リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「機械刺激センサーであるトライコームを介した機械刺激誘導性の植物免疫応答に関する解析」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

機械刺激センサーであるトライコームを介した機械刺激誘導性の植物免疫応答に関する解析

松村, 護 名古屋大学

2022.06.03

概要

植物病原微生物の感染は、雨によって媒介されることが知られている。例えば、罹病個体に雨粒が衝突し、飛沫を介して他の健全な植物へと伝播すること、また大気中に存在する病原細菌や糸状菌の胞子が雨粒中に含まれることも報告されている。こうした背景から、植物が雨を危険因子として認識し、来る病原体感染に備えるために免疫を活性化する可能性が考えられる。本研究では、雨は機械刺激誘導性の新規な植物免疫を誘導することを明らかにした。

シロイヌナズナ葉に、自然界で降る雨を再現した雨滴を処理し、RNA-seq解析を行ったところ 1,050 の雨誘導性遺伝子群が検出された。

Gene Ontology解析から、雨誘導性遺伝子は免疫応答関連の遺伝子を有意に含むことが示唆された。興味深いことに、TCH2 や TCH4 などの機械刺激応答性のマーカー遺伝子群も多数検出された。そこで、ブラシ処理による機械刺激をシロイヌナズナ葉に与え、同様に RNA-seq 解析を行った結果、1,241 遺伝子が有意に発現上昇した。これら遺伝子群は、雨誘導性遺伝子の 87.3%と重複し、かつ発現の誘導度にも強い正の相関があることから、雨誘導性遺伝子の大部分は機械刺激によって誘導されることが示唆された。また、植物葉に対する雨と機械刺激処理のいずれもが、腐生性糸状菌である Alternaria brassicicola および寄生性細菌 Pseudomonas syringae に対する抵抗性を付与することを明らかにした。以上より、植物は雨を機械刺激として認識し、機械刺激応答性の情報伝達経路を活性化することで免疫を誘導するのでないかと考えられる。

次に、雨および機械刺激誘導性の遺伝子群がどのように発現制御されているのかを明らかにするために、発現誘導遺伝子群のシス解析を行なった結果、Ca2+-calmodulin 応答性転写抑制因子である CAMTA の結合配列CGCG-box が有意に濃縮された。そこで、シロイヌナズナ CAMTA3 の標的遺伝子群を同定するため、ChIP-seq 解析を行った結果、雨および機械刺激誘導性の遺伝子群のうち 314 遺伝子の発現が CAMTA3 によって制御されていることを明らかにした。実際、CAMTA3 の Ca2+非感受性変異体では、機械刺激誘導性の免疫は強く抑制された。

Ca2+ の細胞内流入が機械刺激誘導性の免疫に重要であることが示唆されたので、次にCa2+プローブであるGCaMP3を導入した35S:GCaMP3/Col-0 植物を用いて、機械刺激受容時の Ca2+動態を観察した。その結果、機械刺激によって、葉面に存在する毛状突起トライコームを中心としたカルシウムウェーブが誘導されることが明らかになり、機械的刺激は、トライコームに情報として集約され、2 次的に広く周囲へ伝達されることが示唆された。実際、トライコームを持たない35S:GCaMP3/gl1 植物においては、機械刺激を与えても野生型で観察されるカルシウムウェーブは生じなかった。さらに、 gl1 植物を用いたRNA-seq 解析から、雨および機械刺激誘導性の遺伝子発現は強く抑制され、同免疫応答も誘導されないことが示された。

以上の結果より、トライコームは機械刺激感受性の細胞であり、雨などの機械刺激を感知するとカルシウムウェーブと CAMTA3 依存的な免疫応答を誘導することが明らかになった。この新規な免疫機構は、植物に広く保存されていると考えられることから、雨天という変動する環境に植物が適応するための重要な生存戦略であると言える。

この論文で使われている画像

参考文献

Bacete, L., and Hamann, T. (2020). The Role of Mechanoperception in Plant Cell Wall Integrity Maintenance. Plants 9.

