リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Functional analysis of small RNAs in the pearl oyster, Pinctada fucata」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Functional analysis of small RNAs in the pearl oyster, Pinctada fucata

黄, 松銭 東京大学 DOI:10.15083/0002004935

2022.06.22

概要

Based on the biogenesis mechanism and the type of Argonaute partners, animal species express three types of endogenous silencing inducting small RNAs, which are microRNAs (miRNAs), endogenous short interfering RNAs (endo-siRNAs), and PIWI-interacting RNAs (piRNAs). miRNAs and endo-siRNAs are generated from double-stranded precursors by Dicer into 20-23 nt length, while piRNAs are generated from single-stranded precursors with a length of 26-31 nt independently of RNase III enzymes, which are, in contrast, necessary for miRNAs and endo-siRNAs biogenesis. piRNAs are associated with PIWI subfamily members of the Argonaute family of proteins, while miRNAs and endo-siRNAs are associated with AGO subfamily members. These three small RNAs play crucial roles in development, differentiation, biological processes, and genomic protection. miRNAs negatively regulate gene expression at the post-transcriptional level, especially for signaling pathways involved in cellular development, proliferation, apoptosis, oncogenesis, and differentiation; endo-siRNA are involved in genome protection and gene regulation; piRNAs silence transposons to safeguard the genome integrity in animals. For that, recently studies related to the functions of these small RNAs have been increasingly carried out.

The Akoya pearl oyster Pinctada fucata, is a well-studied organism, owing to the economic potential of pearl production as well as the fascinating biology of mollusks. Pearl oyster P. fucata is also a representative marine species for biomineralization analysis. Mollusk shells consist of about 95% calcium carbonate (CaCO3) and 5% organic components. The fracture toughness of composite shell is 3,000 times greater than that of the crystals themselves. Mollusk shell is a biosynthetic composite material that has been the subject of much interest in the field of materials science because of the extraordinary properties and model characteristics of biomineralization.

Biomineralization process is a very complex process involving many biological and environmental factors are involved. The fabulous and diverse formation of mollusk shells has been widely recognized and has drawn great attention from the scientific and breeding communities. Over recent decades, a larger number of omics analysis such as transcriptomics, proteomics, genomics and gene interference techniques have been used to investigate the genetic components of biomineralization in mollusks. Small RNAs, however, are still indistinct in mollusks. Small RNA sequencing was used to explore small RNA expression in the pearl oyster P. fucata and thus abundant small RNAs, including miRNAs and piRNAs, were expressed in somatic and gonad tissues in P. fucata. In that respect, in this study, separate analyses were conducted on these two different sets of small RNAs in this study. Transcriptomic analysis was conducted to research piRNA biogenesis factors in P. fucata. To explore the piRNA function in this species, locked-nucleic-acid modified oligonucleotide (LNA) was used to silencing single piRNA (piRNA0001) expression. We also examined the endogenous genes expression profiles after piRNA0001 silencing in P. fucata by RNA-seq, and predicted the potential target genes of piRNA0001.

1. miRNAs expression and their predicted functions in biomineralization
To obtain various miRNAs and explore their potential functions in biomineralization, we constructed and sequenced eight small RNA libraries prepared from adductor muscle, gill, mantle, and ovary tissues of two adult P. fucata. miRNA identification was performed by comparing the sequences with the known mature miRNAs and miRNA precursors in miRBase 22.0. All unannotated sequences that failed to match with the sequences in the databases were analyzed by miRDeep2 to predict novel miRNA candidates. The expression profiles of identified miRNAs were clarified in all examined tissues according to the reads per million reads (RPM) method. Furthermore, biomineralization-related genes were used for miRNA target prediction in biomineralization process

A total of 186 known and 42 novel miRNAs were identified in the pearl oyster P. fucata, 165, 198, 159 and 185 miRNAs were found in adductor muscle, gill, ovary, and mantle tissues, respectively. Of these, 119 miRNAs were ubiquitously expressed in all examined tissues. Novel miRNAs demonstrate weaker expression than previously known miRNAs. Clustering analysis showed that the expression patterns of miRNAs were similar among the somatic tissues, but they differed significantly between the somatic and ovary tissues. We screened out 105 biomineralization-related genes with complete sequences from Pinctada genus for miRNA target prediction. Hundreds of potential target sites were detected among these biomineralization-related genes using multiple software tools. miR-1990c-3p, miR-876, miR-9a-3p, and novel-3, which were highly expressed in mantle tissues, may play a core role in biomineralization by regulating the formation of matrix proteins or protein kinase and transcription factor genes. Furthermore, stem-loop RT-PCR was employed to validate the existence of the identified miRNAs in the pearl oyster P. fucata.

2. piRNA expression patterns in P. fucata
piRNA and their partner PIWI proteins play an essential role in fertility, germline stem cell development, as well as the basic control of the integrity of animal genome. Abundant piRNA-sized small RNAs were detected in P. fucata somatic and gonad tissues by conducting separate analyses of piRNA. Reads were blasted against identified miRNAs, non-coding RNA database, Rfam, and reference genome to separate out miRNA, tRNA, snRNA, snoRNA, and rRNA sequences from the dataset. Reads within the size range of 26-31 nt were selected as putative piRNAs. The reads per million (RPM) value was used to compare the relative expression of unique piRNA among tissues. Putative piRNA sequences were mapped with reference genome. Neighboring piRNA loci with a distance of < 1 kb were merged for piRNA cluster analysis. Normalized expression of piRNA cluster was calculated using the measure reads per kilobase per million mapped reads (RPKM), and edgeR package was employed to identify differently expressed piRNA clusters among tissues. We also examined the 2-O-methylation of piRNA using βelimination reaction, detected putative piRNA expression in somatic tissues by northern blotting and in situ hybridization.

A total of 18.0 million reads united into 2.8 million unique sequences were considered valid putative piRNAs, which opt to begin with a uridine (U) at 5’ terminal. Among these unique piRNAs, 25% of the unique piRNAs mapped to multiple tandem loci on the scaffold. piRNA0001 with a sequence of 5′-UACUUUAACAUGGCACA GAUAUAAUGACCU-3’ was the most highly expressed in all examined somatic tissues. A total of 35,848 piRNA clusters were identified in P. fucata genome with a length range from 30 bp (single piRNA) to 60.9 kb. Moreover, a principal component analysis (PCA) of piRNA cluster expression patterns from all libraries clustered those of the somatic tissues together and differentiated the somatic and ovary tissues. As a result, differently expressed piRNA cluster analysis showed no difference in the expression patterns of piRNA clusters among the somatic tissues. However, 127, 30, and 377 piRNA clusters were significantly differently expressed in the mantle, adductor muscle, and gill tissues than in the ovary tissues, respectively. Furthermore, β-elimination reaction verified the 2- O-methylation at 3’ terminal of piRNA. Northern blotting showed piRNA expression in all examined somatic tissues, especially in gill. In situ hybridization of small RNA also revealed the expression of piRNAs in mantle tissue.

3. piRNA biogenesis factors in P. fucata
piRNAs biogenesis is associated with PIWI subfamily members of the Argonaute family of proteins and multiple factor complexes. Two models of piRNA biogenesis pathway have been demonstrated in various animals, which are the primary piRNA biogenesis pathway and the amplification loop or ping-pong cycle. Concerning the primary piRNA biogenesis pathway, long piRNA precursors are transcribed from piRNA clusters, cleaved and modified by complicated factors in cytoplasm, and then transported into the nucleus with complex factors. Primary piRNAs are also subjected to an amplification system to enforce the high expression of piRNA. Although piRNAs were ubiquitously expressed in P. fucata somatic and gonad tissues, the biogenesis factors are not clear. We preformed RNA sequencing to identify the homologous piRNA biogenesis factors in P. fucata. Relative expression of piRNA biogenesis factors were calculated by transcripts per million reads (TPM) method and RT-PCR. The characteristics of these factors were analyzed based on the deduced amino acid sequences; homologous sequences were also compared within diverse animals. A comprehensive computational analysis of piRNA populations among tissues were employed to clarify piRNA biogenesis pathway in the pearl oyster P. fucata.

piRNA biogenesis factors, including PIWI, AGO, Zuc and HEN1, are assembled based on the annotated transcripts by RNA sequencing. PIWI and AGO have the conserved PAZ and PIWI domain as homologues in other organisms, Zuc protein contain a PLDc domain. Although these factors were ubiquitously expressed in all examined tissues, Piwil1 and Piwil2 were highly expressed in male and female gonad tissues; Zuc and HEN1 were highly expressed in female gonad at three-year old. AGO2 was highly expressed in female tissues. AGO1, however, have a wellbalanced expression in all examined tissues. Bioinformatic analysis of piRNA population among different tissues showed that a Piwil1-Piwil1 is dependent to homotypic ping-pong amplification in somatic tissues, while a preponderant Piwil1-Piwil1 dependent homotypic and an unpredominant Piwil1-Piwil2 dependent heterotypic ping-pong amplification were both displayed in gonad tissues. In support to these findings, 29/30 nt piRNAs presumably bound to Piwil1, are heavily biased for a 5’ uridine (U), whereas 25/26 nt piRNAs presumably bound to Piwil2, have shown a stronger bias for an adenine (A) at position 10.

