リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Division of the role and physiological impact of multiple lysophosphatidic acid acyltransferase paralogs」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Division of the role and physiological impact of multiple lysophosphatidic acid acyltransferase paralogs

Ogawa, Takuya Kuboshima, Misaki Suwanawat, Nittikarn Kawamoto, Jun Kurihara, Tatsuo 京都大学 DOI:10.1186/s12866-022-02641-8

2022

概要

[Background] Lysophosphatidic acid acyltransferase (LPAAT) is a phospholipid biosynthesis enzyme that introduces a particular set of fatty acids at the sn-2 position of phospholipids. Many bacteria have multiple LPAAT paralogs, and these enzymes are considered to have different fatty acid selectivities and to produce diverse phospholipids with distinct fatty acid compositions. This feature is advantageous for controlling the physicochemical properties of lipid membranes to maintain membrane integrity in response to the environment. However, it remains unclear how LPAAT paralogs are functionally differentiated and biologically significant. [Results] To better understand the division of roles of the LPAAT paralogs, we analyzed the functions of two LPAAT paralogs, PlsC4 and PlsC5, from the psychrotrophic bacterium Shewanella livingstonensis Ac10. As for their enzymatic function, lipid analysis of plsC4- and plsC5-inactivated mutants revealed that PlsC4 prefers iso-tridecanoic acid (C₁₂-chain length, methyl-branched), whereas PlsC5 prefers palmitoleic acid (C₁₆-chain length, monounsaturated). Regarding the physiological role, we found that plsC4, not plsC5, contributes to tolerance to cold stress. Using bioinformatics analysis, we demonstrated that orthologs of PlsC4/PlsC5 and their close relatives, constituting a new clade of LPAATs, are present in many γ-proteobacteria. We also found that LPAATs of this clade are phylogenetically distant from principal LPAATs, such as PlsC1 of S. livingstonensis Ac10, which are universally conserved among bacteria, suggesting the presence of functionally differentiated LPAATs in these bacteria. [Conclusions] PlsC4 and PlsC5, which are LPAAT paralogs of S. livingstonensis Ac10, play different roles in phospholipid production and bacterial physiology. An enzyme belonging to PlsC4/PlsC5 subfamilies and their close relatives are present, in addition to principal LPAATs, in many γ-proteobacteria, suggesting that the division of roles is more common than previously thought. Thus, both principal LPAATs and PlsC4/PlsC5-related enzymes should be considered to decipher the metabolism and physiology of bacterial cell membranes.

この論文で使われている画像

参考文献

1. Yao J, Rock CO. Phosphatidic acid synthesis in bacteria. Biochim Biophys

Acta - Mol Cell Biol Lipids. 2013;1831:495–502. https://​doi.​org/​10.​1016/j.​

bbalip.​2012.​08.​018.

2. Okuyama H, Wakil SJ. Positional specificities of acyl coenzyme

A:glycerophosphate and acyl coenzyme A: monoacylglycerophosphate

acyltransferases in Escherichia coli. J Biol Chem. 1973;248:5197–205.

3. Shih GC, Kahler CM, Swartley JS, Rahman MM, Coleman J, Carlson RW, et al.

Multiple lysophosphatidic acid acyltransferases in Neisseria meningitidis.

Mol Microbiol. 1999;32:942–52. https://​doi.​org/​10.​1046/J.​1365-​2958.​1999.​

01404.X.

4. Aygun-Sunar S, Bilaloglu R, Goldfine H, Daldal F. Rhodobacter capsulatus

OlsA is a bifunctional enyzme active in both ornithine lipid and phosphatidic acid biosynthesis. J Bacteriol. 2007;189:8564–74. https://​doi.​org/​10.​

1128/​JB.​01121-​07.

5. Cullinane M, Baysse C, Morrissey JP, O’Gara F. Identification of two

lysophosphatidic acid acyltransferase genes with overlapping function

in Pseudomonas fluorescens. Microbiology. 2005;151:3071–80. https://​doi.​

org/​10.​1099/​MIC.0.​27958-0.

6. Okazaki K, Sato N, Tsuji N, Tsuzuki M, Nishida I. The significance of C16

fatty acids in the sn-2 positions of glycerolipids in the photosynthetic

growth of Synechocystis sp. PCC6803. Plant Physiol. 2006;141:546–56.

https://​doi.​org/​10.​1104/​PP.​105.​075796.

7. Ernst R, Ejsing CS, Antonny B. Homeoviscous adaptation and the regulation of membrane lipids. J Mol Biol. 2016;428:4776–91. https://​doi.​org/​10.​

1016/j.​jmb.​2016.​08.​013.