Betsuyaku, S., Katou, S., Takebayashi, Y., Sakakibara, H., Nomura, N., and Fukuda, H. (2018). Salicylic Acid and Jasmonic Acid Pathways are Activated in Spatially Different Domains Around the Infection Site During Effector-Triggered Immunity in Arabidopsis thaliana. Plant Cell Physiol. 59, 8-16.

Boller, T., and Felix, G. (2009). A renaissance of elicitors: perception of microbe- associated molecular patterns and danger signals by pattern-recognition receptors. Annu. Rev. Plant Biol. 60, 379-406.

Boudsocq, M., Willmann, M.R., McCormack, M., Lee, H., Shan, L., He, P., Bush, J., Cheng, S.H., and Sheen, J. (2010). Differential innate immune signalling via Ca(2+) sensor protein kinases. Nature 464, 418-422.

Braam, J., and Davis, R.W. (1990). Rain-, wind-, and touch-induced expression of calmodulin and calmodulin-related genes in Arabidopsis. Cell 60, 357-364.

Cao, H., Glazebrook, J., Clarke, J.D., Volko, S., and Dong, X. (1997). The Arabidopsis NPR1 gene that controls systemic acquired resistance encodes a novel protein containing ankyrin repeats. Cell 88, 57-63.

Cao, Y., Liang, Y., Tanaka, K., Nguyen, C.T., Jedrzejczak, R.P., Joachimiak, A., and Stacey G. (2014). The kinase LYK5 is a major chitin receptor in Arabidopsis and forms a chitin- induced complex with related kinase CERK1. eLife 3.

Casareto, B.E., Suzuki, Y., Okada, K., and Morita, M. (1996). Biological micro-particles in rain water. Geophys. Res. 23, 173-176.

Chehab, E.W., Yao, C., Henderson, Z., Kim, S., and Braam, J. (2012). Arabidopsis touch- induced morphogenesis is jasmonate mediated and protects against pests. Curr. Biol. 22, 701-706.

Chinchilla, D., Zipfel, C., Robatzek, S., Kemmerling, B., Nürnberger, T., Jones, J.D.G., Felix, G., and Boller, T. (2007). A flagellin-induced complex of the receptor FLS2 and BAK1 initiates plant defence. Nature 448, 497-500.

Chini, A., Fonseca, S., Fernández, G., Adie, B., Chico, J.M., Lorenzo, O., García-Casado, G., López-Vidriero, I., Lozano, F.M., Ponce, M.R., et al. (2007). The JAZ family of repressors is the missing link in jasmonate signalling. Nature 448, 666-671.

Clay, R., Enkerli, J., and Fuller, M.J.P. (1994). Induction, Regulation, and Role in Pathogenesis of Appressoria in Monilinia fructicola. Biochem. Cell Biol. 178, 34-47.

Couto, D., and Zipfel, C. (2016). Regulation of pattern recognition receptor signalling in plants. Nat. Rev. Immunol. 16, 537-552.

Denoux, C., Galletti, R., Mammarella, N., Gopalan, S., Werck, D., De Lorenzo, G., Ferrari, S., Ausubel, F.M., and Dewdney, J. (2008). Activation of defense response pathways by OGs and Flg22 elicitors in Arabidopsis seedlings. Mol. Plant 1, 423-445.

Doherty, C.J., Van Buskirk, H.A., Myers, S.J., and Thomashow, M.F. (2009). Roles for Arabidopsis CAMTA transcription factors in cold-regulated gene expression and freezing tolerance. Plant Cell 21, 972-984.

Dong, X., Mindrinos, M., Davis, K.R., and Ausubel, F.M. (1991). Induction of Arabidopsis defense genes by virulent and avirulent Pseudomonas syringae strains and by a cloned avirulence gene. Plant Cell 3, 61-72.

