リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「3-D isotropic and anisotropic structure in the lowermost mantle beneath the circum-Pacific inferred using waveform inversion : Constraints on geodynamics above the core-mantle boundary」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

3-D isotropic and anisotropic structure in the lowermost mantle beneath the circum-Pacific inferred using waveform inversion : Constraints on geodynamics above the core-mantle boundary

鈴木, 裕輝 東京大学 DOI:10.15083/0002004733

2022.06.22

概要

In this study, we extended our group’s localized waveform inversion methods to infer 3-D transverse isotropic structure with a vertical symmetric axis (VTI), applied it to a large dataset to infer the large-scale heterogeneity in a broad area, obtained new data from seismic array observations, and confirmed that the method used in this study is sufficiently robust to infer 3-D structure.

The lowermost several hundred km of the Earth's mantle immediately above the core-mantle boundary (CMB), commonly called the D″ (Dee double prime) region, is the thermal boundary layer (TBL) of mantle convection and play a major role in governing the modality of convection in the mantle. The D″ region especially beneath past and present subduction zones provides clues for understanding the dynamics of the Earthʼs mantle, because thermally and chemically distinct slab materials can perturb the temperature and mantle flow. Hence, it is important to study (i) whether primordial material exists in D″; (ii) how thermal and chemical heterogeneity has developed in D″ especially beneath subduction zone in order to understand the thermal and chemical evolution of the Earth.

Although previous tomographic studies found a large low S-velocity (seismic shear wave velocity) provinces (LLSVPs) in the lowermost mantle beneath the Pacific, due to a lack of resolution it remains unclear whether the LLSVP consists of clusters of small-scale low-velocity anomalies or a large-scale anomaly. We recently deployed a seismic array in Thailand (TSAR) which provides a dataset with wide azimuthal coverage at the western Pacific LSLVP. We assemble the new dataset including waveforms recorded by TSAR, conduct waveform inversion for the 3-D shear wave velocity structure, and find high-velocity anomalies extending vertically to a height of ~400 km above the CMB beneath the Philippine Sea and small-scale low-velocity anomalies with a diameter of ~300 km at the CMB beneath New Guinea. As the locations of the high-velocity anomalies are consistent with the past Izanagi-plate subduction boundary, the high-velocity anomalies can be interpreted as the cold subducted slab remnant. With a diameter of ~300 km, low-velocity anomalies can be interpreted as a small-scale thermal-plume cluster which is explained by mainly thermal effect, rather than a part of thermo-chemical pile, although we cannot rule out the possibility that the low-velocity anomalies are small-scale chemical anomalies. Chemical heterogeneities resulting from basalt entrained to the base of the mantle by past subduction or as longlived (~4 Gyr) remnants of chemical differentiation in the early Earth, can be expected at the CMB. However, the amplitude of low S-velocity anomalies in our inferred model suggest that chemical composition anomalies with an impurity content of 5–6 percent produce at most ~+1 percent density anomaly. This implies that chemical anomalies could be entrained by the convection and thus could not survive in the lowermost mantle about 4 Gyr. We therefore conclude that: (1) the shape of the low-velocity anomalies in our inferred model beneath the western Pacific appear to be plume clusters rather than a largescale anomaly such as a thermo-chemical pile; (2) while the LLSVP may be due to the chemical effects, the inferred S-velocity structure around the edge of the western Pacific LLSVP found by this study is likely to be explained by mainly thermal effects.

Since the D″ region is considered to be destination of chemical ly and thermally distinct cold subducted oceanic lithosphere (slab) which interacts with the hot TBL above the CMB and cause the disturbance of temperature and flow in the lowermost mantle, we conduct waveform inversion to infer the isotropic and anisotropic S-velocity structure of D″ beneath the northern Pacific in order to understand the thermal and chemical evolution processes of the D″ region beneath the subduction zone. We analyzed not only transverse but also radial component of a large number of waveforms recorded by full USArray broadband seismic stations in the US during 2004–2015. Inferred 3-D isotropic S-velocity structure shows high-velocity anomalies possibly corresponding to subducted Izanagi slab, which reach the CMB, and low-velocity anomalies continuous from the CMB to 400 km above the CMB possibly associated with the hot material of the thermal boundary layer immediately above the CMB. We then conduct waveform inversion to infer the 3-D anisotropic structure within D″ beneath the Northern Pacific in order to infer the flow direction at the lowermost mantle. The observed positive and negative perturbation of anisotropic parameter (δξ) is corresponding to horizontal and vertical flow in D″, respectively, taking into account the recent progress of mineral physics. Hence, it is found that paleo-Izanagi plate subducted ~240 Ma reaches the lowermost mantle, lies almost horizontally, and is inducing vertical upwelling flow of the hot material of the thermal boundary layer.

Our inferred seismic structure would suggest that:

(i) the LLSVP (at least the western part of the Pacific LLSVP) consists of an aggregate of smaller-scale low-velocity could be explained by mainly thermal effect, suggesting that the existence of low viscosity material in D″ beneath the western Pacific and the vigorous small-scale convection;

(ii) the slab sinks into the lowermost mantle beneath the northern Pacific with a low dip angle. This implies that segregation of basalt from depleted material could occur in this ~100 Myr, suggesting that the lowermost mantle beneath the subduction zone could be chemically distinct due to the accumulation of the basaltic materials enriched in the incompatible elements and radiogenic elements.

参考文献

Akaike, H. (1977). An extension of the method of maximum likelihood and the stein’s problem. Annals of the Insitute of Statistical Mathematics, 29, 153-164.

Aki, K., Christoffersson, A., & Husebye, E. S. (1977). Determination of the threedimensional seismic structure of the lithosphere. Journal of Geophysical Research, 82, 277-296.

Amaru, M. L. (2007). Global travel time tomography with 3-D reference models, Geologica Ultraiectina, 274.

Borgeaud, A. F. E., Konishi, K., Kawai, K., & Geller, R. J. (2016). Finite frequency effects on apparent S-wave splitting in the D″ layer: comparison between ray theory and full-wave synthetics. Geophysical Journal International, 207, 12-28.

