – 51.

De Simone O, Müller E, Junk WJ, Schmidt W. 2002. Adaptations of Central Amazon tree species to prolonged flooding: Root morphology and leaf longevity. Plant Biology 4: 515–522.

Drew MC, He CJ., Morgan PW. 2000. Programmed cell death and aerenchyma formation in roots. Trends in Plant Science 5: 123-127.

Evert RF. 2006. Esau’s plant anatomy: meristems, cells, and tissues of the plant body: their structure, function, and development. New Jersey: John Wiley & Sons.

Feng H, Guo J, Ma X, Han M, Kneeshaw D, Sun H, Malghani S, Chen H, Wang W. 2022. Methane emissions may be driven by hydrogenotrophic methanogens inhabiting the stem tissues of poplar. New Phytologist 233: 182-193.

Gauci V, Gowing DJG, Hornibrook ERC, Davis JM, Dise NB. 2010. Woody stem methane emission in mature wetland alder trees. Atmospheric Environment 44: 2157-2160.

Groh B, Hübner C, Lendzian KJ. 2002. Water and oxygen permeance of phellems isolated from trees: The role of waxes and lenticels. Planta 215: 794–801.

Itoh M, Ohte N, Koba K, Katsuyama M, Hayamizu K, Tani M. 2007. Hydrologic effects on Research 112: G01019.

Jeffrey LC, Maher DT, Tait DR, Euler S, Johnston SG. 2020. Tree stem methane emissions from subtropical lowland forest (Melaleuca quinquenervia) regulated by local and seasonal hydrology. Biogeochemistry 151: 273-290.

Jeffrey LC, Maher DT, Chiri E, Leung PM, Nauer PA, Arndt SK, Douglas RT, Greening C, Johnston, SG. 2021a. Bark-dwelling methanotrophic bacteria decrease methane emissions from trees. Nature communications, 12: 1-8.

Jeffrey LC, Maher DT, Tait DR, Reading MJ, Chiri E, Greening C, Johnston SG. 2021b. Isotopic evidence for axial tree stem methane oxidation within subtropical lowland forests. New Phytologist, 230: 2200-2212.

Kirschke S, Bousquet P, Ciais P, Saunois M, Canadell JG, Dlugokencky EJ, Bergamaschi P, Bergmann D, Blake DR, Bruhwiler L et al. (48 authors) 2013. Three decades of global methane sources and sinks. Nature Geoscience 6: 813–823.

Kosugi Y, Takanashi S, Tanaka H, Ohkubo S, Tani M, Yano M, Katayama T. 2007. Evapotranspiration over a Japanese cypress forest. I. Eddy covariance fluxes and surface conductance characteristics for 3 years. Journal of Hydrology 337: 269-283.

Massman WJ. 1998. A review of the molecular diffusivities of H2O, CO2, CH4, CO, O3, SO2, NH3, N2O, NO, and NO2 in air, O2 and N2 near STP. Atmospheric Environment, 32: 1111-1127.

Megonigal JP, Brewer PE. Knee KL. 2020. Radon as a natural tracer of gas transport through trees. New Phytologist 225: 1470-1475.

Pangala SR, Gowing DJ, Hornibrook ERC, Gauci V. 2014. Controls on methane emissions from Alnus glutinosa saplings. New Phytologist 201: 887-896.

Pangala SR, Hornibrook ERC, Gowing DJ. Gauci V. 2015. The contribution of trees to ecosystem methane emissions in a temperate forested wetland. Global Change Biology 21: 2642- 2654. egress from tropical forested wetlands. New Phytologist 197: 524 - 531.

Pangala SR., Enrich-Prast A, Basso LS, Peixoto RB, Bastviken D, Hornibrook ERC, Gatti LV, Marotta H, Calazans LSB, Sakuragui CM, Bastos WR, Malm O, Gloor E, Miller JB, Gauci V. 2017. Large emissions from floodplain trees close the Amazon methane budget. Nature 552: 230-234.

Philipson JJ, Coutts MP. 1980. The tolerance of tree roots to waterlogging: Iv. Oxygen transport in woody roots of Sitka spruce and Lodgepole pine. New Phytologist 85: 489–494.

Pitz SL, Megonigal JP. 2017. Temperate forest methane sink diminished by tree emissions. New Phytologist 214: 1432-1439.

Pitz SL, Megonigal JP, Chang C-H, Szlavecz K. 2018. Methane fluxes from tree stems and soils along a habitat gradient. Biogeochemistry. 137: 307-320.