Du, L., Ali, G.S., Simons, K.A., Hou, J., Yang, T., Reddy, A.S., and Poovaiah, B.W. (2009). Ca(2+)/calmodulin regulates salicylic-acid-mediated plant immunity. Nature 457, 1154- 1158.

Fernández-Calvo, P., Chini, A., Fernández-Barbero, G., Chico, J.M., Gimenez-Ibanez, S., Geerinck, J., Eeckhout, D., Schweizer, F., Godoy, M., Franco-Zorrilla, J.M., et al. (2011). The Arabidopsis bHLH transcription factors MYC3 and MYC4 are targets of JAZ repressors and act additively with MYC2 in the activation of jasmonate responses. Plant Cell 23, 701-715.

Finkler, A., Ashery-Padan, R., and Fromm, H. (2007). CAMTAs: calmodulin-binding transcription activators from plants to human. FEBS Lett. 581, 3893-3898.

Fu, Z.Q., and Dong, X. (2013). Systemic acquired resistance: turning local infection into global defense. Annu. Rev. Plant Biol. 64, 839-863.

Galletti, R., Ferrari, S., and De Lorenzo, G. (2011). Arabidopsis MPK3 and MPK6 play different roles in basal and oligogalacturonide- or flagellin-induced resistance against Botrytis cinerea. Plant Physiol. 157, 804-814.

Galon, Y., Nave, R., Boyce, J.M., Nachmias, D., Knight, M.R., and Fromm, H. (2008). Calmodulin-binding transcription activator (CAMTA) 3 mediates biotic defense responses in Arabidopsis. FEBS Lett. 582, 943-948.

Gutschick, V. P. (2002). Biotic and abiotic consequences of differences in leaf structure. New Phytol. 143, 3-18.

Grant, S.R., Fisher, E.J., Chang, J.H., Mole, B.M., and Dangl, J.L. (2006). Subterfuge and manipulation: type III effector proteins of phytopathogenic bacteria. Annu. Rev. Microbiol. 60, 425-449.

Gunn, R., and Kinzer, G.D. (1949). The Terminal Velocity of Fall for Water Droplets in Stagnant Air. J. Atm. Sci. 6, 243-248.

Hartmann, M., Zeier, T., Bernsdorff, F., Reichel-Deland, V., Kim, D., Hohmann, M., Scholten, N., Schuck, S., Bräutigam, A., Hölzel, T., et al. (2018). Flavin Monooxygenase-Generated N-Hydroxypipecolic Acid Is a Critical Element of Plant Systemic Immunity. Cell 173, 456- 469.e416.

Haswell, E.S., Peyronnet, R., Barbier-Brygoo, H., Meyerowitz, E.M., and Frachisse, J.M. (2008). Two MscS homologs provide mechanosensitive channel activities in the Arabidopsis root. Curr. Biol. 18, 730-734.

Haswell, E.S., Phillips, R., and Rees, D.C. (2011). Mechanosensitive channels: what can they do and how do they do it? Structure 19, 1356-1369.

Hiruma, K., Nishiuchi, T., Kato, T., Bednarek, P., Okuno, T., Schulze-Lefert, P., and Takano Y. (2011). Arabidopsis ENHANCED DISEASE RESISTANCE 1 is required for pathogen- induced expression of plant defensins in nonhost resistance, and acts through interference of MYC2-mediated repressor function. Plant J. 67, 980-992.

Huynh, T.-P., and Haick, H. (2019). Learning from an Intelligent Mechanosensing System of Plants. Adv. Mater. Tech. 4, 1800464.

Jiang, X., Hoehenwarter, W., Scheel, D., and Lee, J. (2020). Phosphorylation of the CAMTA3 Transcription Factor Triggers Its Destabilization and Nuclear Export. Plant Physiol. 184, 1056-1071.

Jin, P., Jan, L.Y., and Jan, Y.-N. (2020). Mechanosensitive Ion Channels: Structural Features Relevant to Mechanotransduction Mechanisms. Annu. Rev. of Neurosci. 43, 207-229.

