リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「麹菌由来界面活性タンパク質 hydrophobin RolAの自己組織化機構の解明」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

麹菌由来界面活性タンパク質 hydrophobin RolAの自己組織化機構の解明

寺内 裕貴 東北大学

2020.03.25

概要

糸状菌は地球上に 150 万種以上存在すると考えられており、植物遺体、すなわち多糖類やタンパク質、ポリエステルなど、様々な生体高分子を分解する酵素を多種類生産することから、自然界の物質循環において分解者として重要な役割を果たしている(1-4)。酵素による固体高分子の加水分解は病原性糸状菌が宿主に感染する際に必須なプロセスでもあり、この能力は古くから発酵産業という形で産業的に利用されてきた(5-9)。麹菌 Aspergillus oryzae はその固体高分子分解能力の高さから日本国内で発酵産業に古くから利用されてきた糸状菌である(8, 9)。前任者である高橋、前田らは、A. oryzae が生分解性ポリエステル PBSA を唯一の炭素源として資化する際にポリエステラーゼ cutinase CutL1 と、界面活性タンパク質である hydrophobin RolA を生産することを見出した(2, 10)。RolA は PBSA 表面に吸着、被覆し、その後 CutL1 を PBSA 表面へリクルート、濃縮することで、CutL1 による PBSA 加水分解を促進する(10)。cutinase は植物感染性糸状菌が植物表面のワックスエステル (cutin) を分解して感染する際に分泌することで知られ(5, 6)、PBSA はクチンのアナログとして CutL1 により分解される(2, 10)。hydrophobin は糸状菌に特異的な低分子量の分泌性両親媒性タンパク質であり、糸状菌の生態において、hydrophobin は気中菌糸の形成や分生子の分散性、固体表面への吸着、吸着した固体表面の湿潤性の逆転、菌糸や分生子の細胞壁表面での疎水性被膜の形成、動植物感染時の宿主免疫機構による認識の回避などの多岐にわたる役割を担うことが知られている(11-15) 。また、hydrophobin はアミノ酸配列や hydropathy プロファイル、固体表面上に形成する膜の構造から主に 2 つの Class に分けられ、RolA はそのうちより疎水度が高く、固体表面上で β-amyloid 様の自己組織化棒状構造 (rodlet) を形成する Class I に属する(11, 13, 16)。また、rodlet の形成には hydrophobin の Cys3-Cys4 間および Cys7-Cys8 間のアミノ酸配列 (Cys3-4 loop, Cys7-Cys8 loop) が関与していることが示唆されている(17, 18)。

界面活性タンパク質が足場となって固体高分子分解酵素をリクルートするという分子間相互作用は、前任者らにより新奇に発見された固体高分子分解機構である(10, 19)。近年になり、固体表面に吸着した hydrophobin と、BSA や IgG、avidin が相互作用する現象(20)や、glucose oxidase, horseradish peroxidase, CutL1 といった酵素が固体表面上の hydrophobin または hydrophobin様の固体表面吸着タンパク質と相互作用する現象が報告されている(10, 19, 21, 22)。したがって、固体高分子上に吸着した hydrophobin が高分子分解酵素を固体表面にリクルートして固体高分子分解を促進する現象は、固液界面での固体高分子分解において重要な機構であると考えられるようになってきた(10, 19, 23, 24)。筆者らは、RolA – CutL1 間の相互作用が、RolA N 末端側の正電荷アミノ酸残基 H32, K34 と、CutL1 分子表面負電荷残基 D30, E31, D142, D171 が累積的に寄与するイオン的相互作用であることを明らかにしている(25, 26)。一方で、RolA によって CutL1 基質表面に形成する強固な自己組織化膜を、CutL1 がどのようにして通過して、 RolA 膜の下にある基質にたどり着くのかはわかっていない。このメカニズムを調べるためには、RolA の自己組織化膜の形成を制御する必要がある。既知の Class I hydrophobin の自己組織化に関する知見(27)から、RolA が自己組織化膜を形成し、CutL1 をリクルート、濃縮するまでには以下の 5 つの過程をたどると考えられる。

