リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「X-ray characterisation of the basal stacking fault densities of (112̄2) GaN」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

X-ray characterisation of the basal stacking fault densities of (112̄2) GaN

Pristovsek, Markus Frentrup, Martin Zhu, Tongtong Kusch, Gunnar Humphreys, Colin J. 名古屋大学

2021.09.21

概要

The diffuse scattering from basal plane stacking faults (BSF) of (112¯ 2) GaN layers was observed by laboratory X-ray diffraction (XRD) systems. To observe the diffuse scattering, the (112¯ 2) GaN samples were oriented in the [1¯ 21¯ 0] zone for 101¯ l and 202¯ l series of reflections or in the [4¯ 51¯ 0] zone for 213¯ l series. The profiles of the characteristic diffuse intensity streaks (parallel to [0001]) were fitted with a linear combination of area normalised Gauss and Lorentz functions. The area of the Lorentzian contribution correlated with the BSF density measured by cathodoluminescence, electron channeling contrast imaging, and transmission electron microscopy for densities between 103 cm−1 to mid 105cm−1, and hence allows for the quantification of the BSF density. The diffuse X-ray scattering of different reflections also suggests that the I1 type BSFs dominate in our sam- ples. This makes XRD a strong method to quantify BSF densities over the whole range, with the added advantage of being non-destructive.

参考文献

1 T. Tanikawa, T. Hikosaka, Y. Honda, M. Yamaguchi and N. Sawaki, phys. stat. sol. (c), 2008, 5, 2966–2968, DOI: 10.1002/pssc.200779236.

2 T. Tanikawa, Y. Kagohashi, Y. Honda, M. Yamaguchi and N. Sawaki, J. Cryst. Growth, 2009, 311, 2879 – 2882, DOI: 10.1016/j.jcrysgro.2009.01.109.

3 M. Pristovsek, Y. Han, T. Zhu, M. Frentrup, M. J. Kappers, C. J. Humphreys, G. Kozlowski, P. Maaskant and B. Cor- bett, phys. Stat. Sol. (b), 2015, 252, 1104–1108, DOI: 10.1002/pssb.201451591.

4 N. Okada, A. Kurisu, K. Murakami and K. Tadatomo, Appl. Phys. Express, 2009, 2, 091001, DOI: 10.1143/APEX.2.091001.

5 B. Leung, Q. Sun, C. Yerino, Y. Zhang, J. Han, B. H. Kong, H. K. Cho, K.-Y. Liao and Y.-L. Li, J. Cryst. Growth, 2012, 341, 27 – 33, DOI: 10.1016/j.jcrysgro.2011.12.035.

6 F. Tendille, P. D. Mierry, P. Vennégèus, S. Chenot and M. Teisseire, J. Cryst. Growth, 2014, 404, 177 – 183, DOI: 10.1016/j.jcrysgro.2014.07.020.

7 F. Scholz, T. Meisch, M. Caliebe, S. Schörner, K. Thonke, L. Kirste, S. Bauer, S. Lazarev and T. Baum- bach, J. Cryst. Growth, 2014, 405, 97 – 101, DOI: 10.1016/j.jcrysgro.2014.08.006.

8 F. Brunner, U. Zeimer, F. Edokama, W. John, D. Prasai, O. Krüger and M. Weyers, phys. stat. sol. (b), 2015, 252, 1189–1194, DOI: 10.1002/pssb.201552054.

9 Y. Han, M. Caliebe, F. Hage, Q. Ramasse, M. Pristovsek, T. Zhu, F. Scholz and C. Humphreys, phys. stat. sol. (b), 2016, 253, 834–839, DOI: 10.1002/pssb.201552636.

10 M. Pristovsek, Y. Han, T. Zhu, F. Oehler, F. Tang, R. A. Oliver, C. J. Humphreys, D. Tytko, P.-P. Choi, D. Raabe, F. Brunner and M. Weyers, Semicond. Sci. Technol., 2016, 31, 085007, DOI: 10.1088/0268-1242/31/8/085007.

11 M. McLaurin, A. Hirai, E. Young, F. Wu and J. S. Speck, Jpn. J. Appl. Phys., 2008, 47, 5429–5431, DOI: 10.1143/JJAP.47.5429.

12 M. A. Moram, C. F. Johnston, J. L. Hollander, M. J. Kappers and C. J. Humphreys, J. Appl. Phys., 2009, 105, 113501, DOI: 10.1063/1.3129307.

13 H. Witte, K.-M. Guenther, M. Wieneke, J. Blaesing, A. Dadgar and A. Krost, Physica B, 2009, 404, 4922–4924, DOI: 10.1016/j.physb.2009.08.269.

14 J. Bläsing, V. Holý, A. Dadgar, P. Veit, J. Christen, S. Ploch, M. Frentrup, T. Wernicke, M. Kneissl and A. Krost, J. Phys. D, 2013, 46, 125308.

