リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Crystal structures of EfeB and EfeO in a bacterial siderophore-independent iron transport system」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Crystal structures of EfeB and EfeO in a bacterial siderophore-independent iron transport system

Nakatsuji, Sakiko Okumura, Kenji Takase, Ryuichi Watanabe, Daisuke Mikami, Bunzo Hashimoto, Wataru 京都大学 DOI:10.1016/j.bbrc.2022.01.055

2022.02.26

概要

EfeUOB is a siderophore-independent iron uptake mechanism in bacteria. EfeU, EfeO, and EfeB are a permease, an iron-binding or electron-transfer protein, and a peroxidase, respectively. A Gram-negative bacterium, Sphingomonas sp. strain A1, encodes EfeU, EfeO, EfeB together with alginate-binding protein Algp7, a truncated EfeO-like protein (EfeOII), in the genome. The typical EfeO (EfeOI) consists of N-terminal cupredoxin and C-terminal M75 peptidase domains. Here, we detail the structure and function of bacterial EfeB and EfeO. Crystal structures of strain A1 EfeB and Escherichia coli EfeOI were determined at 2.30 Å and 1.85 Å resolutions, respectively. A molecule of heme involved in oxidase activity was bound to the C-terminal Dyp peroxidase domain of EfeB. Two domains of EfeOI were connected by a short loop, and a zinc ion was bound to four residues, Glu156, Glu159, Asp173, and Glu255, in the C-terminal M75 peptidase domain. These residues formed tetrahedron geometry suitable for metal binding and are well conserved among various EfeO proteins including Algp7 (EfeOII), although the metal-binding site (HxxE) is proposed in the C-terminal M75 peptidase domain. This is the first report on structure of a typical EfeO with two domains, postulating a novel metal-binding motif “ExxE-//-D-//-E” in the EfeO C-terminal M75 peptidase domain.

この論文で使われている画像

参考文献

12

[1] J A Morrissey, A Cockayne, P J Hill, P. Williams, Molecular cloning and analysis of a

13

putative siderophore ABC transporter from Staphylococcus aureus, Infect. Immun. 68

22

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

(2000) 6281-6288.

[2] M L Cartron, S Maddocks, P Gillingham, C J Craven, S C Andrews, Feo-transport of

ferrous iron into bacteria, Biometals 19 (2006), 143-157.

[3] J Cao, M R Woodhall, J Alvarez, M L Cartron, S C Andrews, EfeUOB (YcdNOB) is a

tripartite, acid-induced and CpxAR-regulated, low-pH Fe2+ transporter that is cryptic in

Escherichia coli K-12 but functional in E. coli O157:H7, Mol. Microbiol. 65 (2007) 857-

875.

[4] X H Liu, Q Du, Z Wang, D Y Zhu, Y Huang, N Li, T D Wei, S J Xu, L C Gu, Crystal

structure and biochemical features of EfeB/YcdB from Escherichia coli O157: ASP235

10

plays divergent roles in different enzyme-catalyzed processes, J. Biol. Chem. 286 (2011)

11

14922-14931.

12

[5] M B Rajasekaran, S Nilapwar, S C Andrews, K A Watson, EfeO-cupredoxins: major

13

new members of the cupredoxin superfamily with roles in bacterial iron transport,

23

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Biometals 23 (2010) 1-17.

[6] C Dennison, Investigating the structure and function of cupredoxins, Coordin. Chem.

Rev. 249 (2005) 3025-3054.

[7] B Fricke, O Parchmann, K Kruse, P Rucknagel A Schierhorn, S Menge,

Characterization and purification of an outer membrane metalloproteinase from

Pseudomonas aeruginosa with fibrinogenolytic activity, Biochim. Biophys. Acta 1454

(1999) 236-250.

[8] J He, A Ochiai, Y Fukuda, W Hashimoto, K Murata, A putative lipoprotein of

Sphingomonas sp. strain A1 binds alginate rather than a lipid moiety, FEMS Microbiol.

10

Lett. 288 (2008) 221-226.

11

[9] K Temtrirath, K Murata, W Hashimoto, Structural insights into alginate binding by

12

bacterial cell-surface protein, Carbohydr. Res. 404 (2015) 39-45.

13

[10] Y A Morch, I Donati, B L Strand, G Skjak-Braek, Effect of Ca2+, Ba2+, and Sr2+ on

24

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

alginate microbeads, Biomacromolecules 7 (2006) 1471-1480.