Borgeaud, A. F. E., Konishi, K., Kawai, K., & Geller, R. J. (2017). Imaging paleoslabs in the D″ layer beneath Central America and the Caribbean using seismic waveform inversion. Science Advances, 3(11), e1602700. https://doi.org/10.1126/sciadv.1602700

Borgeaud, A. F. E., Kawai, K., & Geller, R. J. (2019). 3-D S-velocity structure of the mantle transition zone beneath Central America and the Gulf of Mexico using waveform inversion. Journal of Geophysical Research: Solid Earth, 124. https://doi.org/10.1029/ 2018JB016924

Boschi, L. & Dziewonski, A. M. (2000). Whole Earth tomography from delay times of P, PcP, and PKP phases: lateral heterogeneities in the outer core or radial anisotropy in the mantle? Journal of Geophysical Research: Solid Earth, 105, 13675–13696. https://doi.org/10.1029/2000JB900059

Bower, D. J., Gurnis, M. & Sun, D. (2013). Dynamic origins of seismic wave speed variation in D″. Physics of the Earth and Planetary Interiors, 214, 74-86. https://doi.org/10.1016/j.pepi.2012.10.004

Bozdağ, E., Peter, D., Lefebvre, M., Komatitsch, D., Tromp, J., Hill, J., Podhorszki, N., & Pugmire, D. (2016). Global adjoint tomography: First-generation model. Geophysical Journal International, 207, 1739-1766. https://doi.org/10.1093/gji/ggw356

Brown, J. M., & Shankland, T. J. (1981). Thermodynamic parameters in the Earth as determined from seismic profiles. Geophysical Journal of the Royal Astronomical Society, 66, 579-596. https://doi.org/10.1111/j.1365-246X.1981.tb04891.x

Bull, A. L., McNamara, A. K., & Ritsema, J. (2009). Synthetic tomography of plume clusters and thermochemical piles. Earth and Planetary Science Letters, 278, 152-162. https://doi.org/10.1016/j.epsl.2008.11.018

Bullen, K. E. (1949). Compressibility-pressure hypothesis and the Earth's interior. Geophysical Journal International, 5, 335-368.

Bunge, H.-P., Richards, M. A., Lithgow-Bertelloni, C., Baumgardner, J. R., Grand, S. P., & Romanowicz, B. A. (1998). Time scales and heterogeneous structure in geodynamic Earth models. Science, 280, 91-95. https://doi.org/10.1126/science.280.5360.91

Chiao, L. Y., & Kuo, B. Y. (2001). Multiscale seismic tomography. Geophysical Journal International, 145, 517-527. https://doi.org/10.1046/j.0956- 540x.2001.01403.x

Chen, P., Zhao, L., & Jordan, T. H. (2007). Full 3D tomography for the crustal structure of the Los Angeles region. Bulletin of the Seismological Society of America, 97, 1094-1120. https://doi.org/10.1785/0120060222

Colombi, A., Nissen-meyer, T., Boschi, L., & Giardini, D. (2014). Seismic waveform inversion for core–mantle boundary topography. Geophysical Journal International, 198, 55-71. https://doi.org/10.1093/gji/ggu112

Cottaar, S., & Romanowicz, B. (2013). Observations of changing anisotropy across the southern margin of the African LLSVP. Geophysical Journal International, 195, 1184-1195. https://doi.org/10.1093/gji/ggt285

Cottaar, S., Heister, T., Rose, I., & Unterborn, C. (2014). BurnMan: A lower mantle mineral physics toolkit. Geochemistry, Geophysics, Geosystems, 15, 1164-1179. https://doi.org/10.4088/JCP .11m07343

Cummins, P. R., Geller, R. J., Hatori, T. & Takeuchi, N. (1994a). DSM complete synthetic seismograms: SH, spherically symmetric, case. Geophysical Research Letters, 21, 533-536. https://doi.org/10.1029/GL021i007p00533

Cummins, P. R., Geller, R. J. & Takeuchi, N. (1994b). DSM complete synthetic seismograms: P-SV, spherically symmetric, case. Geophysical Research Letters, 21, 1663-1666. https://doi.org/10.1029/94GL01281

Cummins, P. R., Takeuchi, N. & Geller, R. J. (1997). Computation of complete synthetic seismograms for laterally heterogeneous models using the Direct Solution Method. Geophysical Journal International, 130, 1-16. https://doi.org/10.1111/j.1365-246X.1997.tb00983.x

Dahlen, F. A. & Tromp, J. (1998). Theoretical Global Seismology, Princeton Univ. Press.

Davies, D. R., Goes, S., Schuberth, B. S. A., Bunge, H. P., & Ritsema, J. (2012). Reconciling dynamic and seismic models of Earth’s lower mantle: the dominant role of thermal heterogeneity. Earth and Planetary Science Letters, 353-354, 253-269. https://doi.org/10.1016/j.epsl.2012.08.016

Deschamps, F., Kaminski, E. & Tackley, P. (2011). A deep mantle origin for the primitive signature of ocean island basalt. Nature Geoscience, 4, 879-882. https://doi.org/10.1038/ngeo1295

Dobson, D. P., Miyajima, N., Nestola, F., Alvaro, M., Casati, N., Liebske, C., Wood, I. G., & Walker, A. M. (2013). Strong inheritance of texture between perovskite and post-perovskite in the D″ layer. Nature Geoscience, 6, 575-578. http://dx.doi.org/10.1038/NGEO1844.

Domeier, M., Doubrovine, P. V., Torsvik, T. H., Spakman, W., & Bull, A. L. (2016). Global correlation of lower mantle structure and past subduction. Geophysical Research Letters, 43, 4945-4953. https://doi.org/10.1002/2016GL068827

Dziewonski, A. M. (1984). Mapping the lower mantle, Determination of lateral heterogeneity in P velocity up to degree and order 6. Journal of Geophysical Research, 89, 5929-5952. https://doi.org/10.1029/JB089iB07p05929

Dziewonski, A. M., & Anderson, D. L. (1981). Preliminary reference Earth model. Physics of the Earth and Planetary Interiors, 25, 297-356. https://doi.org/10.1016/0031-9201(81)90046-7

Dziewonski, A. M., Hager, B. H., & O’Connell, R. J. (1977). Large-scale heterogeneities in the lower mantle. Journal of Geophysical Research, 82, 239-255.

Fichtner, A., Kennett, B. L. N., Igel, H., & Bunge, H.-P. (2008). Theoretical background for continental and global scale full-waveform inversion in the timefrequency domain. Geophysical Journal International, 175, 665-685.

Fichtner, A., Kennett, B. L. N., Igel, H., & Bunge, H.-P. (2009). Full waveform tomography for upper-mantle structure in the Australasian region using adjoint methods. Geophysical Journal International, 179, 1703-1725.

Fichtner, A., Kennett, B. L. N., Igel, H., & Bunge, H.-P. (2010). Full waveform tomography for radially anisotropic structure: new insights into present and past states of the Australasian upper mantle. Earth and Planetary Science Letters, 290, 270-280.