4. Potential piRNA-mediated gene regulation in the somatic tissues of P. fucata
Recent decade studies have showed additional targets and functions of piRNA that do not map to transposons in various animals. Although piRNAs are ubiquitously expressed in somatic tissues, the role of somatic piRNAs was not well characterized in the pearl oyster P. fucata. To gain insight into piRNA targeting mechanism, we identified the targets of piRNA and examined the endogenous genes expression profiles by single piRNA silence in P. fucata. Locked-nucleic-acid modified oligonucleotide (LNA-antagonist) was injected into body cavity to silence single piRNA (piRNA0001) expression in P. fucata. Somatic tissues, including adductor muscle, gill, and mantle tissues, were collected for RNA extraction. Stem-loop RT-PCR was employed for piRNA0001 determination. Therefore, twenty-four libraries of somatic tissues were constructed for RNA sequencing. Differently expressed genes were analyzed for target sites prediction using miRanda. The predicted target sites were also determined by RT-PCR.

piRNA0001 was silenced by LNA-antagonist in P. fucata. Transcriptomic analysis of 24 somatic tissues showed that 456, 900, and 699 genes were differently expressed in adductor muscle, gill and mantle tissues, respectively. Moreover, 16 and 15 genes were commonly up-regulated and down-regulated in three examined somatic tissues after LNA-antagonist injection. Target site prediction was performed on differently expressed genes 3’ UTR. FHOD3, SRS10, VINC, and ZNF622 were predicted to be targeted by piRNA0001 in adductor muscle. ART2, EF1A, EMC7, ESI1L, NAC2, PA2HB, SYWC, TM87A, and ZNF622 were predicted to be targeted by piRNA0001 in gill tissue, while CAH14, CBF, CDC42, FRRS1, GOLI4, KAT3, NBR1, PA2HB, TYR1, TYR2 and ZNF622 in mantle tissues. Among these predicted target genes, ZNF622 was up-regulated in all examined somatic tissues after piRNA0001 silencing. The alignment pairing from 2nd to 8th nucleotide, which considered as seed region of piRNA, were prefect complementarities. Furthermore, base-pairing outside of the seed was also important for piRNA target prediction. Up-regulated and down-regulated genes were both potentially targeted by piRNA0001, demonstrating the mystery of piRNA-mediated gene regulation in P. fucata.

Conclusion
This study has identified small RNAs, including miRNAs and piRNAs, in somatic and gonad tissues in the pearl oyster P. fucata using next generation sequencing technology. A total of 186 known and 42 novel miRNAs were identified in P. fucata. We figured out the characteristics and expression patterns of these miRNAs in P. fucata somatic and gonad tissues. We also collected hundreds of biomineralization-related genes for miRNA target prediction that helps to understand better the biomineralization understanding in mollusks.

Except for miRNAs expression and function analysis, piRNA and the potential gene silencing in somatic tissues are the most attractive findings in this study. We established a set of piRNA analysis procedures for non-model animals, including piRNA and piRNA cluster identification, expression pattern analysis, comparative analysis of differences, and differentiation of piRNA primary and second biogenesis pathway, and target genes prediction etc. We described the key factors for piRNA biogenesis, which further promotes the understanding of piRNA biogenesis and function in the pearl oyster P. fucata. We also predicted the potential targeted genes of a single piRNA in somatic tissues that provide insight into the increased understanding of additional target and function of piRNAs in P. fucata.

The improved understanding of biomineralization process under miRNA guidance from this study will provide a basis for future research towards upgrading the pearl culture and pearl quality. This study also gives more valuable information about piRNA biogenesis and piRNA-mediated gene regulation outside of germline in mollusk. However, further functional analyses are needed to verify the functions of somatic piRNA in this species.

この論文で使われている画像

参考文献

Addadi, L., Joester, D., Nudelman, F., Weiner, S. Mollusk shell formation: a source of new concepts for understanding biomineralization processes. Chemistry 2006, 12(4), 980-987.

Alefelder, S., Patel, B.K., Eckstein, F. Incorporation of terminal phosphorothioates into oligonucleotides. Nucleic Acids Res. 1998, 26, 4983-4988.

Allen, E., Xie, Z., Gustafson, A.M., Carrington, J.C. MicroRNA-directed phasing during transacting siRNA biogenesis in plants. Cell 2005, 121, 207-221.

Aravin, A.A., Gaidatzis, D., Pfeffer, S., Lagos-Quintana, M., Landgraf, P., Iovino, N., Morris, P., Brownstein, M.J., Kuramochi-Miyagawa, S., Nakano, T., Chien, M., Russo, J.J., Ju, J., Sheridan, R., Sander, C., Zavolan, M., Tuschl, T. A novel class of small RNAs bind to MILI protein in mouse testes. Nature 2006, 442(7099), 203-207.

Aravin, A.A., Hannon, G.J., Brennecke, J. The Piwi-piRNA pathway provides an adaptive defense in the transposon arms race. Science 2007, 318, 761-764.

Aravin, A.A., Lagos-Quintana, M., Yalcin, A., Zavolan, M., Marks, D., Snyder, B., Gaasterland, T., Meyer, J., Tuschl, T. The small RNA profile during Drosophila melanogaster development. Dev. Cell 2003, 5(2), 337-350.

Aravin, A.A., Naumova, N.M., Tulin, A.V., Vagin, V.V., Rozovsky, Y.M., Gvozdev, V.A. Double-stranded RNA-mediated silencing of genomic tandem repeats and transposable elements in the D. melanogaster germline. Curr. Biol. 2001, 11, 1017-1127.

Aravin, A.A., Sachidanandam, R., Bourc’his, D., Schaefer, C., Pezic, D., Fejes, K., Bestor, T., Hannon, G.J. A piRNA pathway primed by individual transposons is linked to de novo DNA methylation in mice. Mol. Cell 2008, 31, 785-799.

Aravin, A.A., Sachidanandam, R., Girard, A., Fejes-Toth, K., Hannon, G.J. Developmentally regulated piRNA clusters implicate MILI in transposon control. Science 2007, 316, 744-747.

Bartel, D.P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004, 116, 281-297.

Batista, P.J., Ruby, J.G., Claycomb, J.M. Chiang, R. Fahlgren, N. Kasschau, K.D. Chaves, D.A. Gu, W. Vasale, J.J. Duan, S., Conte D.J., Luo, S., Schroth, G.P., Carrington, J.C.,

Bartel, C.C., Mello, C.C. PRG-1 and 21U-RNAs interact to form the piRNA complex required for fertility in C. elegans. Mol. Cell 2008, 31, 67-78.

Benson, D.A., Cavanaugh, M., Clark, K., Karsch-Mizrachi, I., Lipman, D.J., Ostell, J., Sayers, E.W. GenBank. Nucleic Acids Res. 2017, 41, D36-D42.

Berland, S., Marie, A., Duplat, D., Milet, C., Sire, J.Y., Bedouet, L. Coupling proteomics and transcriptomics for the identification of novel and variant forms of mollusk shell proteins: A study with P. margaritifera. Chembiochem 2011, 12, 950-961.

Bertazzo, S. Biomineralization. Semin. Cell Dev. Biol. 2015, 46, 1.

Brennecke, J., Aravin, A.A., Stark, A., Dus, M., Kellis, M., Sachidanandam, R., Hannon, G.J. Discrete small RNA-generating loci as master regulators of transposon activity in Drosophila. Cell 2007, 128, 1089-1103.

Brower-Toland, B., Findley, S.D., Jiang, L., Liu, L., Yin, H., Dus, M., Zhou, P., Elgin, S.C., Lin, H.F. Drosophila PIWI associates with chromatin and interacts directly with HP1a. Genes Dev. 2007, 21(18), 2300-2311.

Bryant, D.M., Johnson, K., DiTommaso, T., Tickle, T., Couger, M.B., Payzin-Dogru, D., Lee, T.J., Leigh, N.D., Kuo, T.H., Davis, F.G., Bateman, J., Bryant, S., Guzikowski, A.R., Tsai, S.L., Coyne, S., Ye, W.W., Freeman, R.M., Peshkin, L., Tabin, C.J., Regev, A., Haas, B.J., Whited, J.L. A tissue-mapped axolotl de novo transcriptome enables identification of limb regeneration factors. Cell Rep. 2017, 18(3), 762-776.

Burgos-Aceves, M.A., Cohen, A., Smith, Y., Faggio, C. A potential microRNA regulation of immune-related genes in invertebrate haemocytes. Sci. Total Environ. 2018, 621, 302-307.

Bushati, N., Cohen, S.M. MicroRNA functions. Annu. Rev. Cell Dev. Biol. 2007, 23, 175-205.

Cao, H., Wang, J., Li, X., Florez, S., Huang, Z., Venugopalan, S.R., Elangovan, S., Skobe, Z., Margolis, H.C., Martin, J.F., Amendt B.A. MicroRNAs play a critical role in tooth development. J. Dent. Res. 2010, 89, 779-784.

Carmell, M.A., Girard, A., Kant, H.J., Bourc’his, D., Bestor, T.H., Rooij, D.G., Haannon, G.J. MIWI2 is essential for spermatogenesis and repression of transposons in the mouse male germline. Dev. Cell 2007, 12(4), 503-514.

Carmell, M.A., Xuan, Z., Zhang, M.Q., Hannon, G.J. The Argonaute family: tentacles that reach into RNAi, developmental control, stem cell maintenance, and tumorigenesis. Genes Dev. 2002, 16(21), 2733-2742.

Carninci, P. Molecular biology: the long and short of RNAs. Nature 2009, 457, 974-975.

Carthew, R.W., Sontheimer, E.J. Origins and mechanisms of miRNAs and siRNAs. Cell 2009, 136, 642-655.

Cassandri, M., Smirnov, A., Novelli, F., Pitolli, C., Agostini, M., Malewicz, M., Melino, G., Raschellà, G. Zinc-finger proteins in health and disease. Cell Death Discov. 2017, 3, 17071.

Cayirlioglu, P., Kadow, I.G., Zhan, X., Okamura, K., Suh, G.S., Gunning, D., Lai, E.C., Zipursky, S.L., Hybrid neurons in a microRNA mutant are putative evolutionary intermediates in insect CO2 sensory systems. Science 2008, 319, 1256-1260.

Cerutti, H., Casas-Mollano, J.A. On the origin and functions of RNA-mediated silencing: from protists to man. Curr. Genet. 2006, 50(2), 81-99.

Cerutti, L., Mian, N., Bateman, A. Domains in gene silencing and cell differentiation proteins: the novel PAZ domain and redefinition of the Piwi domain. Trends Biochem. Sci. 2000, 25(10), 481-482.

Chellam, A. Biology of pearl oyster. Central Marine Fisheries Research Institute (CMFRI),

Cochin, India. Bull. 39: Pearl culture, 1987, 13-21 pp.