Jones, J.D., and Dangl, J.L. (2006). The plant immune system. Nature 444, 323-329.

Jung, H.W., Tschaplinski, T.J., Wang, L., Glazebrook, J., and Greenberg, J.T. (2009). Priming in systemic plant immunity. Science 324, 89-91.

K. Mendgen, M. Hahn, a., and Deising, H. (1996). Morphogenesis and mechanisms of penetration by plant pathogenic fungi. Annu. Rev. Phytopathol. 34, 367-386.

Kim, Y., Park, S., Gilmour, S.J., and Thomashow, M.F. (2013). Roles of CAMTA transcription factors and salicylic acid in configuring the low-temperature transcriptome and freezing tolerance of Arabidopsis. Plant J. 75, 364-376.

Kim, Y.S., An, C., Park, S., Gilmour, S.J., Wang, L., Renna, L., Brandizzi, F., Grumet, R., and Thomashow, M.F. (2017). CAMTA-Mediated Regulation of Salicylic Acid Immunity Pathway Genes in Arabidopsis Exposed to Low Temperature and Pathogen Infection. Plant Cell 29, 2465-2477.

Kurusu, T., Kuchitsu, K., Nakano, M., Nakayama, Y., and Iida, H. (2013). Plant mechanosensing and Ca2+ transport. Trends plant sci. 18, 227-233.

Lange, M.J., and Lange, T. (2015). Touch-induced changes in Arabidopsis morphology dependent on gibberellin breakdown. Nat. Plants 1, 14025.

Larkin, J.C., Oppenheimer, D.G., Lloyd, A.M., Paparozzi, E.T., and Marks, M.D. (1994). Roles of the GLABROUS1 and TRANSPARENT TESTA GLABRA Genes in Arabidopsis Trichome Development. Plant Cell 6, 1065-1076.

Lebel, E., Heifetz, P., Thorne, L., Uknes, S., Ryals, J., and Ward, E. (1998). Functional analysis of regulatory sequences controlling PR-1 gene expression in Arabidopsis. Plant J. 16, 223-233.

Lee, D., Polisensky, D.H., and Braam, J. (2005). Genome-wide identification of touch- and darkness-regulated Arabidopsis genes: a focus on calmodulin-like and XTH genes. New Phytol. 165, 429-444.

Li, B., Meng, X., Shan, L., and He, P. (2016). Transcriptional Regulation of Pattern- Triggered Immunity in Plants. Cell Host Microbe 19, 641-650.

Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G., and Durbin, R. (2009). The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078-2079.

Li, L., Li, M., Yu, L., Zhou, Z., Liang, X., Liu, Z., Cai, G., Gao, L., Zhang, X., Wang, Y., et al. (2014). The FLS2-Associated Kinase BIK1 Directly Phosphorylates the NADPH Oxidase RbohD to Control Plant Immunity. Cell Host Microbe 15, 329-338.

Lucht, J.M., Mauch-Mani, B., Steiner, H.Y., Metraux, J.P., Ryals, J., and Hohn, B. (2002). Pathogen stress increases somatic recombination frequency in Arabidopsis. Nat. Genet. 30, 311-314.

Machanick, P., and Bailey, T.L. (2011). MEME-ChIP: motif analysis of large DNA datasets. Bioinformatics 27, 1696-1697.

Macho, A.P., and Zipfel, C. (2014). Plant PRRs and the activation of innate immune signaling. Mol. Cell 54, 263-272.

Mackey, D., Holt, B.F., 3rd, Wiig, A., and Dangl, J.L. (2002). RIN4 interacts with Pseudomonas syringae type III effector molecules and is required for RPM1-mediated resistance in Arabidopsis. Cell 108, 743-754.

Madden, L.V. (1997). Effects of rain on splash dispersal of fungal pathogens. Can. J. Plant Pathol. 19, 225-230.