French, S. W., & Romanowicz, B. A. (2014). Whole-mantle radially anisotropic Svelocity structure from spectral-element waveform tomography. Geophysical Journal International, 199, 1303-1327. https://doi.org/10.1093/gji/ggu334

French, S. W., & Romanowicz, B. A. (2015). Broad plumes rooted at the base of the Earth's mantle beneath major hotspots, Nature, 525, 95-99. https://doi.org/10.1038/nature14876

Fuji N., Kawai K., & Geller R. J. (2010). A methodology for inversion of broadband seismic waveforms for elastic and anelastic structure and its application to the mantle transition zone beneath the northwestern pacific. Physics of the Earth and Planetary Interiors, 180, 118-137. https://doi.org/10.1016/j.pepi.2009.10.004

Fukao, Y., Obayashi, M., Inoue, H., & Nenbai, M. (1992). Subducting slabs stagnant in the mantle transition zone. Journal of Geophysical Research, 97, 4809–4822. https://doi.org/10.1029/91JB02749

Fukao, Y., Widiyantoro S. & Obayashi M. (2001). Stagnant slabs in the upper and lower mantle transition region. Reviews of Geophysics, 39, 291-323. https://doi.org/10.1029/1999RG000068

Garnero, E. J. (2000). Heterogeneity of the lowermost mantle. Annual Review of the Earth and Planetary Sciences, 28, 509-537. https://doi.org/10.1146/annurev.earth.28.1.509

Garnero, E. J., Lay, T., & McNamara, A. (2007). Implications of lower mantle structural heterogeneity for existence and nature of whole mantle plumes, In: The Origin of Melting Anomalies: Plates, Plumes and Planetary Processes, Foulger, G. R. & Jurdy, D. M. (eds.), The Geological Society of America Special Paper, 430, p79-101, doi:10.1130/2007.2430(05)

Garnero, E. J., Maupin, V., Lay, T., & Fouch, M. J. (2004). Variable azimuthal anisotropy in Earth's lowermost mantle, Science, 306, 259-261. https://doi.org/10.1126/science.1103411

Garnero, E. J., & McNamara, A. K. (2008). Structure and dynamics of Earth's lower mantle. Science, 320, 626-628. https://doi.org/10.1126/science.1148028

Garnero, E. J., McNamara, A. K., & Shim, S.-H. (2016). Continent-sized anomalous zones with low seismic velocity at the base of Earth's mantle. Nature

Geoscience, 9, 481-489. https://doi.org/10.1038/ngeo2733

Geller, R. J., & Hara, T., (1993). Two efficient algorithms for iterative linearized inversion of seismic waveform data. Geophysical Journal International, 115, 699-710. https://doi.org/10.1111/j.1365-246X.1993.tb01488.x

Geller, R. J., & Ohminato, T. (1994). Computation of synthetic seismograms and their partial derivatives for heterogeneous media with arbitrary natural boundary conditions using the direct solution method. Geophysical Journal International, 116, 421-446. https://doi.org/10.1111/j.1365-246X.1994.tb01807.x

Geller, R. J., & Takeuchi, N. (1995). A new method for computing highly accurate DSM synthetic seismograms. Geophysical Journal International, 123, 449-470.

Geller, R. J., & Takeuchi, N. (1998). Optimally accurate second order time domain finite difference scheme for the elastic equation of motion. Geophysical Journal International, 135, 48-62.

Geller, R. J., Mizutani, H., Hirabayashi, N., & Takeuchi, N. (2013a). Method for synthesizing numerical operators, system for synthesizing operators, and simulation device, U.S. Patent 8423332.

Geller, R. J., Mizutani, H., Hirabayashi, N., & Takeuchi, N. (2013b). Method for synthesizing numerical operators, system for synthesizing operators, and simulation device: Japan Patent 5,279,016.

Goes, S., Agrusta, R., van Hunen, J., & Garel, F. (2017). Subduction-transition zone interaction: A review. Geosphere, 13, 644-664. https://doi.org/10.1130/GES01476.1

Gorbatov A., Widiyantoro S., Fukao Y., & Gordeev E. (2000). Signature of remnant slabs in the North Pacific from P-wave tomography. Geophysical Journal International, 142, 27-36. https://doi.org/10.1046/j.1365-246x.2000.00122.x

Grand, S. P. (1997). Tomographic for shear velocity beneath the North American plate, Journal of Geophysical Research, 92, 14065-14090. https://doi.org/10.1029/JB092iB13p14065

Grand, S. P. (2002). Mantle shear-wave tomography and the fate of subducted slabs. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 360(1800), 2475-2491. https://doi.org/10.1098/rsta.2002.1077

Gréaux, S., Irifune, T., Higo, Y., Tange, Y., Arimoto, T., Liu, Z., & Yamada, A. (2019). Sound velocity of CaSiO3 perovskite suggests the presence of basaltic crust in the Earth’s lower mantle. Nature, 565, 218-221. https://doi.org/10.1038/s41586-018-0816-5

Gu, Y. J., Dziewonski, A. M., Su, W. J., & Ekstrom, G. (2001). Models of the mantle shear velocity and discontinuities in the pattern of lateral heterogeneities. Journal of Geophysical Research, 106, 11169-11199. https://doi.org/10.1029/2001JB000340

Gu, Y. J., Dziewonski, A. M., & Ekstrom, G. (2003). Simultaneous inversion for mantle shear velocity and topography of transition zone discontinuities. Geophysical Journal International, 104, 559-583. https://doi.org/10.1046/j.1365-246X.2003.01967.x

Gung, Y., Panning, M., & Romanowicz, B. (2003). Global anisotropy and the thickness of continents. Nature, 422, 707-711. https://doi.org/10.1038/nature01559

Hara, T. (2004). Waveform inversion for 3-D Earth structure using the direct solution method implemented on vector-parallel supercomputer, Physics of the Earth and Planetary Interiors, 146, 65-74. https://doi.org/10.1016/j.pepi.2003.06.010

Hara, T. & Geller, R. J. (2000). Simultaneous waveform inversion for three-dimensional Earth structure and Earthquake source parameters considering a wide range of modal coupling. Geophysical Journal International, 142, 539-550. https://doi.org/10.1046/j.1365-246x.2000.00168.x

Hara, T., Tsuboi, S., & Geller, R. J. (1991). Inversion for laterally heterogeneous Earth structure using a laterally heterogeneous starting model: Preliminary results. Geophysical Journal International, 104, 523-540. https://doi.org/10.1111/j.1365-246X.1991.tb05699.x

Hara, T., Tsuboi, S., & Geller, R. J. (1993). Inversion for laterally heterogeneous upper mantle S-wave velocity structure using iterative waveform inversion. Geophysical Journal International, 115, 667-698. https://doi.org/10.1111/j.1365-246X.1993.tb01487.x

Hasegawa, K., Konishi, K., & Fuji, N. (2018). Improvement of accuracy of the spectral element method for elastic wave computation using modified numerical integration operators. Computer Methods in Applied Mechanics and Engineering, 342, 200-223. https://doi.org/10.1016/j.cma.2018.07.025

He, X., & Long, M. D. (2011). Lowermost mantle anisotropy beneath the northwest-ern Pacific: evidence from PcS, ScS, SKS, and SKKS phases. Geochemistry Geophysics Geosystem, 12, Q12012. http://dx.doi.org/10.1029/2011GC003779.

He Y., Wen L., & Zheng T. (2014). Seismic evidence for an 850 km thick low-velocity structure in the Earth's lowermost mantle beneath Kamchatka. Geophysical Research Letters, 41, 7073-7079.