Chen, C., Ridzon, D.A., Broomer, A.J., Zhou, Z., Lee, D.H., Nguyen, J.T., Barbisin, M., Xu, N.L., Mahuvakar, V.R., Andersen, M.R., Lao, K.Q., Livak, K.J., Guegler, K.J. Real-time quantification of micro-RNAs by stem-loop RT-PCR. Nucleic Acids Res. 2005, 33, e179.

Chen, G., Zhang, C., Jiang, F., Wang, Y., Xu, Z., Wang, C. Bioinformatics analysis of hemocyte miRNAs of scallop Chlamys farreri against acute viral necrobiotic virus (AVNV). Fish Shellfish Immunol. 2014, 37(1):75-86.

Chen, H., Zhou, Z., Wang, H., Wang, L., Wang, W., Liu, R., Qiu, L., Song, L. An invertebrate-specific and immune-responsive microRNA augments oyster haemocyte phagocytosis by targeting CgIκB2. Sci. Rep. 2016a, 6, 29591.

Chen, H., Zhou, Z., Wang, L., Wang, H., Liu, R., Zhang, H., Song, L.S. An invertebratespecific miRNA targeted the ancient cholinergic neuroendocrine system of oyster. Open Biol. 2016b, 6(8), 160059.

Chen, H., Jiang, S., Wang, L., Wang, L., Wang, H., Qiu, L., Song, L.S. Cgi-miR-92d indirectly regulates TNF expression by targeting CDS region of lipopolysaccharideinduced TNF-α factor 3 (CgLITAF3) in oyster Crassostrea gigas. Fish Shellfish Immunol. 2016c, 55, 577-584.

Chen, H.S., Chang, J.H., Wu, J.S.B. Calcium bioavailability of nanonized pearl powder for adults. J. Food. Sci. 2008, 73, 246-251.

Chen, X., Bai, Z.Y., Li, J.L. The mantle exosome and microRNAs of Hyriopsis cumingii involved in nacre color formation. Mar. Biotechnol. 2019a, 21(5), 634-642.

Chen, X., Zhang, M., Zhang, J., Bai, Z.Y., Li, J.L. miR-4504 is involved in nacre color formation in Hyriopsis cumingii. Biochem. Biophys. Res. Commun. 2019b, 517(2), 210-215.

Claycomb, J.M. Ancient endo-siRNA pathways reveal new tricks. Curr. Biol. 2014, 24(15), 703-715.

Conesa, A., Madrigal, P., Tarazona, S., Gomez-Cabrero, D., Cervera, A., McPherson, A., Szcześniak, M.W., Gaffney, D.J., Elo, L.L., Zhang, X., Mortazavi, A. A survey of best practices for RNA-seq data analysis. Genome Biol. 2016, 17, 13.

Cox, D.N., Chao, A., Baker, J., Chang, L., Qian, D., Lin, H.F. A novel class of evolutionarily conserved genes defined by piwi are essential for stem cell self-renewal. Genes Dev. 1998, 12(23), 3715-3727.

Cunha, R.L., Blanc, F., Bonhomme, F., Arnaud-Haond, S. Evolutionary patterns in pearl oysters of the genus Pinctada (Bivalvia: Pteriidae). Mar. Biotechnol. 2011, 13, 181-192.

Czech, B., Hannon, G.J. One Loop to Rule Them All: The Ping-Pong cycle and piRNAguided silencing. Trends Biochem. Sci. 2016, 41, 324-337.

Dai, J.P., Chen, J., Bei, Y.F., Han, B.X., Guo, S.B., Jiang, L.L. Effects of pearl powder extract and its fractions on fibroblast function relevant to wound repair. Pharm. Biol. 2010, 48, 122-127.

Deng, W., Lin, H.F. Miwi, a murine homolog of piwi, encodes a cytoplasmic protein essential for spermatogenesis. Dev. Cell 2002, 2(6), 819-830.

Denli, A.M., Tops, B.B., Plasterk, R.H., Ketting, R.F., Hannon, G.J. Processing of primary microRNAs by the microprocessor complex. Nature 2004, 432, 231-235.

Di, L.G., Calin, G.A., Croce, C.M. MicroRNAs: Fundamental facts and involvement in human diseases. Birth Defects Res. C 2006, 78, 180-189.

Doench, J.G., Petersen, C.P., Sharp, P.A. siRNAs can function as miRNAs. Gene. Dev. 2003, 17, 438-442.

Donertas, D., Sienski ,G., Brennecke, J. Drosophila Gtsf1 is an essential component of the Piwi-mediated transcriptional silencing complex. Genes Dev. 2013, 27(15), 1693-705.

Du, X.D., Fan, G.Y., Jiao, Y., Zhang, H., Guo, X.M., Huang, R.L., Zheng, Z., Bian, C.,

Deng, Y.W., Wang, Q.H., Wang, Z., Liang, X., Liang, H., Shi, C., Zhao, X., Sun, F., Hao, R., Bai, J., Liu, J., Chen, W., Liang, J., Liu, W., Xu, Z., Shi, Q., Xu, X., Zhang, G., Liu, X.. The pearl oyster Pinctada fucata martensii genome and multi-omic analyses provide insights into biomineralization. Gigascience 2017, 6, gix059.

Elmén, J., Lindow, M., Schütz, S., Lawrence, M., Petri, A., Obad, S., Lindholm, M., Hedtjarn, M., Hansen, H.F., Berger, U., Gullans, S., Kearney, P., Sarnow, P., Straarup,

E.M., Kauppinen, S. LNA-mediated microRNA silencing in non-human primates. Nature 2008, 452(7189), 896-900.

Enright, A.J., John, B., Gaul, U., Tuschl, T., Sander, C., Marks, D. S. MicroRNA targets in Drosophila. Genome Biol.2013, 5, R1.

Faehnle, C.R., Joshua-Tor, L. Argonautes confront new small RNAs. Curr. Opin. Chem Biol. 2007, 11, 569-577.

Fang, D., Xu, G.R., Hu, Y.L., Pan, C., Xie, L.P., Zhang, R.Q. Identification of genes directly involved in shell formation and their functions in pearl oyster, Pinctada fucata. PLoS One 2011, 6, e21860.

Fang, D., Pan, C., Lin, H., Lin, Y., Zhang, G.Y., Wang, H.Z., He, M.X., Xie, L.P., Zhang, R.Q. Novel basic protein, PfN23, functions as key macromolecule during nacre formation. J. Biol. Chem. 2012, 287, 15776-15785.

Fonseca, R.R., Albrechtsen, A., Themudo, G.E., Ramos-Madrigal, J., Sibbesen, J.A., Maretty, L., Zepeda-Mendoza, M.L., Campos, P.F., Heller, R., Pereira, R.J. Nextgeneration biology: Sequencing and data analysis approaches for non-model organisms. Mar. Genomics 2016, 30, 3-13.

Fougerouse, A., Rousseau, M., Lucas, J.S. Soft tissue anatomy, shell structure and biomineralization. In: Southgate, P.C, Lucas, A.B. (Eds.), The pearl oyster. Elsevier, Amsterdam, 2008, 77-99 pp.

Friedländer, M.R., Adamidi, C., Han, T., Lebedeva, S., Isenbarger, T.A., Hirst, M., Marra, M., Nusbaum, C., Lee, W.L., Jenkim, J.C. Sánchez, A.A., Kim, J.K., Rajewsky, N. High-resolution profiling and discovery of planarian small RNAs. Proc. Natl. Acad. Sci. USA 2009, 106, 11546-11551.

Friedlander, M.R., Mackowiak, S.D., Li, N., Chen, W., Rajewsky, N. miRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades. Nucleic Acids Res. 2012, 40, 37-52.

Gao, J., Chen, Y., Yang, Y., Liang, J., Xie, J., Liu, J., Li, S.G., Zheng, G.L., Xie, L.P., Zhang, R.Q. The transcription factor Pf-POU3F4 regulates the expression of the matrix protein genes Aspein and Prismalin-14 in pearl oyster (Pinctada fucata). FEBS J. 2016, 283, 1962-1978.

Gebert, D., Hewel, C., Rosenkranz, D. unitas: the universal tool for annotation of small RNAs. BMC Genomics 2017, 18(1), 644.

Ghildiyal, M., Zamore, P.D. Small silencing RNAs: an expanding universe. Nat. Rev. 2009, 10, 94-108.

Giangreco, A.A., Vaishnav, A., Wagner, D., Finelli, A., Fleshner, N., Van der Kwast, T., Vieth, R., Nonn, L. Tumor suppressor microRNAs, miR-100 and -125b, are regulated by 1,25-dihydroxyvitamin D in primary prostate cells and in patient tissue. Cancer Prev. Res. 2013, 6, 483-494.

Ginestet, C. ggplot2: Elegant graphics for data analysis. J. the R. Stat. Soc. 2011, 174(1), 245-246.

Girard, A., Sachidanandam, R., Hannon, G.J., Carmell, M.A. A germline-specific class of small RNAs binds mammalian Piwi proteins. Nature 2006, 442(7099), 199-202.

Gong, N., Li, Q., Huang, J., Fang, Z., Zhang, G., Xie, L.P., Zhang, R.Q. Culture of outer epithelial cells from mantle tissue to study shell matrix protein secretion for biomineralization. Cell Tissue Res. 2008, 333(3), 493-501.

Gou, L.T., Dai, P., Yang, J.H., Xue, Y., Hu, Y.P., Zhou, Y., Kang, J.Y., Wang, X., Li, H., Hua, M.M., Zhao, S., Hu, S.D., Wu, L.G., Shi, H.J., Li, Y., Fu, X.D., Qu, L.H., Wang, E.D., Liu, M.F. Pachytene piRNAs instruct massive mRNA elimination during late spermiogenesis. Cell Res. 2014, 24(6), 680-700.

Grabherr, M.G., Haas, B.J., Yassour, M., Levin, J.Z., Thompson, D.A., Amit, I., Adiconis, X., Fan, L., Raychowdhury, R., Zeng, Q., Chen, Z., Mauceli, E., Hacohen, N., Gnirke, A., Rhind, N., Palma, F., Birren, B.W., Nusbaum, C., Lindblad-Toh, K., Friedman, N., Regev, A. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 2011, 29(7), 644-652.