8. Zhang Y-M, Rock CO. Membrane lipid homeostasis in bacteria. Nat Rev

Microbiol. 2008;6:222–33. https://​doi.​org/​10.​1038/​nrmic​ro1839.

9. Corradi V, Sejdiu BI, Mesa-Galloso H, Abdizadeh H, Noskov SY, Marrink

SJ, et al. Emerging diversity in lipid–protein interactions. Chem Rev.

2019;119:5775–848. https://​doi.​org/​10.​1021/​ACS.​CHEMR​EV.​8B004​51.

10. Battle AR, Ridone P, Bavi N, Nakayama Y, Nikolaev YA, Martinac B. Lipid–protein

interactions: lessons learned from stress. Biochim Biophys Acta Biomembr.

2015;1848:1744–56. https://​doi.​org/​10.​1016/j.​bbamem.​2015.​04.​012.

11. Coleman J. Characterization of Escherichia coli cells deficient in 1-acyl-sn-glycerol-3-phosphate acyltransferase activity. J Biol Chem. 1990;265:17215–21.

12. Toyotake Y, Nishiyama M, Yokoyama F, Ogawa T, Kawamoto J, Kurihara T.

A novel lysophosphatidic acid acyltransferase of Escherichia coli produces

membrane phospholipids with a cis-vaccenoyl group and is related to

flagellar formation. Biomolecules. 2020;10:745. https://​doi.​org/​10.​3390/​

BIOM1​00507​45.

13. Cho H-N, Kasai W, Kawamoto J, Esaki N, Kurihara T. Characterization of

1-acyl-sn-glycerol-3-phosphate acyltransferase from a polyunsaturated

faty acid-producing bacterium, Shewanella livingstonensis Ac10. Trace

Nutr Res. 2012;29:92–9.

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Ogawa et al. BMC Microbiology

(2022) 22:241

14. Ogawa T, Tanaka A, Kawamoto J, Kurihara T. Purification and characterization of 1-acyl-sn-glycerol-3-phosphate acyltransferase with a substrate

preference for polyunsaturated fatty acyl donors from the eicosapentaenoic acid-producing bacterium Shewanella livingstonensis Ac10. J

Biochem. 2018;164:33–9. https://​doi.​org/​10.​1093/​jb/​mvy025.

15. Kawamoto J, Kurihara T, Yamamoto K, Nagayasu M, Tani Y, Mihara H, et al.

Eicosapentaenoic acid plays a beneficial role in membrane organization

and cell division of a cold-adapted bacterium, Shewanella livingstonensis

Ac10. J Bacteriol. 2009;191:632–40. https://​doi.​org/​10.​1128/​JB.​00881-​08.

16. Nishida T, Orikasa Y, Ito Y, Yu R, Yamada A, Watanabe K, et al. Escherichia

coli engineered to produce eicosapentaenoic acid becomes resistant

against oxidative damages. FEBS Lett. 2006;580:2731–5. https://​doi.​org/​

10.​1016/J.​FEBSL​ET.​2006.​04.​032.

17. Dai XZ, Kawamoto J, Sato SB, Esaki N, Kurihara T. Eicosapentaenoic acid

facilitates the folding of an outer membrane protein of the psychrotrophic bacterium, Shewanella livingstonensis Ac10. Biochem Biophys Res

Commun. 2012;425:363–7. https://​doi.​org/​10.​1016/j.​bbrc.​2012.​07.​097.

18. Toyotake Y, Cho HN, Kawamoto J, Kurihara T. A novel 1-acyl-sn-glycerol3-phosphate O-acyltransferase homolog for the synthesis of membrane

phospholipids with a branched-chain fatty acyl group in Shewanella

livingstonensis Ac10. Biochem Biophys Res Commun. 2018;500:704–9.

https://​doi.​org/​10.​1016/j.​bbrc.​2018.​04.​140.

19. Wang F, Wang F, Xiao X, Ou HY, Gai Y. Role and regulation of fatty acid

biosynthesis in the response of Shewanella piezotolerans WP3 to different

temperatures and pressures. J Bacteriol. 2009;191:2574–84. https://​doi.​

org/​10.​1128/​JB.​00498-​08.

20. Lewis RN, McElhaney RN. Thermotropic phase behavior of model

membranes composed of phosphatidylcholines containing methyl

iso-branched fatty acids. 1. Differential scanning calorimetric studies.

Biochemistry. 2002;24:2431–9. https://​doi.​org/​10.​1021/​BI003​31A007.