He, Y., Wen, L., & Zheng, T. (2006). Geographic boundary and shear wave velocity structure of the “Pacific anomaly” near the core-mantle boundary beneath western Pacific. Earth and Planetary Science Letters, 244, 302-314. https://doi.org/10.1016/j.epsl.2006.02.007

Helmberger, D. V., & Burdick, L. J. (1979). Synthetic seismograms. Annual Reviews of the Earth and Planetary Sciences, 7, 417-442. https://doi.org/10.1146/annurev.ea.07.050179.002221

Houser, C., Masters, G., Shearer, P., & Laske, G. (2008). Shear and compressional velocity models of the mantle from cluster analysis of long-period waveforms. Geophysical Journal International, 174, 195-212. https://doi.org/10.1111/j.1365-246X.2008.03763.x

Idehara, K., Tanaka, S., & Takeuchi, N. (2013). High-velocity anomaly adjacent to the western edge of the Pacific low-velocity province. Geophysical Journal

International, 192, 1-6. https://doi.org/10.1093/gji/ggs002

Inoue, H., Fukao, Y., Tanabe. K., & Ogata, Y. (1990). Whole mantle P-wave traveltime tomography. Physics of the Earth and Planetary Interiors, 59, 294-328. https://doi.org/10.1016/0031-9201(90)90236-Q

Jackson, I. (1998). Elasticity, composition and temperature of the Earth’s lower mantle: a reappraisal. Geophysical Journal International, 134, 291-311. https://doi.org/10.1046/j.1365-246x.1998.00560.x Kaneshima, S., & Helffrich, G. (2013). Vp structure of the outermost core derived from

analyzing large scale array data of SmKS waves. Geophysical Journal International, 193, 1537-1555. https://doi.org/10.1093/gji/ggt042

Kamiya S., Miyatake T. & Hirahara K. (1988). How deep can we see the high-velocity anomalies beneath the Japan Islands? Geophysical Research Letters, 15, 828- 831. https://doi.org/10.1029/GL015i008p00828

Karason, H., & van der Hilst R. D. (2001). Improving global tomography models of Pwave speed I: incorporation of differential traveltimes for refracted and diffracted core phases (PKP, Pdiff). Journal of Geophysical Research, 106, 6569-6587.

Karato, S. (1998). Some remarks on the origin of seismic anisotropy in the D″ layer. Earth Planets Space, 50, 1019-1028. https://doi.org/10.1186/BF03352196

Karki, B. B., Wentzcovitch, R. M., de Gironcoli, S., & Baroni, S. (1999). First principles determination of elastic anisotropy and wave velocities of MgO at lower mantle conditions. Science, 286, 1705-1707. https://doi.org/10.1126/science.286.5445.1705

Kawai, K., & Geller, R. J. (2010a). Inversion of seismic waveforms for shear wave velocity structure in the lowermost mantle beneath the Hawaiian hotspot. Physics of the Earth and Planetary Interiors, 183, 136-142. https://doi.org/10.1016/j.pepi.2010.08.001

Kawai, K., & Geller, R. J. (2010b). Waveform inversion for localized seismic structure and an application to D″ structure beneath the Pacific. Journal of Geophysical Research, 115, B01305, https://doi:10.1029/2009JB006503

Kawai, K. & Geller, R. J. (2010c). The vertical flow in the lowermost mantle beneath the Pacific from inversion of seismic waveforms for anisotropic structure. Earth and Planetary Science Letters, 297, 190-198. https://doi.org/10.1016/j.epsl.2010.05.037

Kawai, K., Takeuchi, N., & Geller R. J. (2006). Complete synthetic seismograms up to 2 Hz for transversely isotropic spherically symmetric media. Geophysical Journal International, 164, 411-424. https://doi.org/10.1111/j.1365-246X.2005.02829.x

Kawai, K., Takeuchi, N., Geller, R. J., & Fuji, N. (2007a). Possible evidence for a double crossing phase transition in D″ beneath Central America from inversion of seismic waveforms. Geophysical Research Letters, 34, L09314, https://doi:10.1029/2007GL029642

Kawai, K., Geller, R. J., & Fuji, N. (2007b). D″ beneath the Arctic from inversion of shear waveforms. Geophysical Research Letters, 34, L21305, https://doi:10.1029/2007GL031517

Kawai, K., & Tsuchiya, T. (2009). Temperature profile in the lowermost mantle from seismological and mineral physics joint modeling. Proceedings of the National Academy of Sciences, 106, 22119-22123. https://doi.org/10.1073/pnas.0905920106

Kawai, K., Sekine, S., Fuji, N., & Geller, R. J. (2009). Waveform inversion for D″ structure beneath northern Asia using Hi-net tiltmeter data. Geophysical Research Letters, 36, L20314, https://doi:10.1029/2009GL039651

Kawai, K., Konishi, K., Geller, R. J., & Fuji, N. (2014). Methods for inversion of bodywave waveforms for localized three-dimensional seismic structure and an application to D″ structure beneath central America. Geophysical Journal International, 197, 495-524. https://doi.org/10.1093/gji/ggt520

Kllogg, L.H., Hager, B.H. & van der Hilst, R. (1999). Compositional stratification in the deep mantle. Science, 283, 1881–1884, https://doi.org/10.1126/sci ence.283.5409.1881

Koelemeijer, P., Ritsema, J., Deuss, A., & van Heijst, H. J. (2016). SP12RTS: a degree12 model of shear- and compressional-wave velocity for Earth’s mantle. Geophysical Journal International, 204, 1024-1036. https://doi.org/10.1093/gji/ggv481

Komatitsch, D., Barnes, C., & Tromp, J. (2000). Wave propagation near a fluid-solid interface: a spectral element approach. Geophysics, 65, 623-631. https://doi.org/10.1190/1.1444758

Komatitsch, D., & Vilotte, J.-P. (1998). The spectral element method: an efficient tool to simulate the seismic response of 2D and 3D geological structures. Bulletin of the Seismological Society of America, 88, 368-392.

Komatitsch, D., & Tromp, J. (2002a). Spectral-element simulations of global seismic wave propagation -I. Validation. Geophysical Journal International, 149, 390- 412. https://doi.org/10.1046/j.1365-246X.2002.01653.x

Komatitsch, D., & Tromp, J. (2002b). Spectral-element simulation of global seismic wave propagation-II. Three-dimensional models, oceans, rotation and selfgravitation. Geophysical Journal International, 150, 303-318. https://doi.org/10.1046/j.1365-246X.2002.01716.x

Komatitsch, D., Vilotte, J. P., Tromp, J., Afanasiev, M., Bozdag, E., Charles, J., Chen, M., Goddeke, D., Hjorleifsdottir, V., Labarta, J., Le Goff, N., Le Loher, P., Liu, Q., Maggi, A., Martin, R., McRitchie, D., Messmer, P., Michea, D., NissenMeyer, T., Peter, D., Rietmann, M., de Andrade, S., Savage, B., Schuberth, B., Siemenski, A., Strand, L., Tape, C., Xie, Z., & Zhu, H. (2015). SPECFEM3D GLOBE v7.0.0 (Computational Infrastructure for Geodynamics); https://geodynamics.org/cig/software/specfem3d_globe/