1. RolA が固体表面に吸着する
2. 固体表面上に RolA 単分子膜が形成される
3. 固体表面上の RolA の構造が変化し、RolA 自己組織化膜が形成される
4. RolA の自己組織化膜に CutL1 がリクルートされる
5. CutL1 が RolA 自己組織化膜を通過し、基質にたどり着く

本博士論文では、RolA が CutL1 をリクルートするまでの前段階である RolA 自己組織化膜形成の制御と自己組織化機構の解明を目的とし、RolA の固体表面への吸着キネティクス、RolA の固液界面および気液界面での自己組織化構造形成機構の解析を行った。

この論文で使われている画像

参考文献

1. Ichishima E. 2000. Unique catalytic and molecular properties of hydrolases from Aspergillus used in Japanese bioindustries. Biosci Biotechnol Biochem 64:675-88.

2. Maeda H, Yamagata Y, Abe K, Hasegawa F, Machida M, Ishioka R, Gomi K, Nakajima T. 2005. Purification and characterization of a biodegradable plastic-degrading enzyme from Aspergillus oryzae. Appl Microbiol Biotechnol 67:778-88.

3. Chandra M, Kalra A, Sharma PK, Sangwan RS. 2009. Cellulase production by six Trichoderma spp. fermented on medicinal plant processings. J Ind Microbiol Biotechnol 36:605-9.

4. Michael TM, John MM, Kelly SB, Daniel HB, David AS. 2015. Microbial Cell structure and Function. In Kelsey C, Nicole M, Ashley W (ed), Brock Biology of Microorganisms.

5. Purdy RE, Kolattukudy PE. 1975. Hydrolysis of plant cuticle by plant pathogens. Purification, amino acid composition, and molecular weight of two isozymes of cutinase and a nonspecific esterase from Fusarium solani f. pisi. Biochemistry 14:2824-31.

6. Sweigard JA, Chumley FG, Valent B. 1992. Cloning and analysis of CUT1, a cutinase gene from Magnaporthe grisea. Mol Gen Genet 232:174-82.

7. Wang C, St Leger RJ. 2005. Developmental and transcriptional responses to host and nonhost cuticles by the specific locust pathogen Metarhizium anisopliae var. acridum. Eukaryot Cell 4:937-47.

8. Machida M, Yamada O, Gomi K. 2008. Genomics of Aspergillus oryzae: learning from the history of Koji mold and exploration of its future. DNA Res 15:173-83.

9. Nishimura M, Fukada J, Moriwaki A, Fujikawa T, Ohashi M, Hibi T, Hayashi N. 2009. Mstu1, an APSES Transcription Factor, Is Required for Appressorium-Mediated Infection in Magnaporthe grisea. Bioscience, Biotechnology, and Biochemistry 73:1779-1786.

10. Takahashi T, Maeda H, Yoneda S, Ohtaki S, Yamagata Y, Hasegawa F, Gomi K, Nakajima T, Abe K. 2005. The fungal hydrophobin RolA recruits polyesterase and laterally moves on hydrophobic surfaces. Mol Microbiol 57:1780-96.

11. Wessels J, De Vries O, Asgeirsdottir SA, Schuren F. 1991. Hydrophobin genes involved in formation of aerial hyphae and fruit bodies in Schizophyllum. Plant Cell 3:793-799.

12. Wosten H, De Vries O, Wessels J. 1993. Interfacial self-assembly of a fungal hydrophobin into a hydrophobic rodlet layer. Plant Cell 5:1567-1574.

13. Wosten HA, Schuren FH, Wessels JG. 1994. Interfacial self-assembly of a hydrophobin into an amphipathic protein membrane mediates fungal attachment to hydrophobic surfaces. EMBO J 13:5848-54.