Purnobasuki H, Suzuki M. 2004. Aerenchyma formation and porosity in root of a mangrove plant, Sonneratia alba (Lythraceae). Journal of Plant Research 117: 465–472.

Rusch H, Rennenberg H. 1998. Black alder (Alnus Glutinosa (L.) Gaertn.) trees mediate methane and nitrous oxide emission from the soil to the atmosphere. Plant and Soil. 201: 1-7.

Sakabe A, Kosugi Y, Okumi C, Itoh M, Takahashi K. 2016. Impacts of riparian wetlands on the seasonal variations of watershed-scale methane budget in a temperate monsoonal forest. Journal of Geophysical Research: Biogeosciences 121: 1717-1732.

Sakabe A, Takahashi K, Azuma W, Itoh M, Tateishi M, Kosugi Y. 2021. Seasonal variation and controlling factors of stem methane emissions from Alnus japonica in a riparian wetland of a temperate Forest. Journal of Geophysical Research: Biogeosciences 126: e2021JG006326.

Saunois M, Stavert AR, Poulter B, Bousquet P, Canadell JG, Jackson RB, Raymond PA, Dlugokencky EJ, Houweling S, Patra PK et al. (total 91 authors) 2020. The Global Methane Budget 2000-2017. Earth System Science Data 12: 1561–1623.

Schindler T, Machacova K, Mander Ü, Escuer-Gatius J, Soosaar K. 2021. Diurnal tree stem CH4 Sorz J and Hietz P. 2006. Gas diffusion through wood: implications for oxygen supply. Trees 20: 34-41.

Stevens KJ, Peterson RL, Reader RJ. 2002. The aerenchymatous phellem of Lythrum salicaria (L.): A pathway for gas transport and its role in flood tolerance. Annals of Botany 89: 621–625.

Strock CF, Lynch JP. 2020. Root secondary growth: an unexplored component of soil resource acquisition. In: van Dongen J., Licausi F. (eds) Low-Oxygen Stress in Plants. Plant Cell Monographs, vol 21. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1254-0_13.

Takahashi H, Yamauchi T, Colmer TD, Nakazono M. 2014. Aerenchyma Formation in Plants. Annals of Botany 126: 205–218.

Terazawa K, Ishizuka S, Sakata T, Yamada K, Takahashi M. 2007. Methane emissions from stems of Fraxinus mandshurica var. japonica trees in a floodplain forest, Soil Biology and Biochemistry 39: 2689-2692.

Terazawa K, Tokida T, Sakata T, Yamada K, Ishizuka S. 2021. Seasonal and weather-related controls on methane emissions from the stems of mature trees in a cool-temperate forested wetland. Biogeochemistry 156: 211–230.

Terazawa K, Yamada K, Ohno Y, Sakata T, Ishizuka S. 2015. Spatial and temporal variability in methane emissions from tree stems of Fraxinus mandshurica in a cool-temperate floodplain forest, Biogeochemistry 123: 349–362.

Verboven P, Pedersen O, Herremans E, Ho QT, Nicolaï BM, Colmer TD, Teakle N. 2012. Root aeration via aerenchymatous phellem: Three-dimensional micro-imaging and radial O2 profiles in Melilotus siculus. New Phytologist 193: 420–431.

Wang ZP, Gu Q, Deng FD, Huang JH, Megonigal JP, Yu Q, Lü XT, Li, LH, Chang S, Zhang YH, Feng JC, Han XG. 2016. Methane emissions from the trunks of living trees on upland soils, New Phytologist 211: 429-439.

Wang ZP, Han SJ, Li HL, Deng FD, Zheng, YH, Liu HF, Han XG. 2017. Methane production explained largely by water content in the heartwood of living trees in upland forests. Journal of Geophysical Research: Biogeosciences 122: 2479–2489.

Webb J, Jackson MB. 1986. A transmission and cryo-scanning electron microscopy study of the formation of aerenchyma (cortical gas-filled space) in adventitious roots of rice (Oryza sativa). Journal of Experimental Botany 37(179): 832–841.

Yamamoto F, Sakata T, Terazawa K. 1995. Growth, morphology, stem anatomy, and ethylene production in flodded Alnus japonica seedlings. IAWA Journal 16(1): 47–59.

Yamauchi T, Shimamura S, Nakazono M, Mochizuki T. 2013. Aerenchyma formation in crop species: A review. Field Crops Research 152: 8–16.

Yip DZ, Veach AM, Yang ZK, Cregger MA, Schadt CW. 2018. Methanogenic Archaea dominate mature heartwood habitats of Eastern Cottonwood (Populus deltoides). New Phytologist 222: 115–121.

参考文献をもっと見る