Komatitsch, D., Vinnik, L. P., & Chevrot, S. (2010). SHdiff-SVdiff splitting in an isotropic Earth. Journal of Geophysical Research, 115, B07312. http://dx.doi.org/10.1029/2009JB006795

Konishi, K., Kawai, K., Geller, R. J., & Fuji, N. (2014). Waveform inversion for localized three-dimensional seismic velocity structure in the lowermost mantle beneath the western Pacific, Geophysical Journal International, 199, 1245- 1267. https://doi.org/10.1093/gji/ggu288

Kustowski, B., Ekström, G., & Dziewonski, A. M. (2008). Anisotropic shear-wave velocity structure of the Earth’s mantle: A global model. Journal of Geophysical Research, 113, B06306, https://doi:10.1029/2007JB005169

Labrosse, S., Hernlund, J. W., & Coltice, N. (2007). A crystallizing dense magma ocean at the base of the Earth’s mantle. Nature, 450, 866-869. https://doi.org/10.1038/nature06355

Lay, T., & Garnero, E. J. (2011). Deep mantle seismic modeling and imaging. Annual Review of the Earth and Planetary Science, 39, 91-123. https://doi.org/10.1146/annurev-earth-040610-133354

Lay, T., & Helmberger, D. V. (1983). The shear-wave velocity gradient at the base of the mantle. Journal of Geophysical Research, 88, 8160-8170. https://doi.org/10.1029/JB088iB10p08160

Lebedev, S., & van der Hilst, R. D. (2008). Global upper-mantle tomography with the automated multimode inversion of surface and S-wave forms. Geophysical Journal International, 173, 505-518. https://doi.org/10.1111/j.1365-246X.2008.03721.x

Lekic, V., & Romanowicz, B. (2011). Inferring upper-mantle structure by full waveform tomography with the spectral element method. Geophysical Journal International, 185, 799-831. https://doi.org/10.1111/j.1365-246X.2011.04969.x

Li, M., McNamara, A. K., & Garnero, E. J. (2014). Chemical complexity of hotspots caused by cycling oceanic crust through mantle reservoirs. Nature Geoscience, 7, 336-370. https://doi.org/10.1038/ngeo2120

Li, X. D., & Romanowicz, B. (1995). Comparison of global waveform inversions with and without considering cross-branch modal coupling. Geophysical Journal International, 121, 695-709. https://doi.org/10.1111/j.1365-246X.1995.tb06432.x

Li, X. D., & Romanowicz, B. (1996). Global mantle shear velocity model developed using nonlinear asymptotic coupling theory. Journal of Geophysical Research, 22, 245-272. https://doi.org/10.1029/96JB01306

Li, X. D., & Tanimoto, T. (1993). Waveforms of long-period body waves in a slightly aspherical Earth model. Geophysical Journal International, 112, 92-102. https://doi.org/10.1111/j.1365-246X.1993.tb01439.x

Lithgow-Bertelloni, C., & Richards, M. A. (1998). The dynamics of Cenozoic and Mesozoic plate motions. Review of Geophysics, 36, 27-78. https://doi.org/10.1029/97RG02282

Masters, G., Laske, G., Bolton, H., & Dziewonski, A. (2000). The relative behavior of shear velocity, bulk sound speed, and compressional velocity in the mantle: implications for chemical and thermal structure. In Earth’s Deep Interior:

Mineral Physics and Tomography From the Atomic to the Global Scale, pp. 63- 87, eds. Karato, S., Forte, A. M., Libermann, R. C., Masters, G., & Stixrude, L., America Geophysical Union. https://doi.org/10.1029/GM117p0063

Matthews, K. J., Maloney, K. T., Zahirovic, S., Williams, S.E., Seton, M., & Müller, R. D. (2016). Global plate boundary evolution and kinematics since the late Paleozoic. Global and Planetary Change, 146, 226-250. https://doi.org/10.1016/j.gloplacha.2016.10.002

Maupin, V. (1994). On the possibility of anisotropy in the D″ layer as inferred from the polarization of diffracted S waves. Physics of the Earth and Planetary Interiors, 87, 1–32. https://doi.org/10.1016/0031-9201(94)90019-1

Maupin, V., Garnero, E. J., Lay, T., & Fouch, M. J. (2005). Azimuthal anisotropy in the D″ layer beneath the Caribbean. Journal of Geophysical Research: Solid Earth, 110, 1-20. https://doi.org/10.1029/2004JB003506

Maupin, V., & Park, J. (2008). Seismic anisotropy: theory and observations. In Treatise in Geophysics, eds. Romanowicz, B., Dziewonski, A. M., Vol. 1, pp. 289-321. Amsterdam: Elsevier.

McNamara, A. K., van Keken, P. E., & Karato, S.-I. (2003). Development of finite strain in the convecting lower mantle and its implications for seismic anisotropy. Journal of Geophysical Research: Solid Earth, 108, 1-14. https://doi.org/10.1029/2002jb001970

McNamara, A., & Zhong, S. (2005). Thermochemical structures beneath Africa and the Pacific Ocean. Nature, 437, 1136-1139. https://doi.org/10.1038/nature04066

Mégnin, C., & Romanowicz, B. (2000). The shear velocity structure of the mantle from the inversion of body, surface, and higher modes waveforms. Geophysical Journal International, 143, 709-728. https://doi.org/10.1046/j.1365- 246X.2000.00298.x

Mitchell, B. J., & Helmberger, D. V. (1973). Shear velocities at the base of the mantle from observations of S and ScS. Journal of Geophysical Research, 78, 6009- 6020. https://doi.org/10.1029/JB078i026p06009

Miyagi, L., & Wenk, H. R. (2016). Texture development and slip systems in bridgmanite and bridgmanite + ferropericlase aggregates. Physics and Chemistry of Minerals, 43, 597–613. https://doi.org/10.1007/s00269-016-0820-y

Montagner, J.-P. (1999). Where can seismic anisotropy be detected in the Earth's mantle? In boundary layers. Pure and Applied Geophysics, 151, 223-256. https://doi.org/10.1007/s000240050113

Montagner J.-P. (2002). Seismic Anisotropy Tomography. In: Fink M., Kuperman W. A., Montagner J. P., Tourin A. (eds) Imaging of Complex Media with Acoustic and Seismic Waves. Topics in Applied Physics, 84, Springer. https://doi.org/10.1007/3-540-44680-X_8

Montagner, J.-P. & Kennett B. L. N. (1996). How to reconcile body-wave and normalmode reference earth models, Geophysical Journal International. 125, 229-248, https://doi.org/10.1111/j.1365-246X.1996.tb06548.x

Montagner, J.‐P., & Tanimoto, T. (1990). Global anisotropy in the upper mantle inferred from the regionalization of phase velocities. Journal of Geophysical Research, 95, 4797- 4819, http://doi:10.1029/JB095iB04p04797.

Montagner, J.‐P., & Tanimoto, T. (1991). Global upper mantle tomography of seismic velocities and anisotropies. Journal of Geophysical Research, 96, 20337- 20351, https://doi:10.1029/91JB01890.