21. Zhang Y, Guo J, Zhang N, Yuan W, Lin Z, Huang W. Characterization and

analysis of a novel diguanylate cyclase PA0847 from Pseudomonas aeruginosa PAO1. Infect Drug Resist. 2019;12:655–65. https://​doi.​org/​10.​2147/​

IDR.​S1944​62.

22. Mobley HLT, Spurbeck RR, Tarrien RJ. Enzymatically active and inactive

phosphodiesterases and diguanylate cyclases are involved in regulation

of motility or sessility in Escherichia coli CFT073. mBio. 2012;3:e00307–12.

https://​doi.​org/​10.​1128/​MBIO.​00307-​12.

23. Simm R, Morr M, Kader A, Nimtz M, Römling U. GGDEF and EAL domains

inversely regulate cyclic di-GMP levels and transition from sessility to

motility. Mol Microbiol. 2004;53:1123–34. https://​doi.​org/​10.​1111/J.​1365-​

2958.​2004.​04206.X.

24. Yamashita A, Nakanishi H, Suzuki H, Kamata R, Tanaka K, Waku K, et al.

Topology of acyltransferase motifs and substrate specificity and accessibility in 1-acyl-sn-glycero-3-phosphate acyltransferase 1. Biochim Biophys

Acta - Mol Cell Biol Lipids. 2007;1771:1202–15. https://​doi.​org/​10.​1016/j.​

bbalip.​2007.​07.​002.

25. Robertson RM, Yao J, Gajewski S, Kumar G, Martin EW, Rock CO, et al.

A two-helix motif positions the lysophosphatidic acid acyltransferase

active site for catalysis within the membrane bilayer. Nat Struct Mol Biol.

2017;24:666–71. https://​doi.​org/​10.​1038/​nsmb.​3436.

26. Ito T, Gong C, Kawamoto J, Kurihara T. Development of a versatile method

for targeted gene deletion and insertion by using the pyrF gene in the

psychrotrophic bacterium, Shewanella livingstonensis Ac10. J Biosci

Bioeng. 2016;122:645–51. https://​doi.​org/​10.​1016/j.​jbiosc.​2016.​06.​004.

27. Hsu F-F, Turk J. Charge-remote and charge-driven fragmentation

processes in diacyl glycerophosphoethanolamine upon low-energy

collisional activation: a mechanistic proposal. J Am Soc Mass Spectrom.

2000;12:892–9. https://​doi.​org/​10.​1016/​S1044-​0305.

28. Hsu FF, Turk J. Studies on phosphatidylglycerol with triple quadrupole

tandem mass spectrometry with electrospray ionization: fragmentation

processes and structural characterization. J Am Soc Mass Spectrom.

2001;12:1036–43. https://​doi.​org/​10.​1016/​S1044-​0305(01)​00285-9.

29. Coleman J. Characterization of the Escherichia coli gene for 1-acyl-snglycerol-3-phosphate acyltransferase (plsC). MGG Mol Gen Genet.

1992;232:295–303. https://​doi.​org/​10.​1007/​BF002​80009.

30. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol.

2018;35:1547–9. https://​doi.​org/​10.​1093/​molbev/​msy096.

Page 13 of 13

31. Gullingsrud J, Schulten K. Lipid bilayer pressure profiles and mechanosensitive channel gating. Biophys J. 2004;86:3496–509. https://​doi.​org/​10.​

1529/​bioph​ysj.​103.​034322.

32. Perozo E, Kloda A, Cortes DM, Martinac B. Physical principles underlying

the transduction of bilayer deformation forces during mechanosensitive

channel gating. Nat Struct Biol. 2002;9:696–703. https://​doi.​org/​10.​1038/​

nsb827.

33. Miyake R, Kawamoto J, Wei YL, Kitagawa M, Kato I, Kurihara T, et al. Construction of a low-temperature protein expression system using a coldadapted bacterium, Shewanella sp. strain Ac10, as the host. Appl Environ

Microbiol. 2007;73:4849–56. https://​doi.​org/​10.​1128/​AEM.​00824-​07.

34. Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959;37:911–7. https://​doi.​org/​10.​1139/​

o59-​099.

35. Kanehisa M, Furumichi M, Sato Y, Ishiguro-Watanabe M, Tanabe M.

KEGG: integrating viruses and cellular organisms. Nucleic Acids Res.

2021;49:D545–51. https://​doi.​org/​10.​1093/​nar/​gkaa9​70.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Ready to submit your research ? Choose BMC and benefit from:

• fast, convenient online submission

• thorough peer review by experienced researchers in your field

• rapid publication on acceptance

• support for research data, including large and complex data types

• gold Open Access which fosters wider collaboration and increased citations

• maximum visibility for your research: over 100M website views per year

At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

...

参考文献をもっと見る