リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Controlling macroscale cell alignment in self-organized cell sheets by tuning the microstructure of adhesion-limiting micromesh scaffolds」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Controlling macroscale cell alignment in self-organized cell sheets by tuning the microstructure of adhesion-limiting micromesh scaffolds

Okeyo, Kennedy Omondi Kibe, Yoshikiyo Adachi, Taiji 京都大学 DOI:10.1016/j.mtadv.2021.100194

2021.12

概要

In vivo tissues, including the cardiac, skeletal muscles, tendon and ligaments display characteristic alignment property which is important for their mechanical property and functionality. Mimicking this alignment property is critical to the realization of physiologically relevant cell sheets for potential application in the regeneration of aligned in vivo tissues. In this study, we aimed to achieve fabrication of aligned cell sheets by harnessing the ability of cells to sense and respond to geometrical cues in their adhesion microenvironment. We demonstrate that macroscale cell alignment in cell sheets formed by C2C12 cells, a mouse myoblast cell line, on adhesion limiting microstructured mesh scaffolds depends on the shape of the scaffold microstructure. Specifically, while square meshes produced cell sheets with random orientation, diamond meshes yielded anisotropic cell sheets with cells aligned uniaxially along the major axis of the diamond shape. Moreover, alignment intensity was found to increase concomitantly with the acuteness of the diamond shape, illustrating alignment dependency on mesh shape anisotropy. Remarkably, myotubes derived from aligned C2C12 cells also displayed a similar alignment trend, demonstrating the robustness of our approach. Taken together, the present study demonstrates the potential to control macroscale cell alignment in self-organized cell sheets by tuning the shape of the scaffold microstructure. Thus, insights from this study could be relevant to the design of instructive scaffolds for fabricating aligned cell sheets for potential application not only in regenerative medicine, but also in developing muscle constructs for toxicity assays.

この論文で使われている画像

参考文献

[1] M. Kawamura, S. Miyagawa, K. Miki, A. Saito, S. Fukushima, T. Higuchi, T. Kawamura, T. Kuratani, T. Daimon, T. Shimizu, T. Okano, Y. Sawa, Feasibility, safety, and therapeutic efficacy of human induced pluripotent stem cellderived cardiomyocyte sheets in a porcine ischemic cardiomyopathy model, Circulation 126 (11_suppl_1) (2012) S29eS37.

[2] S. Masuda, T. Shimizu, M. Yamato, T. Okano, Cell sheet engineering for heart tissue repair, Adv. Drug Deliv. Rev. 60 (2) (2008) 277e285.

[3] B. Venugopal, S.J. Shenoy, S. Mohan, P.R. Anil Kumar, T.V. Kumary, Bioengineered corneal epithelial cell sheet from mesenchymal stem cellsda functional alternative to limbal stem cells for ocular surface reconstruction, J. Biomed. Mater. Res. B Appl. Biomater. 108 (3) (2020) 1033e1045.

[4] K. Nishida, M. Yamato, Y. Hayashida, K. Watanabe, K. Yamamoto, E. Adachi, S. Nagai, A. Kikuchi, N. Maeda, H. Watanabe, T. Okano, Y. Tano, Corneal reconstruction with tissue-engineered cell sheets composed of autologous oral mucosal epithelium, N. Engl. J. Med. 351 (12) (2004) 1187e1196.

[5] H. Thorp, K. Kim, M. Kondo, T. Maak, D.W. Grainger, T. Okano, Trends in articular cartilage tissue engineering: 3D mesenchymal stem cell sheets as candidates for engineered hyaline-like cartilage, Cells 10 (3) (2021) 643.

[6] H. Sekine, T. Shimizu, I. Dobashi, K. Matsuura, N. Hagiwara, M. Takahashi, E. Kobayashi, M. Yamato, T. Okano, Cardiac cell sheet transplantation improves damaged heart function via superior cell survival in comparison with dissociated cell injection, Tissue Eng. 17 (23e24) (2011) 2973e2980.

[7] S. Miyagawa, Y. Sawa, Building a new strategy for treating heart failure using Induced Pluripotent Stem Cells, J. Cardiol. 72 (6) (2018) 445e448.

[8] A. Valentín, J.D. Humphrey, Modeling effects of axial extension on arterial growth and remodeling, Med. Biol. Eng. Comput. 47 (9) (2009) 979e987.

[9] J. Yang, M. Yamato, C. Kohno, A. Nishimoto, H. Sekine, F. Fukai, T. Okano, Cell sheet engineering: recreating tissues without biodegradable scaffolds, Biomaterials 26 (33) (2005) 6415e6422.