Müller, R. D., Seton, M., Zahirovic, S., Williams, S.E., Matthews, K. J., Wright, N.M., Shephard, G. E., Maloney, K. T., Barnett-Moore, N., Hosseinpour, M., Bower, D. J., & Cannon, J. (2016). Ocean basin evolution and global-scale plate reorganization events since Pangea breakup. Annual Review of Earth and Planetary Sciences, 44, 107-138. https://doi.org/10.1146/annurev-earth-060115-012211

Murakami, M., Hirose, K., Kawamura, K., Sata, N., & Ohishi, O. (2004). Postperovskite phase transition in MgSiO3. Science, 304(5672), 855-858. https://doi.org/10.1126/science.1095932

Nakada, M., Iriguchi, C., & Karato, S. (2012). The viscosity structure of the D" layer of the Earth's mantle inferred from the analysis of Chandler wobble and tidal deformation. Physics of the Earth and Planetary Interiors, 208, 11-24. https://doi.org/10.1016/j.pepi.2012.07.002

Nakagawa, T., & Tackley, P. J. (2005). Deep mantle heat flow and thermal evolution of the Earth’s core in thermochemical multiphase models of mantle convection. Geochemistry, Geophysics, Geosystems, 6, 1–12. https://doi.org/10.1029/2005GC000967

Nakagawa, T., & Tackley, P. J. (2014). Influence of combined primordial layering and recycled MORB on the coupled thermal evolution of Earth’s mantle and core. Geochemistry, Geophysics, Geosystems, 15, 619-633. https://doi.org/10.1002/2013GC005128

Nataf, H. C., Nakanishi, I., & Anderson, D. L. (1984). Anisotropy and shear velocities in the upper mantle. Geophysical Research Letters, 11, 109-112. http://dx.doi.org/10.1029/ GL011i002p00109.

Nataf, H. C., Nakanishi, I., & Anderson D. L. (1986). Measurements of mantle wave velocities and inversion for lateral heterogeneities and anisotropy. Part III: inversion, Journal of Geophysical Research, 91, 7261-7307.

Ni, S., Tan, E., Gurnis, M., & Helmberger, D. V. (2002). Sharp sides to the African superplume. Science, 296, 1850-1852. https://doi.org/10.1126/science.1070698

Nolet, G., & Dahlen, F. A. (2000). Wavefront healing and the evolution of seismic delay times. Journal of Geophysical Research, 105, 19043-19054. https://doi.org/10.1029/2000JB900161

Nowacki, A., Wookey, J., & Kendall, J.-M. (2010). Deformation of the lowermost mantle from seismic anisotropy. Nature, 467, 1091-1094. http://dx.doi.org/ 10.1038/nature09507

Nowacki, A., & Wookey, J. (2016). The limits of ray theory when measuring shear wave splitting in the lowermost mantle with ScS waves. Geophysical Journal International, 207, 1573-1583. https://doi.org/10.1093/gji/ggw358

Obayashi, M., & Fukao, Y. (1997). P and PcP traveltime tomography for the coremantle boundary. Journal of Geophysical Research, 102, 17825-17841. https://doi.org/10.1029/97JB00397

Panning, M. & Romanowicz, B. (2004). Influences on flow at the base of the Earth's mantle based on seismic anisotropy. Science, 303, 351-353. https://doi.org/10.1126/science.1091524

Panning, M. P., Capdeville, Y., & Romanowicz, B. A. (2009). Seismic waveform modelling in a 3‐D Earth using the Born approximation: potential shortcomings and a remedy. Geophysical Journal International, 177, 161-178. https://doi:10.1111/j.1365-246X.2008.04050.x

Parisi, L., Ferreira, A. M. G., & Ritsema, J. (2018). Apparent Splitting of S Waves

Propagating Through an Isotropic Lowermost Mantle. Journal of Geophysical Research: Solid Earth, 123, 3909-3922. https://doi.org/10.1002/2017JB014394

Porcelli, D., & Halliday, A. N. (2001). The core as a possible source of mantle helium. Earth and Planetary Science Letters, 192, 45-56. https://doi.org/10.1016/S0012- 821X(01)00418-6

Pratt, R. G. (1999) Seismic waveform inversion in the frequency domain, Part 1: theory and verification in a physical scale model. Geophysics, 64, 888-901. https://doi.org/10.1190/1.1444597

Pysklywec R. N., & Ishii M. (2005). Time dependent subduction dynamics driven by the instability of stagnant slabs in the transition zone. Physics of the Earth and Planetary Interiors, 149, 115-132. https://doi.org/10.1016/j.pepi.2004.08.019 Raitt, R. W. (1963) Marine physics laboratory. Scripps Institution of Oceanography, University of California San Diego. MPL-U-23/63.

Rawlinson, N., & Spakman, W. (2016). On the use of sensitivity tests in seismic tomography. Geophysical Journal International, 205, 1221-1243. https://doi.org/10.1093/gji/ggw084

Ringwood, A. E. (1989). Significance of the terrestrial Mg/Si ratio. Earth and Planetary Science Letters, 95, 1–7. https://doi.org/10.1016/0012-821X(89)90162-3

Ritsema, J., van Heijst, H. J., & Woodhouse, J. H. (1999). Complex shear velocitystructure imaged beneath Africa and Iceland, Science, 286, 1925-1928. https://doi.org/10.1126/science.286.5446.1925

Ritsema J, McNamara A. K., & Bull A. (2007). Tomographic filtering of geodynamic models: implications for model interpretation and large-scale mantle structure. Journal of Geophysical Research, 112, https://10.1029/2006JB004566

Ritsema, J., van Heijst, H. J., Deuss, A., & Woodhouse, J. H. (2011). S40RTS: a degree-40 shear velocity model for the mantle from new Rayleigh wave dispersion, teleseismic traveltimes, and normal-mode splitting function measurements. Geophysical Journal International, 184, 1223-1236. https://doi.org/10.1111/j.1365-246X.2010.04884.x

Robertson, G. S., & Woodhouse, J. H. (1996). Ratio of relative S to P velocity heterogeneity in the lower mantle, Journal of Geophysical Research, 101, 20041-20052. https://doi.org/10.1029/96JB01905

Romanowicz, B. (2003). Global mantle tomography, Progress status in the past 10 years. Annual Reviews of the Earth and Planetary Science, 31, 303-328. https://doi.org/10.1146/annurev.earth.31.091602.113555

Rost, S., & Garnero, E. J. (2004). Array seismology advances research into Earth's interior. Eos Transactions AGU, 85, 301-306. https://doi:10.1029/2004EO320002.