Gregory, R.I., Chendrimada, T.P., Cooch, N., Shiekhattar, R. Human RISC couples microRNA biogenesis and posttranscriptional gene silencing. Cell 2005, 123:631-640.

Grivna, S.T., Beyret, E., Wang, Z., Lin, H.F. A novel class of small RNAs in mouse spermatogenic cells. Gene. Dev. 2006, 20, 1709-1714.

Ha, H., Song, J.M., Wang, S.G., Kapusta, A., Feschotte, C., Chen, K.C., Xing, J.C. A comprehensive analysis of piRNAs from adult human testis and their relationship with genes and mobile elements. BMC Genomics 2014, 15, 545.

Hall, T.A. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl. Acids Symp. Ser. 1999, 41, 95-98.

Han, J., Lee, Y., Yeom, K.H., Kim, Y.K., Jin, H., Kim, V.N. The Drosha-DGCR8 complex in primary microRNA processing. Genes Dev. 2004, 18, 3016-3027.

Harris, A.N., Macdonald, P.M. Aubergine encodes a Drosophila polar granule component required for pole cell formation and related to eIF2C. Development 2001, 128(14), 2823-2832.

Henson, B.J., Bhattacharjee, S., O’Dee, D.M., Feingold, E., Gollin, S.M. Decreased expression of miR-125b and miR-100 in oral cancer cells contributes to malignancy. Gene Chromosome Cancer 2009, 48, 569-582.

Hong, Y.T., Wang, C., Fu, Z., Liang, H.W., Zhang, S.Y., Lu, M.L., Sun, W., Ye, C., Zhang, C.Y., Zen, K., Shi, L., Zhang, C.N., Chen, X. Systematic characterization of seminal plasma piRNAs as molecular biomarkers for male infertility. Sci. Rep. 2016, 6:24229.

Horwich, M.D., Li, C.J., Matranga, C., Vagin, V., Farley, G., Wang, P., Zamore, P.D. The Drosophila RNA methyltransferase, DmHen1, modifies germline piRNAs and singlestranded siRNAs in RISC. Curr. Biol. 2007, 17, 1265-1272.

Houwing, S., Berezikov, E., Ketting, R.F. Zili is required for germ cell differentiation and meiosis in zebrafish. EMBO J. 2008, 27(20), 2702-2711.

Houwing, S., Kamminga, L.M., Berezikov, E., Cronembold, D., Girard, A., Elst, H., Filippov, D.V., Blaser, H., Raz, E., Moens, C.B., Plasterk, R.H., Hannon, G.J., Draper, B.W., Ketting, R.F. A role for Piwi and piRNAs in germ cell maintenance and transposon silencing in Zebrafish. Cell 2007, 129(1), 69-82.

Huang, H.D., Li, Y.J., Szulwach, K.E., Zhang, G.Q., Jin, P., Chen, D.H. AGO3 slicer activity regulates mitochondria-nuage localization of armitage and piRNA amplification. J. Cell Biol. 2014, 206(2), 217-230.

Huang, S.Q., Cao, X.J., Tian, X.C., Wang, W.M. High-throughput sequencing identifies microRNAs from posterior intestine of loach (Misgurnus anguillicaudatus) and their response to intestinal air-breathing inhibition. PLoS One 2016, 11, e0149123.

Huang, X.A., Yin, H., Sweeney, S., Raha, D., Snyder, M., Lin, H.F. A major epigenetic programming mechanism guided by piRNAs. Dev. Cell 2013, 24, 502-516.

Hutvagner, G., McLachlan, J., Pasquinelli, A.E., Balint, E., Tuschl, T., Zamore, P.D. A cellular function for the RNA-interference enzyme Dicer in the maturation of the let7 small temporal RNA. Science 2001, 293, 834-838.

Ibanez-Ventoso, C., Vora, M., Driscoll, M. Sequence relationships among C. elegans, D. melanogaster and human microRNAs highlight the extensive conservation of microRNAs in biology. PLoS One 2008, 3, e2818.

Ipsaro, J.J., Haase, A., Knott, S.R., Joshua-Tor, L., Hannon, G.J. The structural biochemistry of Zucchini implicates it as a nuclease in piRNA biogenesis. Nature 2012, 491, 279-283.

Ishizu, H., Siomi, H., Siomi, M.C. Biology of PIWI-interacting RNAs: new insights into biogenesis and function inside and outside of germlines. Genes Deve. 2012, 26(21), 2361-2373.

Itoh, T., Nozawa, Y., Akao, Y. MicroRNA-141 and -200a are involved in bone morphogenetic protein-2-induced mouse pre-osteoblast differentiation by targeting distal-less homeobox 5. J. Biol. Chem. 2009, 284(29): 19272-19279.

Iwasaki, Y.W, Siomi, M.C., Siomi, H. PIWI-Interacting RNA: Its biogenesis and functions. Annu. Rev. Biochem. 2015a, 84(1), 405-433.

Iwasaki, T., Tanaka, K., Kawano, M., Itonaga, I., Tsumura, H. Tumor-suppressive microRNA-let-7a inhibits cell proliferation via targeting of E2F2 in osteosarcoma cells. Int. J. Oncol. 2015b, 46, 1543-1550.

Izumi, N., Tomari, Y. Diversity of the piRNA pathway for nonself silencing: worm-specific piRNA biogenesis factors. Genes Dev. 2014, 28(7), 665-671.

Izumi, N., Shoji, K., Sakaguchi, Y., Honda, S., Kirino, Y., Suzuki, T., Katsuma, S., Tomari, Y. Identification and functional analysis of the pre-piRNA 3' trimmer in silkworms. Cell 2016, 164(5), 962-973. Jehn, J., Gebert, D., Pipilescu, F., Stern, S., Kiefer, J., Hewel, C., Rosenkranz, D. PIWI genes and piRNAs are ubiquitously expressed in mollusks and show patterns of lineage-specific adaptation. Commun. Bio. 2018, 1, 1-11.

Jiao, Y., Zheng, Z., Du, X.D., Wang, Q.H., Huang, R.L., Deng, Y.W., Shi, S.L., Zhao, X.X. Identification and characterization of miRNAs in pearl oyster Pinctada martensii by solexa sequencing. Mar. Biotechnol. 2014, 16, 54-62.

Jiao, Y., Zheng, Z., Tian, R.R., Du, X.D., Wang, Q.H., Huang, R.L. Pm-miR-2305, participates in nacre formation by targeting pearlin in pearl oyster Pinctada martensii.

Int. J. Mol. Sci. 2015, 16, 21442-21453.

Jin, C., Zhao, J., Pu, J., Liu, X.J., Li, J.L. Hichin, a chitin binding protein is essential for the self-assembly of organic frameworks and calcium carbonate during shell formation. Int. J. Biol. Macromol. 2019a, 135,745-751.

Jin, C., Zhao, J.Y., Liu, X.J., Li, J.L. Expressions of shell matrix protein genes in the pearl sac and its correlation with pearl weight in the first 6 months of pearl formation in Hyriopsis cumingii. Mar. Biotechnol. 2019b, 21(2), 240-249

Johnson, C.D., Esquela-Kerscher, A., Stefani, G., Byrom, M., Kelnar, K., Ovcharenko, D., Wilson, M., Wang, X., Shelton, J., Shingara, J., Chin, L., Brown, D., Slack, F.J. The let-7 microRNA represses cell proliferation pathways in human cells. Cancer Res. 2007, 67, 7713-7722.

Jones, B.C., Wood, J.G., Chang, C.Y., Tam, A.D., Franklin, M.J., Siegel, E.R., Helfand, S.L. A somatic piRNA pathway in the Drosophila fat body ensures metabolic homeostasis and normal lifespan. Nat. Commun. 2016, 7, 13856.

Joubert, C., Piquemal, D., Marie, B., Manchon, L., Pierrat, F., Zanella-Cleon, I., Cochennec-Laureau, N., Gueguen, Y., Montagnani, C. Transcriptome and proteome analysis of Pinctada margaritifera calcifying mantle and shell: Focus on biomineralization. BMC Genomomics 2010, 11, 613.

Juliano, C.E., Reich, A., Liu, N., Gotzfried, J., Zhong, M., Uman, S., Reenan, R.A., Wessel, G.M., Steele, R.E., Lin, H.F. PIWI proteins and PIWI-interacting RNAs function in hydra somatic stem cells. Proc. Natl. Acad. Sci. USA 2014, 111, 337-342.

Kalvari, I., Argasinska, J., Quinones-Olvera, N., Nawrocki, E.P., Rivas, E., Eddy, S.R., Bateman, A., Finn, R.D., Petrov, A.I. Rfam 13.0: Shifting to a genome-centric resource for non-coding RNA families. Nucleic Acids Res. 2018, 46, D335-D342.

Kang, I.H., Jeong, B.C., Hur, S.W., Choi, H., Choi, S.H., Ryu, J.H., Hwang, Y.C., Koh, J.T. MicroRNA-302a stimulates osteoblastic differentiation by repressing COUP-TFII expression. J. Cell. Physiol. 2015, 230, 911-921.

Kawamata, T., Seitz, H., Tomari, Y. Structural determinants of miRNAs for RISC loading and slicer independent unwinding. Nat. Struct. Mol. Biol. 2009, 16, 953-960.

Kawamura, Y., Saito, K., Kin, T., Ono, Y., Asai, K., Sunohara, T., Okada, T.N., Siomi, M.C., Siomi, H. Drosophila endogenous small RNAs bind to Argonaute 2 in somatic cells. Nature 2008, 453, 793-797.

Kawaoka, S., Izumi, N., Katsuma, S., Tomari, Y. 3' end formation of PIWI-interacting RNAs in vitro. Mol. Cell 2011, 43(6),1015-1022.