15 G. Zhao, L. Wang, S. Yang, H. Li, H. Wei, D. Han and Z. Wang, Sci. Rep., 2016, 6, 20787, DOI: 10.1038/srep20787.

16 A. H. Ahmad Makinudin, A.-Z. Omar, A. Anuar, A. S. A. Bakar, S. P. DenBaars and A. Supangat, Crystal Growth & Design, 2019, 19, 6092–6099, DOI: 10.1021/acs.cgd.9b00206.

17 S. Lazarev, S. Bauer, T. Meisch, M. Bauer, I. Tischer, M. Barchuk, K. Thonke, V. Holy, F. Scholz and T. Baum- bach, J. Appl. Crystallography, 2013, 46, 1425–1433, DOI: 10.1107/S0021889813020438.

18 S. Bauer, S. Lazarev, M. Bauer, T. Meisch, M. Caliebe, V. Holý, F. Scholz and T. Baumbach, J. Appl. Crystallog., 2015, 48, 1000–1010, DOI: 10.1107/S1600576715009085.

19 S. Ploch, T. Wernicke, D. V. Dinh, M. Pristovsek and M. Kneissl, J. Appl. Phys., 2012, 111, 033526, DOI: 10.1063/1.3682513.

20 T. Zhu, C. F. Johnston, M. J. Kappers and R. A. Oliver, J Appl. Phys, 2010, 108, 083521, DOI: 10.1063/1.3498813.

21 T. Zhu, T. Ding, F. Tang, Y. Han, M. Ali, T. Badcock, M. J. Kappers, A. J. Shields, S. K. Smoukov and R. A. Oliver, Crys. Growth Des., 2016, 16, 1010–1016, DOI: 10.1021/acs.cgd.5b01560.

22 M. Pristovsek, M. Frentrup, Y. Han and C. J. Humphreys, phys. stat. sol. (b), 2016, 253, 61–66, DOI: 10.1002/pssb.201552263.

23 G. Naresh-Kumar, D. Thomson, Y. Zhang, J. Bai, L. Jiu, X. Yu, Y. P. Gong, R. M. Smith, T. Wang and C. Trager-Cowan, J. Appl. Phys., 2018, 124, 065301, DOI: 10.1063/1.5042515.

24 J. P. Spencer, C. J. Humphreys and P. B. Hirsch, Phil. Mag., 1972, 26, 193–213, DOI: 10.1080/14786437208221029.

25 A. J. Wilkinson and P. B. Hirsch, Micron, 1997, 28, 279–308, DOI: 10.1016/S0968-4328(97)00032-2.

26 C. Trager-Cowan, F. Sweeney, P. W. Trimby, A. P. Day, A. Gholinia, N.-H. Schmidt, P. J. Parbrook, A. J. Wilkinson and I. M. Watson, Phys. Rev. B, 2007, 75, 085301, DOI: 10.1103/PhysRevB.75.085301.

27 G. Naresh-Kumar, D. Thomson, M. Nouf-Allehiani, J. Bruck- bauer, P. Edwards, B. Hourahine, R. Martin and C. Trager- Cowan, Mat. Sci. Semicond. Process, 2016, 47, 44–50, DOI: 10.1016/j.mssp.2016.02.007.

28 M. A. Moram, C. F. Johnston, M. J. Kappers and C. J. Humphreys, J. Crystal Growth, 2009, 311, 3239 – 3242, DOI: 10.1016/j.jcrysgro.2009.03.029.

29 C. Stampfl and C. G. Van de Walle, Phys. Rev. B, 1998, 57, R15052–R15055, DOI: 10.1103/PhysRevB.57.R15052.

30 D. N. Zakharov, Z. Liliental-Weber, B. Wagner, Z. J. Reitmeier, E. A. Preble and R. F. Davis, Phys. Rev. B, 2005, 71, 235334, DOI: 10.1103/PhysRevB.71.235334.

31 M. Barchuk, V. Holý, D. Kriegner, J. Stangl, S. Schwaiger and F. Scholz, Phys. Rev. B, 2011, 84, 094113, DOI: 10.1103/Phys- RevB.84.094113.

32 A. E. Romanov, E. C. Young, F. Wu, A. Tyagi, C. S. Gallinat, S. Nakamura, S. P. DenBaars and J. S. Speck, J. Appl. Phys., 2011, 109, 103522, DOI: 10.1063/1.3590141.

33 M. Medunˇa, T. Kreiliger, M. Mauceri, M. Puglisi, F. Man-carella, F. L. Via, D. Crippa, L. Miglio and H. von Känel, J. Crystal Growth, 2019, 507, 70 – 76, DOI: 10.1016/j.jcrysgro.2018.10.046.

34 V. M. Kaganer, B. Jenichen, M. Ramsteiner, U. Jahn, C. Hauswald, F. Grosse, S. Fernández-Garrido and O. Brandt, J. Phys. D, 2015, 48, 385105, DOI: 10.1088/0022- 3727/48/38/385105.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る