Schubert, G., Masters, G., Olsen, P., & Tackley, P. (2004). Superplumes or plume clusters? Physics of the Earth and Planetary Interiors, 146, 147-162. https://doi.org/10.1016/j.pepi.2003.09.025

Schuberth, B. S. A., Bunge, H.-P., & Ritsema, J. (2009). Tomographic filtering of highresolution mantle circulation models: can seismic heterogeneity be explained by temperature alone? Geochemistry, Geophysics, Geosystems, 10, Q05W03, https://doi.org/10.1029/2009GC002401

Sengupta, M. K. & Toksöz, M. N. (1976). Three dimensional model of seismic velocity variation in the Earth's mantle. Geophysical Research Letters, 3, 84-86. https://doi.org/10.1029/GL003i002p00084

Shephard, G. E., Matthews, K. J., Hosseini, K., & Domeier, M. (2017). On the consistency of seismically imaged lower mantle slabs. Scientific Reports, 7,10976. https://doi.org/10.1038/s41598-017-11039-w

Silver, P. G., & Chan, W. W. (1991). Shear Wave Splitting and Sub continental Mantle Deformation. Journal of Geophysical Research, 96, 16429-16454. https://doi.org/10.1029/91JB00899

Simmons, N. A., Forte, A., Boschi, L., & Grand, S. P. (2010). GyPSuM: a joint tomographic model of mantle density and seismic wave speeds. Journal of Geophysical Research, 115, B12310. https://doi.org/10.1029/2010JB007631

Stixrude, L., & Lithgow‐Bertelloni, C. (2011). Thermodynamics of mantle minerals – II. Phase equilibria. Geophysical Journal International, 184, 1180-1213. https://doi:10.1111/j.1365-246X.2010.04890.x

Stevenson D. J. (1981). Models of the Earth's core. Science, 214, 611-619. https://doi.org/10.1126/science.214.4521.611

Su, W. J., & Dziewonski, A. M. (1997). Simultaneous inversion for 3-D variations in shear and bulk velocity in the mantle. Physics of the Earth and Planetary Interiors, 100, 135-156. https://doi.org/10.1016/S0031-9201(96)03236-0

Su, W. J., Woodward, R. L., & Dziewonski, A. M. (1994). Degree-1-2 of shear velocity het- erogeneity in the mantle. Journal of Geophysical Research, 99, 6945-6980. https://doi.org/10.1029/93JB03408

Sun, D., Helmberger, D., Ni, S., & Bower, D. (2009). Direct measures of lateral velocity variation in the deep Earth. Journal of Geophysical Research, 114, B05303. https://doi.org/10.1029/2008JB005873

Suzuki, Y., Kawai, K., Geller, R. J., Borgeaud, A. F. E., & Konishi, K. (2016). Waveform inversion for 3-D S-velocity structure of D″ beneath the Northern Pacific: possible evidence for a remnant slab and a passive plume. Earth Planets and Space, 68, 198. https://doi.org/10.1186/s40623-016-0576-0

Tackley, P. J. (2011). Living dead slabs in 3-D: The dynamics of compositionallystratified slabs entering a “slab graveyard" above the core-mantle boundary. Physics of the Earth and Planetary Interiors, 188, 150-162. https://doi.org/10.1016/j.pepi.2011.04.013

Takeuchi, N. (2007). Whole mantle SH-velocity model constrained by waveform inversion based on three-dimensional Born kernels, Geophysical Journal International, 169, 1153-1163. https://doi.org/10.1111/j.1365-246X.2007.03405.x

Takeuchi, N. (2012). Detection of ridge-like structures in the Pacific large low-shearvelocity province. Earth and Planetary Science Letters, 319-320, 55-64. https://doi.org/10.1016/j.epsl.2011.12.024

Takeuchi, N., & Kobayashi, M. (2004). Improvement of seismological earth models by using data weighting in waveform inversion. Geophysical Journal International, 158, 681–694. https://doi.org/10.1111/j.1365-246X.2004.02334.x

Takeuchi, N., Morita, Y., Xuyen, N. D., & Zung N. Q. (2008). Extent of the lowvelocity region in the lowermost mantle beneath the western Pacific detected by the Vietnamese Broadband Seismograph Array. Geophysical Research Letters, 35, L05307. https://doi.org/10.1029/2008GL033197

Tan, E., Gurnis, M., & Han, L. (2002). Slabs in the lower mantle and their modulation of plume formation. Geochemistry Geophysics Geosystems, 3, 1067, https://doi:10.1029/2001GC000238

Tanaka, S., Kawakatsu, H., Obayashi, M., Chen, Y. J., Ning, J., Grand, S. P., Niu, F., & Ni, J. (2015). Rapid lateral variation of P‐wave velocity at the base of the mantle near the edge of the Large‐Low Shear Velocity Province beneath the western Pacific. Geophysical Journal International, 200, 1050-1063. https://doi.org/10.1093/gji/ggu455

Tanaka, S., Siripunvaraporn, W., Boonchaisuk, S., Noisagool, S., Kim, T., Kawai, K., Suzuki, Y., Ishihara, Y., Iritani, R., Miyakawa, K., Takeuchi, N., & Kawakatsu, H. (2019). Thai Seismic Array (TSAR) Project. Bulletin of the Earthquake Research Institute, in press.

Tanimoto, T. (1986). The Backus-Gilbert approach to the 3-D structure in the upper mantle - II. SH and SV velocity. Geophysical Journal of the Royal Astronomical Society, 84, 49-69. https://doi.org/10.1111/j.1365-246X.1986.tb04344.x

Tanimoto, T. (1990). Long-wavelength S-wave velocity structure throughout the mantle. Geophysical Journal International, 100, 327-336. https://doi.org/10.1111/j.1365-246X.1990.tb00688.x

Tanimoto, T., & Anderson, D. L. (1985). Mapping convection in the mantle. Geophysical Research Letters, 11, 287-290. https://doi.org/10.1029/GL011i004p00287

Tape, C., Liu, Q., Maggi, A., & Tromp, J. (2009). Adjoint tomography of the southern California crust. Science, 325, 988-992. https://doi.org/10.1126/science.1175298

Tape, C., Liu, Q., Maggi, A., & Tromp, J. (2010). Seismic tomography of the southern California crust based on spectral-element and adjoint methods. Geophysical Journal International, 180, 433-462. https://doi.org/10.1111/j.1365-246X.2009.04429.x

Tarantola, A. (1986). A strategy for nonlinear elastic inversion of seismic reflection data. Geophysics, 51, 1893-1903. https://doi.org/10.1190/1.1442046

Thomson, A. R., Crichton, W. A., & Brodholt, J. P., Wood, I. G., Siersch, N. C., Muir, J. M. R., Dobson D. P., & Hunt, S. A. (2009). Seismic velocities of CaSiO3 perovskite can explain LLSVPs in Earth’s lower mantle. Nature, 572, 643-647 https://doi.org/10.1038/s41586-019-1483-x

To, A., Romanowicz, B., Capdeville, Y., & Takeuchi, N. (2005). 3D effects of sharp boundaries at the borders of the African and Pacific Superplumes: Observation and modeling. Earth and Planetary Science Letters, 233, 137-153. http://dx.doi.org/10.1016/j. epsl.2005.01.037