Kenny, N.J., Namigai, E.K., Marletaz, F., Hui, J.H., Shimeld, S.M. Draft genome assemblies and predicted microRNA complements of the intertidal lophotrochozoans Patella vulgata (Mollusca, Patellogastropoda) and Spirobranchus (Pomatoceros) lamarcki (Annelida, Serpulida). Mar. Genom. 2015, 24, 139-146.

Ketting, R.F., Fischer, S.E., Bernstein, E., Sijen, T., Hannon, G.J., Plasterk, R.H. Dicer functions in RNA interference and in synthesis of small RNA involved in developmental timing in C. elegans. Genes Dev 2001, 15, 2654-2659.

Kim, N.V. Small RNAs: classification, biogenesis, and function. Mol. Cells 2005, 19(1),1-15.

Kim, V.N., Han, J.J., Siomi, M.C. Biogenesis of small RNAs in animals. Nat. Rev. Mol. Cell Biol. 2009a, 10, 126-139.

Kim, Y.J., Bae, S.W., Yu, S.S., Bae, Y.C., Jung, J.S. miR-196a regulates proliferation and osteogenic differentiation in mesenchymal stem cells derived from human adipose tissue. J. Bone Miner Res. 2009b, 24(5), 816-825.

Kim, S.W., Li, Z.H., Moore, P.S., Monaghan, A.P., Chang, Y., Nichols, M., John, B. A sensitive non-radioactive northern blot method to detect small RNAs. Nucleic Acids Res. 2010, 38, e98.

Kim, S.W., Song, M.L., Min, H., Hwang, I., Baek, S.K., Kwon, T.K., Park, J.W. miRNA biogenesis-associated RNase III nucleases Drosha and Dicer are upregulated in colorectal adenocarcinoma. Oncol. Lett. 2017, 14(4), 4379-4383.

Kinoshita, S., Wang, N., Inoue, H., Maeyama, K., Okamoto, K., Nagai, K., Kondo, H.,Hirono, I., Asakawa, S., Watabe, S. Deep sequencing of ESTs from nacreous and prismatic layer producing tissues and a screen for novel shell formation-related genes in the pearl oyster. PLoS One 2011, 6, e21238.

Kirino, Y., Mourelatos, Z. The mouse homolog of HEN1 is a potential methylase for Piwiinteracting RNAs. RNA 2007, 13, 1397-1401.

Kiuchi, T., Koga, H., Kawamoto, M., Shoji, K., Sakai, H., Arai, Y., Ishihara, G., Kawaoka, S., Sugano, S., Shimada, T., Suzuki, Y., Suzuki, M.G., Katsuma, S. A single femalespecific piRNA is the primary determiner of sex in the silkworm. Nature 2014, 509, 633-638.

Knauer, J., Southgate, P.C. A review of the nutritional requirements of bivalves and the development of alternative and artificial diets for bivalve aquaculture. Rev. Fish. Sci. 1999, 7, 241-280.

Kozomara, A., Birgaoanu, M., Griffiths-Jones, S. MiRBase: From microRNA sequences to function. Nucleic Acids Res. 2019, 47, D155-D162.

Kripa, V., Mohamed, K.S., Appukuttan, K.K., Velayudhan, T.S. Production of Akoya pearls from the southwest coast of India. Aquaculture 2007, 262, 347-354.

Krishnan, P., Ghosh, S., Graham, K., Mackey, J.R., Kovalchuk, O., Damaraju, S. Piwiinteracting RNAs and PIWI genes as novel prognostic markers for breast cancer. Oncotarget 2016, 7(25), 37944-37956.

Kubota, K., Tsuchihashi, Y., Kogure, T., Maeyama, K., Hattori, F., Kinoshita, S., Sakuda, S., Nagasawa, H., Yoshimura, E., Suzuki, M. Structural and functional analyses of a TIMP and MMP in the ligament of Pinctada fucata. J. Struct. Biol. 2017, 199, 216-224.

Langmead, B., Salzberg, S.L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 2012, 9(4), 357-359.

Langmead, B., Trapnell, C., Pop, M., Salzberg, S.L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 2009, 10, R25.

Lau, N.C., Seto, A.G., Kim, J., Kuramochi-Miyagawa, S., Nakano, T., Bartel, D.P., Kingston, R.E. Characterization of the piRNA complex from rat testes. Science 2006, 313(5785), 363-367.

Le M.G., Schuck, L., Chabrier, S., Belliard, C., Lyonnard, P., Broustal, F., Soyez, C., Saulnier, D., Brahmi, C., Ky, C.L., Beliaeff, B. Influence of temperature and pearl rotation on biomineralization in the pearl oyster, Pinctada margaritifera. J. Exp. Biol. 2018, 221, 18.

Le, L.J., Auffret, P., Quillien, V., Leclerc, N., Reisser, C., Vidal-Dupiol, J., Ky, C.L. Whole transcriptome sequencing and biomineralization gene architecture associated with cultured pearl quality traits in the pearl oyster, Pinctada margaritifera. BMC Genomics 2019, 20, 111.

Lee, E.J., Banerjee, S., Zhou, H., Jammalamadaka, A., Arcila, M., Manjunath, B.S., Kosik, K.S. Identification of piRNAs in the central nervous system. RNA 2011, 17, 1090- 1099.

Lee, J.H., Schütte, D., Wulf, G., Füzesi, L., Radzun, H.J., Schweyer, S., Engel, W., Nayernia, K. Stem-cell protein Piwil2 is widely expressed in tumors and inhibits apoptosis through activation of Stat3/Bcl-XL pathway. Hum. Mol. Genet. 2006, 15(2), 201-211.

Lee, R.C., Feinbaum, R.L., Ambros, V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 1993, 75(5), 843-854.

Lee, Y., Ahn, C., Han, J., Choi, H., Kim, J., Yim, J., Lee, J., Provost, P., Radmark, O., Kim, S., Kim, V.N. The nuclear RNase III Drosha initiates microRNA processing. Nature 2003, 425, 415-419. Letunic, I., Bork, P. 20 years of the SMART protein domain annotation resource. Nucleic Acids Res. 2017, 46, D493-D496.

Lewis, S.H., Quarles, K.A., Yang, Y., Tanguy, M., Frézal, L., Smith, S.A., Sharma, P.P., Cordaux, R., Gilbert, C., Giraud, I., Collins, D.H., Zamore, P.D., Miska, E.A., Sarkies, P., Jiggins, F.M. Pan-arthropod analysis reveals somatic piRNAs as an ancestral defence against transposable elements. Nat. Ecol. Evol. 2018, 2(1), 174-181.

Li, B., Dewey, C.N. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics 2011, 12(1), 323.

Li, C.J., Vagin, V.V., Lee, S., Xu, J., Ma, S.M., Xi, H.L., Seitz, H., Horwich, M.D., Syrzycka, M., Honda, B.M., Kittler, E.L., Zapp, M.L., Klattenhoff, C., Schulz, N., Theurkauf, W.E., Weng. Z., Zamore, P.D. Collapse of germline piRNAs in the absence of Argonaute3 reveals somatic piRNAs in flies. Cell 2009, 137(3), 509-521.

Li, S., Chen, W., Zhan, A., Liang, J. Identification and characterization of microRNAs involved in scale biomineralization in the naked carp Gymnocypris przewalskii. Comp. Biochem. Physiol. Part D Genomics Proteomics 2018, 28, 196-203.

Li, S.G., Liu, C., Huang, J.L., Liu, Y.J., Zhang, S.W., Zheng, G.L., Xie, L.P., Zhang, R.Q. Transcriptome and biomineralization responses of the pearl oyster Pinctada fucata to elevated CO2 and temperature. Sci. Rep. 2016, 6, 18943.

Li, Z., Wu, F., Brant, S.R., Kwon, J.H. IL-23 receptor regulation by let-7f in human CD4(+) memory T cells. J. Immunol. 2011, 186, 6182-6190.

Li, Z.Y., Hassan, M.Q., Jafferji, M., Aqeilan, R.I., Garzon, R., Croce, C.M., Wijnen, A.J., Stein, J.L., Stein, G.S., Lian, J.B. Biological functions of miR-29b contribute to positive regulation of osteoblast differentiation. J. Biol. Chem. 2009, 284(23), 15676-15684.

Lian, J.B., Stein, G.S., Wijnen, A.J., Stein, J.L., Hassan, M.Q., Gaur, T., Zhang, Y. MicroRNA control of bone formation and homeostasis. Nat. Rev. Endocrinol. 2012, 8, 212-227.

Lin, H.F., Spradling, A.C. A novel group of pumilio mutations affects the asymmetric division of germline stem cells in the Drosophila ovary. Development 1997, 124, 2463-2476.

Liu, C., Li, S., Kong, J., Liu, Y., Wang, T., Xie, L.P., Zhang, R.Q. In-depth proteomic analysis of shell matrix proteins of Pinctada fucata. Sci. Rep. 2015, 5, 17269.

Liu, J., Carmell, M.A., Rivas, F.V., Marsden, C.G., Thomson, J.M., Song, J.J., Hammond, S.M., Joshua-Tor, L., Hannon, G.J. Argonaute2 is the catalytic engine of mammalian RNAi. Science 2004, 305(5689), 1437-1441.

Liu, H.L., Liu, S.F., Ge, Y.J., Liu, J., Wang, X.Y., Xie, L.P., Zhang, R.Q., Wang, Z. Identification and characterization of a biomineralization related gene PFMG1 highly expressed in the mantle of Pinctada fucata. Biochemistry 2007, 46, 844-851.

Liu, W., Zhao, Q., Piao, S., Wang, C., Kong, Q., An, T. Endo-siRNA deficiency results in oocyte maturation failure and apoptosis in porcine oocytes. Reprod. Fertil. Dev. 2017, 29(11), 2168-2174.

Liu, X., Sun, Y., Guo, J., Ma, H., Li, J., Dong, B., Jin, G., Zhang, J., Wu, J., Meng, L., Shou, C. Expression of hiwi gene in human gastric cancer was associated with proliferation of cancer cells. Int. J. Cancer 2010, 118(8), 1922-1929.

Loher, P., Rigoutsos, I. Interactive exploration of RNA22 microRNA target predictions. Bioinformatics 2012, 28, 3322-3323.