[10] J. Kobayashi, A. Kikuchi, T. Aoyagi, T. Okano, Cell sheet tissue engineering: cell sheet preparation, harvesting/manipulation, and transplantation, J. Biomed. Mater. Res. 107 (5) (2019) 955e967.

[11] J. Meyle, K. Gültig, M. Brich, H. Hammerle, W. Nisch, Contact guidance of € fibroblasts on biomaterial surfaces, J. Mater. Sci. Mater. Med. 5 (6) (1994) 463e466.

[12] C.H. Lee, H.J. Shin, I.H. Cho, Y.-M. Kang, I.A. Kim, K.-D. Park, J.-W. Shin, Nanofiber alignment and direction of mechanical strain affect the ECM production of human ACL fibroblast, Biomaterials 26 (11) (2005) 1261e1270.

[13] B. Zhu, Q. Lu, J. Yin, J. Hu, Z. Wang, Alignment of osteoblast-like cells and cellproduced collagen matrix induced by nanogrooves, Tissue Eng. 11 (5e6) (2005) 825e834.

[14] S.Y. Chew, R. Mi, A. Hoke, K.W. Leong, Aligned proteinepolymer composite fibers enhance nerve regeneration: a potential tissue-engineering platform, Adv. Funct. Mater. 17 (8) (2007) 1288e1296.

[15] H. Takahashi, M. Nakayama, K. Itoga, M. Yamato, T. Okano, Micropatterned thermoresponsive polymer brush surfaces for fabricating cell sheets with well-controlled orientational structures, Biomacromolecules 12 (5) (2011) 1414e1418.

[16] H. Takahashi, T. Shimizu, M. Nakayama, M. Yamato, T. Okano, The use of anisotropic cell sheets to control orientation during the self-organization of 3D muscle tissue, Biomaterials 34 (30) (2013) 7372e7380.

[17] G. Grenier, M. Remy-Zolghadri, D. Larouche, R. Gauvin, K. Baker, F. Bergeron, D. Dupuis, E. Langelier, D. Rancourt, F.A. Auger, L. Germain, Tissue reorganization in response to mechanical load increases functionality, Tissue Eng. 11 (1e2) (2005) 90e100.

[18] J. Homma, S. Shimizu, H. Sekine, K. Matsuura, T. Shimizu, A novel method to align cells in a cardiac tissue-like construct fabricated by cell sheet-based tissue engineering, J. Tissue Eng. Reg. Med. 14 (7) (2020) 944e954.

[19] A. Ovsianikov, A. Khademhosseini, V. Mironov, The synergy of scaffold-based and scaffold-free tissue engineering strategies, Trends Biotechnol. 36 (4) (2018) 348e357.

[20] K.O. Okeyo, O. Kurosawa, H. Oana, H. Kotera, M. Washizu, Minimization of cell-substrate interaction using suspended microstructured meshes initiates cell sheet formation by self-assembly organization, Biomed. Phy. Eng. Express 2 (6) (2016), 065019.

[21] K.O. Okeyo, O. Kurosawa, S. Yamazaki, H. Oana, H. Kotera, H. Nakauchi, M. Washizu, Cell adhesion minimization by a novel mesh culture method mechanically directs trophoblast differentiation and self-assembly organization of human pluripotent stem cells, Tissue Eng. C Methods 21 (10) (2015) 1105e1115.

[22] Y. Ando, K.O. Okeyo, T. Adachi, Modulation of adhesion microenvironment using mesh substrates triggers self-organization and primordial germ cell-like differentiation in mouse ES cells, APL Bioengineering 3 (1) (2019), 016102.

[23] R. Yanaru, K.O. Okeyo, O. Kurosawa, H. Oana, H. Kotera, M. Washizu, Control of cell orientation in mesenchymal cell sheets fabricated using microstructured mesh sheet, in: 2014 International Symposium on Micro-NanoMechatronics and Human Science (MHS), 2014, pp. 1e5.

[24] T. Asano, T. Ishizua, H. Yawo, Optically controlled contraction of photosensitive skeletal muscle cells, Biotechnol. Bioeng. 109 (1) (2012) 199e204.

[25] Z. Püspoki, M. Storath, D. Sage, M. Unser, Transforms and operators for € directional bioimage analysis: a survey, Adv. Anat. Embryol. Cell Biol. 219 (2016) 69e93.