14. Wosten HA, van Wetter MA, Lugones LG, van der Mei HC, Busscher HJ, Wessels JG. 1999. How a fungus escapes the water to grow into the air. Curr Biol 9:85-8.

15. Aimanianda V, Bayry J, Bozza S, Kniemeyer O, Perruccio K, Elluru SR, Clavaud C, Paris S, Brakhage AA, Kaveri SV, Romani L, Latge JP. 2009. Surface hydrophobin prevents immune recognition of airborne fungal spores. Nature 460:1117-21.

16. Russo PS, Blum FD, Ipsen JD, Abulhajj YJ, Miller WG. 1982. The Surface-Activity of the Phytotoxin Cerato-Ulmin. Canadian Journal of Botany-Revue Canadienne De Botanique 60:1414-1422.

17. Kwan AH, Winefield RD, Sunde M, Matthews JM, Haverkamp RG, Templeton MD, Mackay JP. 2006. Structural basis for rodlet assembly in fungal hydrophobins. Proc Natl Acad Sci U S A 103:3621-6.

18. Niu B, Gong Y, Gao X, Xu H, Qiao M, Li W. 2014. The functional role of Cys3-Cys4 loop in hydrophobin HGFI. Amino Acids 46:2615-25.

19. Ohtaki S, Maeda H, Takahashi T, Yamagata Y, Hasegawa F, Gomi K, Nakajima T, Abe K. 2006. Novel hydrophobic surface binding protein, HsbA, produced by Aspergillus oryzae. Appl Environ Microbiol 72:2407-13.

20. Wang Z, Huang Y, Li S, Xu H, Linder MB, Qiao M. 2010. Hydrophilic modification of polystyrene with hydrophobin for time-resolved immunofluorometric assay. Biosens Bioelectron 26:1074-9.

21. Corvis Y, Walcarius A, Rink R, Mrabet NT, Rogalska E. 2005. Preparing catalytic surfaces for sensing applications by immobilizing enzymes via hydrophobin layers. Anal Chem 77:1622- 30.

22. Wang Z, Lienemann M, Qiau M, Linder MB. 2010. Mechanisms of protein adhesion on surface films of hydrophobin. Langmuir 26:8491-6.

23. Ribitsch D, Herrero Acero E, Przylucka A, Zitzenbacher S, Marold A, Gamerith C, Tscheliessnig R, Jungbauer A, Rennhofer H, Lichtenegger H, Amenitsch H, Bonazza K, Kubicek CP, Druzhinina IS, Guebitz GM. 2015. Enhanced cutinase-catalyzed hydrolysis of polyethylene terephthalate by covalent fusion to hydrophobins. Appl Environ Microbiol 81:3586-92.

24. Pham CL, Rey A, Lo V, Soules M, Ren Q, Meisl G, Knowles TP, Kwan AH, Sunde M. 2016. Self-assembly of MPG1, a hydrophobin protein from the rice blast fungus that forms functional amyloid coatings, occurs by a surface-driven mechanism. Sci Rep 6:25288.

25. Takahashi T, Tanaka T, Tsushima Y, Muragaki K, Uehara K, Takeuchi S, Maeda H, Yamagata Y, Nakayama M, Yoshimi A, Abe K. 2015. Ionic interaction of positive amino acid residues of fungal hydrophobin RolA with acidic amino acid residues of cutinase CutL1. Mol Microbiol 96:14-27.

26. Terauchi Y, Kim YK, Tanaka T, Nanatani K, Takahashi T, Abe K. 2017. Asp30 of Aspergillus oryzae cutinase CutL1 is involved in the ionic interaction with fungal hydrophobin RolA. Biosci Biotechnol Biochem 81:1363-1368.

27. Wosten HA, Scholtmeijer K. 2015. Applications of hydrophobins: current state and perspectives. Appl Microbiol Biotechnol 99:1587-97.