Love, M.I., Huber, W., Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 550.

Lowe, T.M., Chan, P.P. tRNAscan-SE On-line: integrating search and context for analysis of transfer RNA genes. Nucleic Acids Res. 2016, 44, W54-W57.

Lowenstam, H.A. Minerals formed by organisms. Science 1981, 211, 1126-1131.

Luo, W., Sehgal, A. Regulation of circadian behavioral output via a microRNA-JAK/STAT circuit. Cell 2012, 148, 765-779.

Luteijn, M.J., Ketting, R.F. PIWI-interacting RNAs: from generation to transgenerational epigenetics. Nat. Rev. Genet. 2013, 14, 523-534.

Ma, X., Buscaglia, L.E.B., Barker, J.R., Li, Y. MicroRNAs in NF-kappa B signaling. J.

Mol. Cell Biol. 2011, 3, 159-166.

Ma, X.S., Ji, A.C., Zhang, Z.F., Yang, D.D., Liang, S.S., Wang, Y.H., Qin, Z. Piwi1 is essential for gametogenesis in mollusk Chlamys farreri. PeerJ 2017, 5(6), e3412.

MacRae, I.J., Ma, E., Zhou, M., Robinson, C.V., Doudna, J.A. In vitro reconstitution of the human RISC- loading complex. Proc. Natl. Acad. Sci. USA 2008, 105:512-517.

Malone, C.D., Brennecke, J., Dus, M., Stark, A., McCombie, W.R., Sachidanandam, R., Hannon, G.J. Specialized piRNA pathways act in germline and somatic tissues of the Drosophila ovary. Cell 2009, 137(3), 522-535.

Mani, S.R., Megosh, H., Lin, H.F. PIWI proteins are essential for early Drosophila embryogenesis. Dev. Biol. 2014, 385, 340-349.

Maniataki, E., Mourelatos, Z. A human, ATP-independent, RISC assembly machine fueled by pre-miRNA. Genes Dev. 2005, 19, 2979-2990.

Marie, B., Joubert, C., Tayalé, A., Zanella-Cléon, I., Belliard, C., Piquemal, D., CochennecLaureau, N., Marin, F., Gueguen, Y., Montagnani, C. Different secretory repertoires control the biomineralization processes of prism and nacre deposition of the pearl oyster shell. Proc. Nati. Acad. Sci. USA 2012, 109(51), 20986-20991.

Marin, F., Luquet, G., Marie, B., Medakovic, D. Molluscan shell proteins: primary structure, origin, and evolution. Curr. Top. Dev. Biol. 2008, 80, 209-276.

Mariom, Take, S., Igarashi, Y., Yoshitake, K., Asakawa, S., Maeyama, K., Nagai, K., Watabe, S., Kinoshita, S. Gene expression profiles at different stages for formation of pearl sac and pearl in the pearl oyster Pinctada fucata. BMC Genomics 2019, 20, 240.

Martin-Gomez, L., Villalba, A., Kerkhoven, R.H., Abollo, E. Role of microRNAs in the immunity process of the flat oyster Ostrea edulis against bonamiosis. Infect. Genet. Evol. 2014, 27, 40-50.

Matlins, A. The pearl book: the definitive buying guide - how to select, buy, care for and enjoy pearls. Gemstone Press, Woodstock, Vermont, 2001, 3-19 pp.

Matsukuma, A. Family Pteriidae, Order Pterioida. In: Okutani, T. (Ed.), Encyclopedia of Shellfish. Sekaibunkasha, Tokyo, Japan, 2004, 288 pp.

Mcginty, E.L., Evans, B.S., Taylor, J.U.U., Jerry, D.R. Xenografts and pearl production in two pearl oyster species, P. maxima, and P. margaritifera: Effect on pearl quality and a key to understanding genetic contribution. Aquaculture 2010, 302, 175-181.

Mei, Y.P., Wang, Y.Y., Kumari, P., Shetty, A.C., Chark, D., Gable, T., MacKerell, A.D., Ma, M.Z., Weber, D.J., Yang, A.J., Edelman, M.J., Mao, L. A piRNA-like small RNA interacts with and modulates p-ERM proteins in human somatic cells. Nat. Commun. 2015, 6, 7316.

Miyamoto, H., Endo, H., Hashimoto, N., Iimura, K., Isowa, Y., Kinoshita, S., Kotaki, T., Masaoka, T., Miki, T., Nakayama, S. et al. The diversity of shell matrix proteins: Genome-wide investigation of the pearl oyster, Pinctada fucata. Zool. Sci. 2013, 30, 801-816.

Mizuno, Y., Yagi, K., Tokuzawa, Y., Kanesaki-Yatsuka, Y., Suda, T., Katagiri, T., Fukuda,

T., Maruyama, M., Okuda, A., Amemiya, T., Kondoh, Y., Tashiro, H., Okazaki, Y. miR-125b inhibits osteoblastic differentiation by down-regulation of cell proliferation. Biochem. Biophys. Res. Commun. 2008, 368(2): 267-272.

Mizuno, Y., Tokuzawa, Y., Ninomiya, Y., Yagi, K., Yatsuka-Kanesaki, Y., Suda, T., Fukuda, T., Katagiri, T., Kondoh, Y., Amemiya, T., Tashiro, H., Okazaki, Y. miR- 210 promotes osteoblastic differentiation through inhibition of AcvR1b. FEBS Lett. 2009, 583(13), 2263-2268.

Moazed, D. Small RNAs in transcriptional gene silencing and genome defence. Nature 2009, 457, 413-420.

Mochizuki, K., Fine, N.A., Fujisawa, T., Gorovsky, M.A. Analysis of a piwi-related gene implicates small RNAs in genome rearrangement in Tetrahymena. Cell 2002, 110, 689-699.

Mortensen, R.D., Serra, M., Steitz, J.A., Vasudevan, S. Posttranscriptional activation of gene expression in Xenopus laevis oocytes by microRNA-protein complexes (microRNPs). Proc. Natl. Acad. Sci. USA 2011, 108, 8281-8286.

Moschos, S.A., Williams, A.E., Perry, M.M., Birrell, M.A., Belvisi, M.G., Lindsay, M.A. Expression profiling in vivo demonstrates rapid changes in lung microRNA levels following lipopolysaccharide-induced inflammation but not in the anti-inflammatory action of glucocorticoids. BMC Genomics 2007, 8, 240.

Murchison, E.P., Kheradpour, P., Sachidanandam, R., Smith, C., Hodges, E., Xuan, Z.Y., Kellis, M., Grutzner, F., Stark, A., Hannon, G.J. Conservation of small RNA pathways in platypus. Genome Res. 2008, 18, 995-1004.

Nakahara, H., Bevelander, G. The formation and growth of the prismatic layer of Pinctada radiata. Calcif. Tissue Res. 1971, 7, 31-45.

Nishimasu, H., Ishizu, H., Saito, K., Fukuhara ,S., Kamatani, M.K., Bonnefond, L., Matsumoto, N., Nishizawa, T., Nakanaga, K., Aoki, J., Ishitani, R., Siomi, H., Siomi, M.C., Nureki, O. Structure and function of Zucchini endoribonuclease in piRNA biogenesis. Nature 2012, 491, 284-287.

Nudelman, F. Nacre biomineralisation: A review on the mechanisms of crystal nucleation. Semin. Cell Dev. Biol. 2015, 46, 2-10.

Nudelman, F., Gotliv, B.A., Addadi, L., Weiner, S. Mollusk shell formation: mapping the distribution of organic matrix components underlying a single aragonitic tablet in nacre. J. Struct. Biol. 2006, 153, 176-187.

Oaki, K. Imai, H. The hierarchical architecture of nacre and its mimetic material. Angew. Chem. Int. Ed. 2005, 44, 6571-6575.

Obernosterer, G., Leuschner, P.J., Alenius, M., Martinez, J. Post-transcriptional regulation of microRNA expression. RNA 2006, 12, 1161-1167.

Ohara, T., Sakaguchi, Y., Suzuki, T., Ueda, H., Miyauchi, K., Suzuki, T. The 3' termini of mouse Piwi-interacting RNAs are 2'-O-methylated. Nat. Struct. Mol. Biol. 2017, 14, 349-350.

Ohmori, F., Kinoshita, S., Funabara, D., Koyama, H., Nagai, K., Maeyama, K., Okamoto, K., Asakawa, S., Watabe, S. Novel isoforms of N16 and N19 families implicated for the nacreous layer formation in the pearl oyster Pinctada fucata. Mar. Biotechnol. 2018, 20(2), 155-167.

Parker, J.S., Barford, D. Argonaute: a scaffold for the function of short regulatory RNAs. Trends Biochem. Sci. 2006, 31(11), 622-630.

Pan, C., Fang, D., Xu, G.R., Liang, J., Zhang, G.Y., Wang, H.Z., Xie, L.P., Zhang, R.Q. A novel acidic matrix protein, PfN44, stabilizes magnesium calcite to inhibit the crystallization of aragonite. J. Biol. Chem. 2014, 289, 2776-2787.

Papaioannou, G., Mirzamohammadi, F., Kobayashi, T. MicroRNAs involved in bone formation. Cell Mol. Life Sci. 2014, 71(24), 4747-61.

Papenfort, K., Vogel, J. Multiple target regulation by small noncoding RNAs rewires gene expression at the post-transcriptional level. Res. Microbiol. 2009, 160, 278-287.

Peters, L., Meister, G. Argonaute proteins: mediators of RNA silencing. Mol. Cell 2007, 26, 611-623.

Peterson, S.M., Thompson, J.A., Ufkin, M.L., Sathyanarayana, P., Liaw, L., Congdon, C.B. Common features of microRNA target prediction tools. Front. Genet. 2014, 5, 23.

Pfaffl, M.W. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2011, 29, e45.

Phay, M., Kim, H.H., Yoo, S. Analysis of piRNA-like small non-coding RNAs present in axons of adult sensory neurons. Mol. Neurobiol. 2016, 55, 483-494.