[26] A. Brugues, E. Anon, V. Conte, J.H. Veldhuis, M. Gupta, J. Colombelli, J.J. Mu noz, ~ G.W. Brodland, B. Ladoux, X. Trepat, Forces driving epithelial wound healing, Nat. Phys. 10 (9) (2014) 683e690.

[27] A.B.C. Buskermolen, T. Ristori, D. Mostert, M.C. van Turnhout, S.S. Shishvan, S. Loerakker, N.A. Kurniawan, V.S. Deshpande, C.V.C. Bouten, Cellular contact guidance emerges from gap avoidance, Cell Rep Phys Sci 1 (5) (2020), 100055- 100055.

[28] A.B.C. Buskermolen, H. Suresh, S.S. Shishvan, A. Vigliotti, A. DeSimone, N.A. Kurniawan, C.V.C. Bouten, V.S. Deshpande, Entropic forces drive cellular contact guidance, Biophys. J. 116 (10) (2019) 1994e2008.

[29] Y. Li, G. Huang, X. Zhang, L. Wang, Y. Du, T.J. Lu, F. Xu, Engineering cell alignment in vitro, Biotechnol. Adv. 32 (2) (2014) 347e365.

[30] S.Y. Chew, R. Mi, A. Hoke, K.W. Leong, The effect of the alignment of electrospun fibrous scaffolds on Schwann cell maturation, Biomaterials 29 (6) (2008) 653e661.

[31] M. Werner, N.A. Kurniawan, C.V.C. Bouten, Cellular geometry sensing at different length scales and its implications for scaffold design, Materials 13 (4) (2020) 963.

[32] A. Haupt, N. Minc, How cells sense their own shape e mechanisms to probe cell geometry and their implications in cellular organization and function, J. Cell Sci. 131 (6) (2018) jcs214015.

[33] M. Murrell, P.W. Oakes, M. Lenz, M.L. Gardel, Forcing cells into shape: the mechanics of actomyosin contractility, Nat. Rev. Mol. Cell Biol. 16 (8) (2015) 486e498.

[34] K.D. Costa, E.J. Lee, J.W. Holmes, Creating alignment and anisotropy in engineered heart tissue: role of boundary conditions in a model threedimensional culture system, Tissue Eng. 9 (4) (2003) 567e577.

[35] J. Kim, K. Ishikawa, J. Sunaga, T. Adachi, Uniaxially fixed mechanical boundary condition elicits cellular alignment in collagen matrix with induction of osteogenesis, Sci. Rep. 11 (1) (2021) 9009.

[36] M. Ravi, V. Paramesh, S.R. Kaviya, E. Anuradha, F.D.P. Solomon, 3D cell culture systems: advantages and applications, J. Cell. Physiol. 230 (1) (2015) 16e26.

[37] F. Pampaloni, E.G. Reynaud, E.H.K. Stelzer, The third dimension bridges the gap between cell culture and live tissue, Nat. Rev. Mol. Cell Biol. 8 (10) (2007) 839e845.

[38] M. Kapałczynska, T. Kolenda, W. Przyby ła, M. Zaja˛czkowska, A. Teresiak, V. Filas, M. Ibbs, R. Blizniak, Ł. Łuczewski, K. Lamperska, 2D and 3D cell cultures - a comparison of different types of cancer cell cultures, Arch. Med. Sci. 14 (4) (2018) 910e919.

[39] C. Williams, Y. Tsuda, B.C. Isenberg, M. Yamato, T. Shimizu, T. Okano, J.Y. Wong, Aligned cell sheets grown on thermo-responsive substrates with microcontact printed protein patterns, Adv. Mater. 21 (21) (2009) 2161e2164.

[40] S.J. Kim, H.R. Cho, K.W. Cho, S. Qiao, J.S. Rhim, M. Soh, T. Kim, M.K. Choi, C. Choi, I. Park, N.S. Hwang, T. Hyeon, S.H. Choi, N. Lu, D.-H. Kim, Multifunctional cell-culture platform for aligned cell sheet monitoring, transfer printing, and therapy, ACS Nano 9 (3) (2015) 2677e2688.

[41] R.J. Petrie, A.D. Doyle, K.M. Yamada, Random versus directionally persistent cell migration, Nat. Rev. Mol. Cell Biol. 10 (8) (2009) 538e549.

[42] K. Chen, A. Vigliotti, M. Bacca, R.M. McMeeking, V.S. Deshpande, J.W. Holmes, Role of boundary conditions in determining cell alignment in response to stretch, Proc. Natl. Acad. Sci. Unit. States Am. 115 (5) (2018) 986e991.

参考文献をもっと見る