Maere, S., Heymans, K., and Kuiper, M. (2005). BiNGO: a Cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks. Bioinformatics 21, 3448-3449.

Mao, G., Meng, X., Liu, Y., Zheng, Z., Chen, Z., and Zhang, S. (2011). Phosphorylation of a WRKY transcription factor by two pathogen-responsive MAPKs drives phytoalexin biosynthesis in Arabidopsis. Plant Cell 23, 1639-1653.

Matsuura, T., Mori, I.C., Himi, E., and Hirayama, T. (2019). Plant hormone profiling in developing seeds of common wheat (Triticum aestivum L.). Breeding Sci. 69, 601-610.

Melotto, M., Underwood, W., Koczan, J., Nomura, K., and He, S.Y. (2006). Plant stomata function in innate immunity against bacterial invasion. Cell 126, 969-980.

Nawrath, C., and Métraux, J.P. (1999). Salicylic acid induction-deficient mutants of Arabidopsis express PR-2 and PR-5 and accumulate high levels of camalexin after pathogen inoculation. Plant Cell 11, 1393-1404.

Nomoto, M., Skelly, M.J., Itaya, T., Mori, T., Suzuki, T., Matsushita, T., Tokizawa, M., Kuwata, K., Mori, H., Yamamoto, Y.Y., et al. (2021). Suppression of MYC transcription activators by the immune cofactor NPR1 fine-tunes plant immune responses. Cell Rep. 37, 110125.

Palmero, D., Rodríguez, J.M., de Cara, M., Camacho, F., Iglesias, C., and Tello, J.C. (2011). Fungal microbiota from rain water and pathogenicity of Fusarium species isolated from atmospheric dust and rainfall dust. J. Ind. Microbiol. Biotechnol. 38, 13-20.

Pandey, S.P., and Somssich, I.E. (2009). The role of WRKY transcription factors in plant immunity. Plant Physiol. 150, 1648-1655.

Park, S.W., Kaimoyo, E., Kumar, D., Mosher, S., and Klessig, D.F. (2007). Methyl salicylate is a critical mobile signal for plant systemic acquired resistance. Science 318, 113-116.

Prasanth. M, N.R., Gothandam K.M, Kathikeyan Sivamangala and Shanthini T. (2015). Pseudomonas Syringae: An Overview and its future as a “Rain Making Bacteria”. Int. Res. J. Biol. Sci. 4(2), 70-77.

Quinlan, A.R., and Hall, I.M. (2010). BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841-842.

Robert-Seilaniantz, A., Grant, M., and Jones, J.D.G. (2011). Hormone Crosstalk in Plant Disease and Defense: More Than Just JASMONATE-SALICYLATE Antagonism. Annu. Rev. Phytopathol. 49, 317-343.

Scherzer, S., Federle, W., Al-Rasheid, K.A.S., and Hedrich, R. (2019). Venus flytrap trigger hairs are micronewton mechano-sensors that can detect small insect prey. Nat. Plants 5, 670-675.

Schwartz, H.F., Otto, K.L., and Gent, D.H. (2003). Relation of Temperature and Rainfall to Development of Xanthomonas and Pantoea Leaf Blights of Onion in Colorado. Plant Dis. 87, 11-14.

Seybold, H., Trempel, F., Ranf, S., Scheel, D., Romeis, T., and Lee, J. (2014). Ca2+ signalling in plant immune response: from pattern recognition receptors to Ca2+ decoding mechanisms. New Phytol. 204, 782-790.

Sorauer, P., Dorrance, F., Lindau, G., and Reh, L. (1914). Manual of plant diseases, 3d ed.. 1. The Record press 22, 1922

Spoel, S.H., Mou, Z., Tada, Y., Spivey, N.W., Genschik, P., and Dong, X. (2009). Proteasome-mediated turnover of the transcription coactivator NPR1 plays dual roles in regulating plant immunity. Cell 137, 860-872.