28. Laemmli UK. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680-5.

29. Morris VK, Linser R, Wilde KL, Duff AP, Sunde M, Kwan AH. 2012. Solid-state NMR spectroscopy of functional amyloid from a fungal hydrophobin: a well-ordered beta-sheet core amidst structural heterogeneity. Angew Chem Int Ed Engl 51:12621-5.

30. Paslay LC, Falgout L, Savin DA, Heinhorst S, Cannon GC, Morgan SE. 2013. Kinetics and control of self-assembly of ABH1 hydrophobin from the edible white button mushroom. Biomacromolecules 14:2283-93.

31. Zykwinska A, Guillemette T, Bouchara JP, Cuenot S. 2014. Spontaneous self-assembly of SC3 hydrophobins into nanorods in aqueous solution. Biochim Biophys Acta 1844:1231-7.

32. Morris VK, Kwan AH, Sunde M. 2013. Analysis of the structure and conformational states of DewA gives insight into the assembly of the fungal hydrophobins. J Mol Biol 425:244-56.

33. Yoon J, Kimura S, Maruyama J, Kitamoto K. 2009. Construction of quintuple protease gene disruptant for heterologous protein production in Aspergillus oryzae. Appl Microbiol Biotechnol 82:691-701.

34. Yoon J, Maruyama J, Kitamoto K. 2011. Disruption of ten protease genes in the filamentous fungus Aspergillus oryzae highly improves production of heterologous proteins. Appl Microbiol Biotechnol 89:747-59.

35. 永山恵美. 2016. 糸状菌界面活性タンパク質 RolA の固体表面への吸着機構の解析. H27 年度東北大学大学院農学研究科生物産業創成科学専攻修士論文.

36. Wang H, Chen S, Li L, Jiang S. 2005. Improved method for the preparation of carboxylic acid and amine terminated self-assembled monolayers of alkanethiolates. Langmuir 21:2633-6.

37. Jans K, Bonroy K, De Palma R, Reekmans G, Jans H, Laureyn W, Smet M, Borghs G, Maes G. 2008. Stability of mixed PEO-thiol SAMs for biosensing applications. Langmuir 24:3949- 3954.

38. Hikita M, Tanaka K, Nakamura T, Kajiyama T, Takahara A. 2005. Super-liquid-repellent surfaces prepared by colloidal silica nanoparticles covered with fluoroalkyl groups. Langmuir 21:7299-302.

39. Sauerbrey G. 1959. Verwendung von Schwingquarzen zur Wägung dünner Schichten und zur Mikrowägung. Zeitschrift für Physik 155:206-222.

40. Tanaka T, Tanabe H, Uehara K, Takahashi T, Abe K. 2014. Involvement of hydrophobic amino acid residues in C7-C8 loop of Aspergillus oryzae hydrophobin RolA in hydrophobic interaction between RolA and a polyester. Biosci Biotechnol Biochem 78:1693-9.

41. 田中拓未. 2014. 麹菌の産生する hydrophobin RolA と固体表面間の相互作用に関する研究. H25 年度東北大学大学院農学研究科生物産業創成科学専攻修士論文.

42. Shyue J-J, De Guire MR, Nakanishi T, Masuda Y, Koumoto K, Sukenik CN. 2004. Acid−base properties and zeta potentials of self-assembled monolayers obtained via in situ transformations. Langmuir 20:8693-8698.

43. Dougherty GM, Rose KA, Tok JB, Pannu SS, Chuang FY, Sha MY, Chakarova G, Penn SG. 2008. The zeta potential of surface-functionalized metallic nanorod particles in aqueous solution. Electrophoresis 29:1131-9.

44. Gruner MS, Szilvay GR, Berglin M, Lienemann M, Laaksonen P, Linder MB. 2012. Self- assembly of class II hydrophobins on polar surfaces. Langmuir 28:4293-300.