[11] Z Otwinowski, W Minor, Processing of X-ray diffraction data collected in oscillation

mode, Methods Enzymol. 276 (1997) 307-326.

[12] W Kabsch, Xds, Acta Crystallogr. D Biol. Crystallogr. 66 (2010) 125-132.

[13] A Vagin, A Teplyakov, MOLREP: an automated program for molecular replacement,

J. App. Crystallogr. 30 (1997) 1022-1025.

[14] P D Adams, P V Afonine, G Bunkoczi, V B Chen, I W Davis, N Echols, J Headd, L W

Hung, G J Kapral, R W Grosse-Kunstleve, A J McCoy, N W Moriarty, R Oeffner, R J Read,

D C Richardson, J S Richardson, T C Terwilliger, P H Zwart, PHENIX: a comprehensive

10

Python-based system for macromolecular structure solution, Acta Crystallogr. D Biol.

11

Crystallogr. 66 (2010) 213-221.

12

[15] G N Murshudov, A Vagin, E J Dodson, Refinement of macromolecular structures by

13

the maximum-likelihood method, Acta Crystallogr. D Biol. Crystallogr. 53 (1997) 240-255.

25

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

[16] P Emsley, K Cowtan, Coot: model-building tools for molecular graphics, Acta

Crystallogr. D Biol. Crystallogr. 60 (2004) 2126-2132.

[17] L C Schrodinger, The PyMOL molecular graphics system, version 1.3. (2010).

[18] K Temtrirath, K Okumura, Y Maruyama, B Mikami, K Murata, K, W Hashimoto,

Binding mode of metal ions to the bacterial iron import protein EfeO. Biochem. Biophys.

Res. Commun. 493 (2017) 1095-1101.

[19] M Saito, D Horiguchi, K Kina, Spectrophotometric determination of traces of iron(II)

with novel water-soluble nitrosophenol derivatives. BUNSEKI KAGAKU 30 (1981) 525-

1931.

10

[20] Y Fu, H T Tsui, K E Bruce, L Sham, K A Higgins, J P Lisher, K M Kazmierczak, M J

11

Maroney, C E Dann, M E Winkler, D P Giedroc, A new structural paradigm in copper

12

resistance in Streptococcus pneumoniae. Nat. Chem. Biol. 9 (2013) 177-183.

26

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Figure legends

Fig. 1. EfeUOB cluster and structure/function of EfeB. (A) EfeUOB gene cluster in

Sphingomonas sp. strain A1. Cup and M75 represent cupredoxin and M75 peptidase domains,

respectively. (B) Crystal structure of strain A1 EfeB (cyan) was determined through molecular

replacement using the structure of E. coli EfeB (magenta) (PDB ID: 3O72). Green, blue, and

red in the stick model represent carbon, nitrogen, and oxygen atoms in a heme molecule. (C)

Heme-binding site in strain A1 EfeB. Green, cyan, blue, and red represent carbon in heme,

carbon in EfeB, nitrogen, and oxygen atoms, respectively. Gray and cyan spheres show O2 and

water molecules, respectively. Dotted lines show hydrogen bonds. (D) Peroxidase activity of

10

strain A1 EfeB in the presence or absence of reducing agents.

11

12

Fig. 2. Binding of rare earth element by and crystal structure of Algp7 (EfeOII). (A) DSF

13

analysis of Algp7 (EfeOII) in the absence or presence of rare earth element (Sm3+). The curves

27

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

show the negative derivative plot obtained from the fluorescence profile. Thermal shift to higher

temperature was observed in the presence of the rare earth element (Sm3+). (B) Structure of

Algp7 (EfeOII) was determined through molecular replacement using the previously clarified

structure of Algp7 (EfeOII) (PDB ID: 3AT7). Pink, Algp7 (EfeOII) determined here; blue, Algp7

(EfeOII) complexed with Cu2+ (PDB ID: 5Y4C). The right structure is rotated 90o toward the

reader relative to that of left. (C) Copper-binding site in Algp7 (EfeOII). Pink, carbon atoms of

Algp7 (EfeOII) determined here; blue, carbon atoms of Algp7 (EfeOII) complexed with Cu2+

(PDB ID: 5Y4C).