Su, J., Yang, L., Zhu, Q., Wu, H., He, Y., Liu, Y., Xu, J., Jiang, D., and Zhang, S. (2018). Active photosynthetic inhibition mediated by MPK3/MPK6 is critical to effector-triggered immunity. PLoS Biol. 16, e2004122.

Suda, H., Mano, H., Toyota, M., Fukushima, K., Mimura, T., Tsutsui, I., Hedrich, R., Tamada, Y., and Hasebe, M. (2020). Calcium dynamics during trap closure visualized in transgenic Venus flytrap. Nat. Plants 6, 1219-1224.

Sukharev, S.I., Blount, P., Martinac, B., Blattner, F.R., and Kung, C. (1994). A large- conductance mechanosensitive channel in E. coli encoded by mscL alone. Nature 368, 265-268.

Syeda, R. (2021). Physiology and Pathophysiology of Mechanically Activated PIEZO Channels. Annu. Rev. Neurosci. 44, 383-402.

Tada, Y., Spoel, S.H., Pajerowska-Mukhtar, K., Mou, Z., Song, J., Wang, C., Zuo, J., and Dong, X. (2008). Plant immunity requires conformational changes of NPR1 via S- nitrosylation and thioredoxins. Science 321, 952-956.

Tang, J., Han, Z., Sun, Y., Zhang, H., Gong, X., and Chai, J. (2015). Structural basis for recognition of an endogenous peptide by the plant receptor kinase PEPR1. Cell Res. 25, 110-120.

Tena, G., Boudsocq, M., and Sheen, J. (2011). Protein kinase signaling networks in plant innate immunity. Curr. Opin. Plant Biol. 14, 519-529.

Thorvaldsdottir, H., Robinson, J.T., and Mesirov, J.P. (2013). Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Brief Bioinform. 14, 178-192.

Tian, L., Hires, S.A., Mao, T., Huber, D., Chiappe, M.E., Chalasani, S.H., Petreanu, L., Akerboom, J., McKinney, S.A., Schreiter, E.R., et al. (2009). Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators. Nat. Methods 6, 875- 881.

Toyota, M., Spencer, D., Sawai-Toyota, S., Jiaqi, W., Zhang, T., Koo, A.J., Howe, G.A., and Gilroy, S. (2018). Glutamate triggers long-distance, calcium-based plant defense signaling. Science 361, 1112-1115.

Tsuda, K., and Somssich, I.E. (2015). Transcriptional networks in plant immunity. New Phytol. 206, 932-947.

Van Moerkercke, A., Duncan, O., Zander, M., Šimura, J., Broda, M., Vanden Bossche, R., Lewsey, M.G., Lama, S., Singh, K.B., Ljung, K., et al. (2019). A MYC2/MYC3/MYC4- dependent transcription factor network regulates water spray-responsive gene expression and jasmonate levels. Proc. Natl Acad. Sci. USA 116, 23345-23356.

Vásquez, V., Sotomayor, M., Cordero-Morales, J., Schulten, K., and Perozo, E. (2008). A Structural Mechanism for MscS Gating in Lipid Bilayers. Science 321, 1210-1214.

Wang, K., Yang, Z., Qing, D., Ren, F., Liu, S., Zheng, Q., Liu, J., Zhang, W., Dai, C., Wu, M., et al. (2018). Quantitative and functional posttranslational modification proteomics reveals that TREPH1 plays a role in plant touch-delayed bolting. Proc. Natl Acad. Sci. USA 115, E10265-E10274.

Wang, W., Barnaby, J.Y., Tada, Y., Li, H., Tor, M., Caldelari, D., Lee, D.U., Fu, X.D., and Dong, X. (2011). Timing of plant immune responses by a central circadian regulator. Nature 470, 110-114.

Wit, P.J.G.M.d. (1992). Molecular Characterization of Gene-For-Gene Systems in Plant- Fungus Interactions and the Application of Avirulence Genes in Control of Plant Pathogens. Annu. Rev. Phytopathol. 30, 391-418.