45. Macindoe I, Kwan AH, Ren Q, Morris VK, Yang W, Mackay JP, Sunde M. 2012. Self-assembly of functional, amphipathic amyloid monolayers by the fungal hydrophobin EAS. Proc Natl Acad Sci U S A 109:E804-11.

46. Blodgett KB. 1935. Films built by depositing successive monomolecular layers on a solid surface. Journal of the American Chemical Society 57:1007-1022.

47. 近澤正敏, 田嶋和夫. 2001. 基礎科学コース 界面化学.

48. 千葉有紗. 2019. Aspergillus oryzae 由来界面活性タンパク質 hydrophobin RolA の高発現系の確立. H30 年度東北大学農学部卒業論文.

49. Ishizaki Y, Yamamoto S, Miyashita T, Mitsuishi M. 2018. Synthesis and porous SiO2 nanofilm formation of the silsesquioxane-containing amphiphilic block copolymer. Langmuir 34:8007- 8014.

50. Houmadi S, Ciuchi F, De Santo MP, De Stefano L, Rea I, Giardina P, Armenante A, Lacaze E, Giocondo M. 2008. Langmuir-Blodgett film of hydrophobin protein from Pleurotus ostreatus at the air-water interface. Langmuir 24:12953-7.

51. Houmadi S, Rodriguez RD, Longobardi S, Giardina P, Faure MC, Giocondo M, Lacaze E. 2012. Self-assembly of hydrophobin protein rodlets studied with atomic force spectroscopy in dynamic mode. Langmuir 28:2551-7.

52. Yu L, Zhang B, Szilvay GR, Sun R, Janis J, Wang Z, Feng S, Xu H, Linder MB, Qiao M. 2008. Protein HGFI from the edible mushroom Grifola frondosa is a novel 8 kDa class I hydrophobin that forms rodlets in compressed monolayers. Microbiology 154:1677-85.

53. Kwan AH, Macindoe I, Vukasin PV, Morris VK, Kass I, Gupte R, Mark AE, Templeton MD, Mackay JP, Sunde M. 2008. The Cys3-Cys4 loop of the hydrophobin EAS is not required for rodlet formation and surface activity. J Mol Biol 382:708-20.

54. de Vocht ML, Scholtmeijer K, van der Vegte EW, de Vries OM, Sonveaux N, Wosten HA, Ruysschaert JM, Hadziloannou G, Wessels JG, Robillard GT. 1998. Structural characterization of the hydrophobin SC3, as a monomer and after self-assembly at hydrophobic/hydrophilic interfaces. Biophys J 74:2059-68.

55. Scholtmeijer K, de Vocht ML, Rink R, Robillard GT, Wosten HA. 2009. Assembly of the fungal SC3 hydrophobin into functional amyloid fibrils depends on its concentration and is promoted by cell wall polysaccharides. J Biol Chem 284:26309-14.

56. de Vocht ML, Reviakine I, Ulrich WP, Bergsma-Schutter W, Wosten HA, Vogel H, Brisson A, Wessels JG, Robillard GT. 2002. Self-assembly of the hydrophobin SC3 proceeds via two structural intermediates. Protein Sci 11:1199-205.

57. Rea I, Giardina P, Longobardi S, Porro F, Casuscelli V, Rendina I, De Stefano L. 2012. Hydrophobin Vmh2-glucose complexes self-assemble in nanometric biofilms. J R Soc Interface 9:2450-6.

58. Zykwinska A, Pihet M, Radji S, Bouchara JP, Cuenot S. 2014. Self-assembly of proteins into a three-dimensional multilayer system: investigation of the surface of the human fungal pathogen Aspergillus fumigatus. Biochim Biophys Acta 1844:1137-44.