10

Fig. 3. Crystal structure of EfeOI. (A) Left, overall structure of E. coli EfeOI. Red and yellow

11

represent cupredoxin and M75 peptidase domains, respectively. Right, zinc bound (magenta) at

12

the metal-binding site in the M75 peptidase domain of EfeOI. Water molecules are colored blue.

13

Glu159 and Glu255 are disordered. The Phenix Polder omit map for zinc and ligated residues

28

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

is shown with more than 3.5 σ. (B) Superimposition of the cupredoxin domain (red) of EfeOI

and CupA (cyan). (C) Superimposition of the M75 peptidase domain (yellow) of EfeOI and

Algp7 (EfeOII) (blue). Zinc bound to EfeOI and copper bound to Algp7 (EfeOII) are shown as

magenta and green spheres, respectively.

Fig. 4. Structural alignment of metal-binding sites in EfeO. (A) Three-dimensional arrangement

of site I (green) and II (yellow) residues in the cupredoxin domain (red) of EfeOI. (B) Multiple

sequence alignment of the EfeOI cupredoxin domain and other cupredoxin proteins. The residue

numberings for EfeOI are shown at the top. Site I (green), site II (yellow), copper binding site

10

(cyan) residues. (C) Left, close-up site III (left, magenta colored) in EfeOI. Right, close-up

11

metal-binding site in the M75 peptidase domain of EfeOI (yellow) and Algp7 (EfeOII) (blue).

12

Zinc bound to EfeOI and copper bound to Algp7 (EfeOII) are shown as magenta and green

13

spheres, respectively. (D) Multiple sequence alignment of M75 peptidase domain proteins

29

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

(orange, EfeOI; cyan, EfeOII). The residue numberings for EfeOI are shown at the top. Site III

(magenta), metal-binding site residues (blue).

30

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Figure 1

31

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Figure 2

32

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Figure 3

33

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Figure 4

34

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Table S1. X-ray data collection and structure refinement statistics.

Data collection

Wavelength (Å)

Space group

Unit cell parameters (Å, °)

Resolution limit (Å)

Total reflections

Unique reflections

Completeness (%)

I/σ (I)

Rmerge (%)

CC(1/2)

Wilson B (Å )

Refinement

Resolution limit (Å)

R-factor (%)

Rfree (%)

Final model

r.m.s.d.

Bond (Å)

Angle (°)

Ramachandran plot (%)

Favored regions

Allowed regions

Outliers

Clashscore

Rotamer ouliers (%)

PDB ID

EfeB

Algp7 (EfeOII)

EfeOI

1.0000

P212121

a = 100.0, b = 105.0,

c = 83.8

1.0000

P212121

a = 52.8, b = 97.5,

c = 104.9

1.0000

C2

a = 139.9, b = 51.9,

c = 117.4

α= 90.0, β = 112.4, γ = 90.0

50.0 – 1.85 (1.96 – 1.85)

249,772 (33,933)

65,646 (9,994)

97.7 (92.8)

18.5 (2.48)

3.9 (40.0)

99.9 (91.8)

37.9

50.0 – 1.88 (1.91 – 1.88)

307,493 (14,878)

44,838 (2,188)

99.8 (99.3)

36.5 (5.3)

7.2 (48.3)

99.9 (95.7)

28.0

44.5 – 2.30 (2.36 – 2.30)

23.4 (24.8)

29.8 (36.0)

781 residues, 257 waters,

24 1,2-ethanediol,

1 oxygen molecule,

5 di (hydroxyethyl) ether,

3 triethylene glycol, 2

heme

46.5 – 1.88 (1.92 – 1.88)

18.2 (25.1)

21.8 (33.0)

502 residues, 421 waters,

9 1,2-ethanediol, 1 citrate

48.2 – 1.85 (1.87 – 1.85)

20.1 (34.0)

24.4 (37.3)

697 residues, 322 waters,

30 1,2-ethanediol,

1 acetate, 1 sulfate,

1 triethylene glycol,

1 zinc ion

0.008

0.971

0.01

1.47

0.006

0.806

96.0

3.5

0.5

0.63

6JBN

98.0

1.8

0.2

6JBO

98.1

1.7

0.14

5.85

2.5

7WGU

50.0 – 2.30 (2.44 – 2.30)

307,536 (50,278)

38,892 (6,217)

97.5 (97.9)

19.4 (10.2)

6.1 (14.8)

99.9 (99.7)

31.2

Data on highest shells are given in parenthesis.

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る