Xia, Y., Gao, Q.M., Yu, K., Lapchyk, L., Navarre, D., Hildebrand, D., Kachroo, A., and Kachroo, P. (2009). An intact cuticle in distal tissues is essential for the induction of systemic acquired resistance in plants. Cell Host Microbe 5, 151-165.

Xia, Y., Yu, K., Navarre, D., Seebold, K., Kachroo, A., and Kachroo, P. (2010). The glabra1

mutation affects cuticle formation and plant responses to microbes. Plant Physiol. 154, 833-846.

Xiao, K., Mao, X., and Lin, Y. (2016). Trichome, a Functional Diversity Phenotype in Plant. Mol. Biol. 6, 1.

Xin, X.F., Nomura, K., Aung, K., Velasquez, A.C., Yao, J., Boutrot, F., Chang, J.H., Zipfel, C., and He, S.Y. (2016). Bacteria establish an aqueous living space in plants crucial for virulence. Nature 539, 524-529.

Xu, Y., Berkowitz, O., Narsai, R., De Clercq, I., Hooi, M., Bulone, V., Van Breusegem, F., Whelan, J., and Wang, Y. (2019). Mitochondrial function modulates touch signalling in Arabidopsis thaliana. Plant J. 97, 623-645.

Yamaguchi, N., Winter, C.M., Wu, M.F., Kwon, C.S., William, D.A., and Wagner, D. (2014). PROTOCOLS: Chromatin Immunoprecipitation from Arabidopsis Tissues. Arabidopsis Book 12, e0170.

Yamamoto, Y.Y., Ichida, H., Matsui, M., Obokata, J., Sakurai, T., Satou, M., Seki, M., Shinozaki, K., and Abe, T. (2007). Identification of plant promoter constituents by analysis of local distribution of short sequences. BMC Genomics 8, 67.

Yamanaka, T., Nakagawa, Y., Mori, K., Nakano, M., Imamura, T., Kataoka, H., Terashima, A., Iida, K., Kojima, I., Katagiri, T., et al. (2010). MCA1 and MCA2 That Mediate Ca2+ Uptake Have Distinct and Overlapping Roles in Arabidopsis. Plant Physiol. 152, 1284- 1296.

Yang, Y., Sun, T., Xu, L., Pi, E., Wang, S., Wang, H., and Shen, C. (2015). Genome-wide identification of CAMTA gene family members in Medicago truncatula and their expression during root nodule symbiosis and hormone treatments. Front. Plant Sci. 6, 459.

Yoshimura, K., Iida, K., and Iida, H. (2021). MCAs in Arabidopsis are Ca2+-permeable mechanosensitive channels inherently sensitive to membrane tension. Nat. Commun. 12, 6074.

Zhang, Y., Liu, T., Meyer, C.A., Eeckhoute, J., Johnson, D.S., Bernstein, B.E., Nusbaum, C., Myers, R.M., Brown, M., Li, W., et al. (2008). Model-based Analysis of ChIP-Seq (MACS). Genome Biol. 9, R137.

Zhou, L.H., Liu, S.B., Wang, P.F., Lu, T.J., Xu, F., Genin, G.M., and Pickard, B.G. (2017). The Arabidopsis trichome is an active mechanosensory switch. Plant Cell Environ. 40, 611-621.

Zhu, J.K. (2016). Abiotic Stress Signaling and Responses in Plants. Cell 167, 313-324.

Zipfel, C., Kunze, G., Chinchilla, D., Caniard, A., Jones, J.D.G., Boller, T., and Felix, G. (2006). Perception of the Bacterial PAMP EF-Tu by the Receptor EFR Restricts Agrobacterium-Mediated Transformation. Cell 125, 749-760.

Zipfel, C., Robatzek, S., Navarro, L., Oakeley, E.J., Jones, J.D., Felix, G., and Boller, T. (2004). Bacterial disease resistance in Arabidopsis through flagellin perception. Nature 428, 764-767.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る