59. Grauby-Heywang C, Morote F, Mathelie-Guinlet M, Gammoudi I, Faye NR, Cohen-Bouhacina T. 2016. Influence of oxidized lipids on palmitoyl-oleoyl-phosphatidylcholine organization, contribution of Langmuir monolayers and Langmuir-Blodgett films. Chem Phys Lipids 200:74-82.

60. Wang Y, Wen G, Pispas S, Yang S, You K. 2018. Effects of subphase pH, temperature and ionic strength on the aggregation behavior of PnBA-b-PAA at the air/water interface. J Colloid Interface Sci 512:862-870.

61. Wang X, Song D, Wang B, Yang J, Ge L, Zhao L, Xu H, Qiao M. 2017. A mutant of hydrophobin HGFI tuning the self-assembly behaviour and biosurfactant activity. Appl Microbiol Biotechnol 101:8419-8430.

62. Yang JX, Wang B, Ge L, Yang XT, Wang XX, Dai YX, Niu BL, Xu HJ, Qiao MQ. 2019. The enhancement of surface activity and nanoparticle stability through the alteration of charged amino acids of HGFI. Colloids and Surfaces B-Biointerfaces 175:703-712.

63. Chi EY, Krishnan S, Randolph TW, Carpenter JF. 2003. Physical stability of proteins in aqueous solution: Mechanism and driving forces in nonnative protein aggregation. Pharmaceutical Research 20:1325-1336.

64. Collins KD. 2004. Ions from the Hofmeister series and osmolytes: effects on proteins in solution and in the crystallization process. Methods 34:300-311.

65. Collins KD. 2006. Ion hydration: Implications for cellular function, polyelectrolytes, and protein crystallization. Biophysical Chemistry 119:271-281.

66. Collins KD. 2012. Why continuum electrostatics theories cannot explain biological structure, polyelectrolytes or ionic strength effects in ion–protein interactions. Biophysical Chemistry 167:43-59.

67. Valsecchi I, Dupres V, Michel JP, Duchateau M, Matondo M, Chamilos G, Saveanu C, Guijarro JI, Aimanianda V, Lafont F, Latge JP, Beauvais A. 2019. The puzzling construction of the conidial outer layer of Aspergillus fumigatus. Cell Microbiol 21:e12994.

68. Valsecchi I, Dupres V, Stephen-Victor E, Guijarro JI, Gibbons J, Beau R, Bayry J, Coppee JY, Lafont F, Latge JP, Beauvais A. 2017. Role of Hydrophobins in Aspergillus fumigatus. J Fungi (Basel) 4.

69. Pavkov-Keller T, Howorka S, Keller W. 2011. The structure of bacterial S-layer proteins. Prog Mol Biol Transl Sci 103:73-130.

70. Kojima S, Hayashi K, Tochigi S, Kusano T, Kaneko J, Kamio Y. 2016. Peptidoglycan- associated outer membrane protein Mep45 of rumen anaerobe Selenomonas ruminantium forms a non-specific diffusion pore via its C-terminal transmembrane domain. Biosci Biotechnol Biochem 80:1954-9.

71. Hobley L, Ostrowski A, Rao FV, Bromley KM, Porter M, Prescott AR, MacPhee CE, van Aalten DM, Stanley-Wall NR. 2013. BslA is a self-assembling bacterial hydrophobin that coats the Bacillus subtilis biofilm. Proc Natl Acad Sci U S A 110:13600-5.

72. Brandani GB, Schor M, Morris R, Stanley-Wall N, MacPhee CE, Marenduzzo D, Zachariae U. 2015. The bacterial hydrophobin BslA is a switchable ellipsoidal Janus nanocolloid. Langmuir 31:11558-63.

73. Bromley KM, Morris RJ, Hobley L, Brandani G, Gillespie RM, McCluskey M, Zachariae U, Marenduzzo D, Stanley-Wall NR, MacPhee CE. 2015. Interfacial self-assembly of a bacterial hydrophobin. Proc Natl Acad Sci U S A 112:5419-24.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る