Place, R.F., Li, L.C., Pookot, D., Noonan, E.J., Dahiya, R. MicroRNA-373 induces expression of genes with complementary promoter sequences. Proc. Natl. Acad. Sci. USA 2008, 105, 1608-1613.

Qiao, D., Zeeman, A.M., Deng, W., Looijenga, L.H., Lin, H.F. Molecular characterization of hiwi, a human member of the piwi gene family whose over expression is correlated to seminomas. Oncogene 2002, 21(25), 3988-3999.

Rajasethupathy, P., Antonov, I., Sheridan, R., Frey, S., Sander, C., Tuschi, T., Kandel, E.R. A role for neuronal piRNAs in the epigenetic control of memory-related synaptic plasticity. Cell 2012, 149(3), 693-707.

Rajewsky, N. MicroRNA target predictions in animals. Nat. Genet. 2006, 38, S8-S13.

Ramajo, L., Marbà, N., Prado, L., Peron, S., Lardies, M.A., Rodriguez-Navarro, A.B., Vargas, C.A., Lagos, N.A., Duarte, C.M. Biomineralization changes with food supply confer juvenile scallops (Argopecten purpuratus) resistance to ocean acidification. Glob. Chang. Biol. 2016, 22(6), 2025-2037.

Rehmsmeier, M., Steffen, P., Hochsmann, M., Giegerich, R. Fast and effective prediction of microRNA/target duplexes. RNA 2014, 10, 1507-1517.

Robine, N., Lau, N.C., Balla, S., Jin, Z.G., Okamura, K., Kuramochi-Miyagawa, S., Blower, M.D., Lai,E.C. A broadly conserved pathway generates 3'UTR-directed primary piRNAs. Curr. Biol. 2009, 19, 2066-2076.

Robinson, J.T., Thorvaldsdóttir, H., Winckler, W., Guttman, M., Lander, E.S., Getz, G., Mesirov, J.P. Integrative genomics viewer. Nature Biotechnol. 2011, 29, 24-26.

Robinson, M.D., Mccarthy, D.J., Smyth, G.K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 2010, 26, 139-140.

Rosani, U., Pallavicini, A., Venier, P. The miRNA biogenesis in marine bivalves. PeerJ 2016, 4, e1763.

Ross, R.J., Weiner, M.M., Lin, H.F. PIWI proteins and PIWI-interacting RNAs in the soma. Nature 2014, 505(7483), 353-359.

Saito, K., Inagaki, S., Mituyama, T., Kawamura, Y., Ono, Y., Sakota, E., Kotani, H., Asai, K., Siomi, H. and Siomi, M. C. A regulatory circuit for piwi by the large Maf gene traffic jam in Drosophila. Nature 2009, 461, 1296-1299.

Saito, K., Nishida, K.M, Mori, T., Kawamura, Y., Miyoshi, K., Nagami, T., Siomi, H.,

Siomi, M.C. Specific association of Piwi with rasiRNAs derived from retrotransposon and heterochromatic regions in the Drosophila genome. Genes Dev. 2006, 20(16), 2214-2222.

Saito, K., Sakaguchi, Y., Suzuki, T., Suzuki, T., Siomi, H., Siomi, M. Pimet, the Drosophila homolog of HEN1, mediates 2'-O-methylation of Piwi-interacting RNAs at their 3' ends. Gene. Dev. 2007, 21, 1603-1608.

Samata, T., Hayashi, N., Kono, M., Hasegawac, K., Horitad, C., Akerad, S. A new matrix protein family related to the nacreous layer formation of Pinctada fucata. FEBS Lett. 1999, 462, 225-229.

Seto, A.G., Kingston, R.E., Lau, N.C. The coming of age for Piwi proteins. Mol. Cell 2007, 26, 603-609.

Shen, E.Z., Chen, H., Ozturk, A.R., Tu, S.K., Shirayama, M., Tang, W., Ding Y.H., Dai S.Y., Weng, Z.P., Mello, C.C. Identification of piRNA binding sites reveals the argonaute regulatory landscape of the, C. elegans, germline. Cell 2018, 172(5): 937-951.

Shi, Y.H., Yu, C.C., Gu, Z.F., Zhan, X., Wang, Y., Wang, A.M. Characterization of the pearl oyster (Pinctada martensii) mantle transcriptome unravels biomineralization genes. Mar. Biotechnol. 2013, 15, 175-187.

Sienski, G., Donertas, D., Brennecke, J. Transcriptional silencing of transposons by Piwi and Maelstrom and its impact on chromatin state and gene expression. Cell 2012, 151, 964-980.

Simon, B., Kirkpatrick, J.P., Eckhardt, S., Reuter, M., Rocha, E., Andrade-Navarro,M. A. Sehr,P., Pillai, R.S., Carlomagno, T. Recognition of 2'-O-methylated 3'-end of piRNA by the PAZ domain of a Piwi protein. Structure 2011, 19, 172-180.

Sonnhammer, E.L., Durbin, R. A dot-matrix program with dynamic threshold control suited for genomic DNA and protein sequence analysis. Gene 1995, 167, GC1-10.

Song, J.J., Smith, S.K., Hannon, G.J., Joshua-Tor, L. Crystal structure of Argonaute and its implications for RISC slicer activity. Science 2004, 305(5689), 1434-1437.

Stepicheva, N.A. Song J.L. MicroRNA-31 modulates skeletal patterning in the sea urchin embryos. Development 2015, 142, 3769-3780.

Sugatani, T., Hruska, K.A. MicroRNA-223 is a key factor in osteoclast differentiation. J. Cell. Biochem. 2007, 101, 996-999.

Sun, K., Jee, D., de Navas, L.F., Duan, H., Lai, E.C. Multiple in vivo biological processes are mediated by functionally redundant activities of drosophila mir-279 and mir-996. PLoS Genet. 2015, 11, e1005245.

Suzuki, M., Murayama, E., Inoue, H., Ozaki, N., Tohse, H., Kogure, T., Nagasawa, H. Characterization of Prismalin-14, a novel matrix protein from the prismatic layer of the Japanese pearl oyster (Pinctada fucata). Biochem. J. 2004, 382, 205-213.

Suzuki, M., Saruwatari, K., Kogure, T., Yamamoto, Y., Nishimura, T., Kato, T., Nagasawa, H. An acidic matrix protein, Pif, is a key macromolecule for nacre formation. Science 2009, 325, 1388-1390.

Szymanski, M., Erdmann, V.A., Barciszewski, J. Noncoding RNAs database (ncRNAdb). Nucleic Acids Res. 2007, 35, D162-D164.

Taipaleenmaki, H. Regulation of bone metabolism by microRNAs. Curr. Osteoporos Rep. 2018, 6(1), 1-12.

Takagi, R., Miyashita, T. Prismin: A new matrix protein family in the Japanese pearl oyster (Pinctada fucata) involved in prismatic layer formation. Zool. Sci. 2010, 27, 416-426.

Takeuchi, T., Kawashima, T., Koyanagi, R., Gyoja, F., Tanaka, M., Ikuta, T., Shoguchi, E., Fujiwara, M., Shinzato, C., Hisata, K. Fujie, M., Usami, T., Nagai, K., Maeyama, K., Okamoto, K., Aoki, H., Ishikawa, T., Masaoka, T., Fujiwara, A., Endo, K., Endo, H., Nagasawa, H., Kinoshita, S., Asakawa, S., Watabe, S., Satoh, N. Draft genome of the pearl oyster Pinctada fucata: a platform for understanding bivalve biology. DNA Res. 2012, 19, 117-130.

Takeuchi, T., Koyanagi, R., Gyoja, F., Kanda, M., Hisata, K., Fujie, M., Goto, H., Yamasaki, S., Nagai, K., Morino, Y., Miyamoto, H., Endo, K., Endo, H., Nagasawa, H., Kinoshita, S., Asakawa, S., Watabe, S., Satoh, N., Kawashima, T. Bivalve-specific gene expansion in the pearl oyster genome: Implications of adaptation to a sessile lifestyle. Zool. Lett. 2016, 2, 3.

Tam, O.H., Aravin, A., Stein. P., Girard, A., Murchison, E.P., Cheloufi, S., Hodges, E., Anger, M., Sachidanandam, R., Schultz, R.M., Hannon, G.J. Pseudogene-derived small interfering RNAs regulate gene expression in mouse oocytes. Nature 2008, 453, 534-538.

Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., Kumar, S. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 2011, 28(10), 2731-2739.

Thomson, T., Lin, H.F. The biogenesis and function of PIWI proteins and piRNAs: progress and prospect. Annu. Rev. Cell. Dev. Biol. 2009, 25, 355-376.

Tian, R., Zheng, Z., Huang, R., Jiao, Y., Du, X. miR-29a participated in nacre formation and immune response by targeting Y2R in Pinctada martensii. Int. J. Mol. Sci. 2015, 16(12), 29436-29445.

Tolia, N.H., Joshua-Tor, L. Slicer and the argonautes. Nat. Chem. Biol. 2007, 3, 36-43.

Tomaru, Y., Udaka, N., Kawabata, Z., Nakano, S. Seasonal change of seston size distribution and phytoplankton composition in bivalve pearl oyster Pinctada fucata martensii culture farm. Hydrobiologia 2002, 481, 181-185.

Tong, H., Hu, J., Ma, W., Zhong, G., Yao, S., Cao, N. In situ analysis of the organic framework in the prismatic layer of mollusc shell. Biomaterials 2002, 23, 2593-2598.

Tosar, J.P., Rovira, C., Cayota, A. Non-coding RNA fragments account for the majority of annotated piRNAs expressed in somatic non-gonadal tissues. Commun. Biol. 2018, 1,2.

Ui-Tei, K., Nishi, K., Takahashi, T., Nagasawa, T. Thermodynamic control of small RNAmediated gene silencing. Front. Genet. 2012, 3, 101.

Urbich, C., Kuehbacher, A., Dimmeler, S. Role of microRNAs in vascular diseases, inflammation, and angiogenesis. Cardiovasc. Res. 2008, 79, 581-588.