Tsuboi, S., & Geller, R. J. (1987). Partial derivatives of synthetic seismograms for a laterally heterogeneous Earth model. Geophysical Research Letters, 14, 832- 835. https://doi.org/10.1029/GL014i008p00832

Tsuchiya, T. (2011). Elasticity of subducted basaltic crust at the lower mantle pressures: Insights on the nature of deep mantle heterogeneity. Physics of the Earth and Planetary Interiors, 188, 142-149. https://doi.org/10.1016/j.pepi.2011.06.018

Tsuchiya, T., & Tsuchiya, J. (2006). Effect of impurity on the elasticity of perovskite and postperovskite: velocity contrast across the postperovskite transition in (Mg, Fe, Al) (Si, Al)O3. Geophysical Research Letters, 33, L12S04. https://doi.org/10.1029/2006GL025706

Tsuchiya, T., Tsuchiya, J., Umemoto, K., & Wentzcovitch, R. M. (2004). Phase transition in MgSiO3 perovskite in the Earth’s lower mantle. Earth and Planetary Science Letters, 224, 241-248. https://doi.org/10.1016/j.epsl.2004.05.017

Tsujino, N., Nishihara, Y., Yamazaki, D., Seto, Y., Higo, Y., & Takahashi, E. (2016). Mantle dynamics inferred from the crystallographic preferred orientation of bridgmanite. Nature, 539, 81-84. https://doi.org/10.1038/nature19777

van der Hilst R. D., & Spakman, W. (1989). Importance of the reference model in linearized tomography and images of the subduction below the Caribbean plate. Geophysical Research Letters, 16, 1093-1096.

van Der Hilst, R. D., Widiyantoro, S., & Engdahl, E. R. (1997). Evidence for deep mantle circulation from global tomography. Nature, 386(6625), 578–584. https://doi.org/10.1038/386578a0

van der Meer, D. G., Spakman, W., van Hinsbergen, D. J. J., Amaru, M. L., & Torsvik, T. H. (2010). Towards absolute plate motions constrained by lower-mantle slab remnants. Nature Geoscience, 3, 36–40. https://doi.org/10.1038/ngeo708

van der Meer, D. G., van Hinsbergen, D. J. J, & Spakman, W. (2018). Atlas of the underworld: Slab remnants in the mantle, their sinking history, and a new outlook on lower mantle viscosity. Tectonophysics, 723, 309-448. https://doi.org/10.1016/j.tecto.2017.10.004

Vinnik, L., Breger, L., & Romanowicz, B. (1998). Anisotropic structures at the base of the Earth’s mantle. Nature, 39, 564–567. https://doi.org/10.1038/31208 Wentzcovitch, R. M., Tsuchiya, T., & Tsuchiya, J. (2006). MgSiO3 postperovskite at D″ conditions. Proceedings of the National Academy of Sciences, 103, 543-546. https://doi.org/10.1073/pnas.0506879103

Woodhouse, J. H., & Dziewonski, A. M. (1984). Mapping the upper mantle: Threedimensional modeling of the Earth structure by inversion of seismic waveforms. Journal of Geophysical Research, 89, 5953-5986. https://doi.org/10.1029/JB089iB07p05953

Wookey, J., & Kendall, J. M. (2007). Seismic Anisotropy of Post‐Perovskite and the Lowermost Mantle. In Post‐Perovskite: The Last Mantle Phase Transition (eds K. Hirose, J. Brodholt, T. Lay and D. Yuen). Geophysical Monograph Series,174, 171-189. https://doi.org/10.1029/174GM13

Wookey, J., & Kendall, J. M. (2008). Constraints on lowermost mantle mineralogy and fabric beneath Siberia from seismic anisotropy. Earth and Planetary Science Letters, 275, 32–42. https://doi.org/10.1016/j.epsl.2008.07.049

Wysession, M. E., Lay, T., Revenaugh, J., Williams, Q., Garnero E. J., Jeanloz, R., & Kellogg L. H. (1998). The D′′ discontinuity and its implications. in The CoreMantle Boundary Region, pp 273-297, eds. Gurnis, M., Wysession, M., Knittle, E., Buffett, B. A., American Geophysical Union.

Yamaya, L., Borgeaud, A. F. E., Kawai, K., Geller, R. J., & Konishi, K. (2018). Effects of redetermination of source time functions on the 3-D velocity structure inferred by waveform inversion. Physics of the Earth and Planetary Interiors, 282, 117–143. https://doi.org/10.1016/j.pepi.2018.04.012

Yamazaki, D., & Karato, S. I. (2002). Fabric development in (Mg,Fe)O during large strain, shear deformation: Implications for seismic anisotropy in Earth’s lower mantle. Physics of the Earth and Planetary Interiors, 131, 251–267. https://doi.org/10.1016/S0031-9201(02)00037-7

Yamazaki, D., Yoshino, T., Ohfuji, H., Ando, J., & Yoneda, A. (2006). Texture of (Mg,Fe)SiO3 perovskite and ferro-periclase aggregate: Implications for rheology of the lower mantle. Earth and Planetary Science Letters, 252, 372-378.

Yamazaki, D., Yoshino, T., Matsuzaki, T., Katsura, T., & Yoneda, A. (2009). Origin of seismic anisotropy in the D″ layer inferred from shear deformation experiments on postperovskite phase. Physics of the Earth and Planetary Interiors, 174, 138- 144. https://doi.org/10.1016/j.epsl.2006.10.004

Young, C. J., & Lay, T. (1990). Multiple phase analysis of the S-velocity structure in the D′′ region beneath Alaska. Journal of Geophysical Research, 95, 17385- 17402. https://doi.org/10.1029/JB095iB11p17385

Young, A., Flament, N., Maloney, K., Williams, S., Matthews, K., Zahirovic, S., & Müller, R. D. (2019). Global kinematics of tectonic plates and subduction zones since the late Paleozoic Era. Geoscience Frontiers, 10, 989-1013. https://doi.org/10.1016/j.gsf.2018.05.011

Yu, S., & Garnero, E. J. (2018). Ultralow velocity zone locations: A global assessment. Geochemistry, Geophysics, Geosystems, 19, 396-414. https://doi.org/10.1002/2017GC007281

Yu, Y., Hung, T.D., Yang, T., Xue, M., Liu, K.H., & Gao, S. (2017). Lateral variations of crustal structure beneath the Indochina Peninsula. Tectonophysics, 712-713, 193-199. https://doi.org/10.1016/j.tecto.2017.05.023

Zhang, N., Zhong, S. J., Leng, W., & Li, Z. X. (2010). A model for the evolution of Earth’s mantle structure since the early Paleozoic. Journal of Geophysical Research, 115, B06401. https://doi.org/10.1029/2009JB006896

Zhang, S., Cottaar, S., Liu, T., Stackhouse, S., & Militzer, B. (2006). High-pressure, temperature elasticity of Fe- and Al-bearing MgSiO3: Implications for the Earth’s lower mantle. Earth and Planetary Science Letters, 434, 264-273. https://doi.org/10.1016/j.epsl.2015.11.030

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る