Vagin, V.V., Sigova, A., Li, C., Seitz, H., Gvozdev, V., Zamore, P.D. A distinct small RNA pathway silences selfish genetic elements in the germline. Science 2006, 313(5785), 320-324.

Várallyay, É., Burgyán, J., Havelda, Z. MicroRNA detection by northern blotting using locked nucleic acid probes. Nat. Protoc. 2008, 3, 190-196.

Vasudevan, S., Tong, Y., Steitz, J.A. Switching from repression to activation: microRNAs can up-regulate translation. Science 2007, 318, 1931-1934.

Vishnoi, A., Rani, S. miRNA biogenesis and regulation of diseases: an overview. Methods Mol. Biol. 2017, 1509:1-10.

Vourekas, A., Zheng, Q., Alexiou, P., Maragkakis, M., Kirino, Y., Gregory, B.D., Mourelatos, Z. Mili and Miwi target RNA repertoire reveals piRNA biogenesis and function of Miwi in spermiogenesis. Nat. Struct. Mol. Bio. 2012, 19(8), 773-781.

Wada, K.T., Tëmkin, I. Taxonomy and phylogeny. In: Southgate, P.C., Lucas, J.S. (Eds.). The Pearl Oyster. Elsvier, Amsterdam, 2008, 37-66 pp.

Wang, C., Liao, H., Cao, Z. Role of osterix and microRNAs in bone formation and tooth development. Med. Sci. Monit. 2016, 22, 2934-2942.

Wang, Y., Jin, B., Liu, P., Li, J., Chen, X., Gu, J. piRNA profiling of dengue virus type 2- infected asian tiger mosquito and midgut tissues. Viruses 2018, 10(4), 213.

Watanabe, T., Totoki, Y., Toyoda, A., Kaneda, M., Kuramochi-Miyagawa, S., Obata, Y., Chiba, H., Kohara, Y., Kono, T., Nakano, T., Surani, M.A., Sakaki, Y., Sasaki, H. Endogenous siRNAs from naturally formed dsRNAs regulate transcripts in mouse oocytes. Nature 2008, 453, 539-543.

Watanabe, T., Lin, H.F. Posttranscriptional regulation of gene expression by Piwi proteins and piRNAs. Mol. Cell 2014, 56(1), 18-27.

Wei, Z.L., Liu, X.L., Zhang, H.L. Identification and characterization of piRNA-like small RNAs in the gonad of sea urchin (Strongylocentrotus nudus). Mar. Biotechnol. 2012, 14, 459-467.

Weick, E.M., Miska, E.A. piRNAs: from biogenesis to function. Dev. 2014, 141(18), 3458- 3471.

Weinmann, L., Hock, J., Ivacevic, T., Ohrt, T., Mutze, J., Schwille, P., Kremmer, E., Benes, V., Urlaub, H., Meister, G. Importin 8 is a gene silencing factor that targets argonaute proteins to distinct mRNAs. Cell 2009, 136, 496-507.

Wheeler, B.M., Heimberg, A.M., Moy, V.N., Sperling, E.A., Holstein, T.W., Heber, S., Peterson, K.J. The deep evolution of metazoan microRNAs. Evol. Dev. 2009, 11, 50-68.

Wightman, B., Ha, I., Ruvkun, G. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 1993, 75(5),855-862.

Willimott, S., Wagner, S.D. MiR-125b and miR-155 contribute to BCL2 repression and proliferation in response to CD40 ligand (CD154) in human leukemic B-cells. J. Biol. Chem. 2012, 287, 2608-2617.

Wilt, F.H., Killian, C.E., Livingstone, B.T. Development of calcareous skeletal elements in invertebrates. Differentiation 2003, 71, 237-250.

Witkos, T.M., Koscianska, E., Krzyzosiak, W.J. Practical aspects of microRNA target prediction. Curr. Mol. Med. 2011, 1, 93-109.

Wu, W.S., Huang, W.C., Brown, J.S., Zhang, D., Song, X., Chen, H., Tu, S., Weng, Z., Lee, H.C. pirScan: a webserver to predict piRNA targeting sites and to avoid transgene silencing in C. elegans. Nucleic Acids Res. 2018, 46(W1), W43-W48.

Wu, W.S., Brown, J.S., Chen, T.T., Chu, Y.H., Huang, W.C., Tu, S., Lee, H.C. piRTarBase: a database of piRNA targeting sites and their roles in gene regulation. Nucleic Acids Res. 2019, 47(D1), D181-D187.

Xia, Z., Chen, C., Chen, P., Xie, H., Luo, X. MicroRNAs and their roles in osteoclast differentiation. Front. Med. 2011, 5, 414-419.

Xie, C., Mao, X., Huang, J., Ding, Y., Wu, J., Dong, S., Kong, L., Gao, G., Li, C.Y., Wei, L. KOBAS 2.0: A web server for annotation and identification of enriched pathways and diseases. Nucleic Acids Res. 2011, 39, 316-322.

Xu, F., Wang, X.T., Feng, Y., Huang, W., Wang, W., Li, L., Fang, X.D., Que, H.Y., Zhang, GF. Identification of conserved and novel microRNAs in the Pacific oyster Crassostrea gigas by deep sequencing. PLoS One 2014, 9(8), e104371.

Yan, Z., Hu, H.Y., Jiang, X., Maierhofer, V., Neb, E., He, L., Hu, Y., Hu, H., Li, N., Chen, W., Khaitovich, P. Widespread expression of piRNA-like molecules in somatic tissues. Nucleic Acids Res. 2011, 39(15), 6596-6607.

Yang, F., Xi, R.W. Silencing transposable elements in the Drosophila germline. Cell. Mol. Life Sci. 2017, 74(3), 435-448.

Yang, G., Yang, L., Zhao, Z., Wang, J., Zhang, X. Signature miRNAs involved in the innate immunity of invertebrates. PLoS One 2012, 7, e39015

Yang, J.X., Rastetter, R.H., Wilhelm, D. Non-coding RNAs: an introduction. Wilhelm, D., Bernard, P. (Eds.) Non-coding RNA and the reproductive system. Springer Netherlands, 2016, 13-32 pp.

Yang, Z.Y., Vilkaitis, G., Yu, B., Klimasauskas, S., Chen, X.M. Approaches for studying microRNA and small interfering RNA methylation in vitro and in vivo. Methods Enzymol. 2007, 427, 139-154.

Yano, M., Nagai, K., Morimoto, K., Miyamoto, H. Shematrin: A family of glycine-rich structural proteins in the shell of the pearl oyster Pinctada fucata. Comp. Biochem. Phys. B 2006, 144, 254-262.

Yao, S., Jin, B., Liu, Z., Shao, C., Zhao, R., Wang, X., Tang, R. Biomineralization: from material tactics to biological strategy. Adv. Mater. 2017, 29(14), 1605903.Addadi, L., Weiner, S. Biomineralization: mineral formation by organisms. Phys. Scr. 2014, 89(9),098003.

Younger, S.T., Corey, D.R. Transcriptional gene silencing in mammalian cells by miRNA mimics that target gene promoters. Nucleic Acids Res. 2011, 39, 5682-5691.

Zhang, D.L., Tu, S.K., Stubna, M., Wu, W.S., Huang, W.C., Weng, Z.P., Lee, H.C. The piRNA targeting rules and the resistance to piRNA silencing in endogenous genes. Science 2018, 359(6375), 587-592.

Zhang, G.F., Fang, X.D., Guo, X.M., Li, L., Luo, R.B. Xu, F., Yang, P.C., Zhang, L.L., Wang, X.T., Qi, H.G. et al. The oyster genome reveals stress adaptation and complexity of shell formation. Nature 2012, 490, 49-54.

Zhang, P., Kang, J.Y, Gou, L.T., Wang, J.J., Xue Y.C., Skogerboe, G., Dai, P., Huang, D.W., Chen, R.S., Fu, X.D., Liu, M.F., He S.M. MIWI and piRNA-mediated cleavage of messenger RNAs in mouse testes. Cell Rese. 2015, 25(2), 193-207.

Zhang, R.Q., Xie, L.P., Yan, Z.G. Cellular Regulation of Biomineralization in Pinctada fucata. In: Zhang, R.Q., Xie, L.P., Yan, Z.G. (Eds.), Biomineralization mechanism of the pearl oyster, Pinctada fucata. Springer, Singapore, 2019, 509-573 pp.

Zhao, X.L., Yu, H., Kong, L.F., Liu, S.K., Li, Q. High throughput sequencing of small RNAs transcriptomes in two Crassostrea oysters identifies microRNAs involved in osmotic stress response. Sci. Rep. 2016, 6, 22687.

Zheng, Z., Du, X.D., Xiong, X.W., Jiao, Y., Deng, Y.W., Wang, Q.H., Huang, R.L. PmRunt regulated by Pm-miR-183 participates in nacre formation possibly through promoting the expression of collagen VI-like and Nacrein in pearl oyster Pinctada martensii. PLoS One 2017, 12(6), e0178561.

Zheng, Z., Hao, R., Xiong, X., Jiao, Y., Deng, Y., Du X. Developmental characteristics of pearl oyster Pinctada fucata martensii: insight into key molecular events related to shell formation, settlement and metamorphosis. BMC Genomics 2019, 20(1), 122.

Zheng, Z., Jiao, Y., Du, X.D., Tian, Q.L., Wang, Q.H., Huang, R.L., Deng, Y.W. Computational prediction of candidate miRNAs and their potential functions in

biomineralization in pearl oyster Pinctada martensii. Saudi J. Biol. Sci. 2016, 23, 372-378.

Zhou, Z., Wang, L., Song, L., Liu, R., Zhang, H., Huang, M., Chen, H. The identification and characteristics of immune-related microRNAs in haemocytes of oyster Crassostrea gigas. PLoS One 2014, 9, e88397.

Zhu, C.B., Southgate, P.C., Li, T. Production of pearls. In: Smaal, A.C., Ferreira, J.G., Grant, J., Petersen, J.K., Strand, Ø. (Eds), Goods and services of marine bivalves. Springer, Cham, Switzerland, 2018, 77-93 pp.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る