リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Evolution of a Water-rich Atmosphere Formed by a Giant Impact on an Earth-sized Planet」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Evolution of a Water-rich Atmosphere Formed by a Giant Impact on an Earth-sized Planet

Kurosaki, Kenji Hori, Yasunori Ogihara, Masahiro Kunitomo, Masanobu 神戸大学

2023.11.01

概要

The atmosphere of a terrestrial planet that is replenished with secondary gases should have accumulated hydrogen-rich gas from its protoplanetary disk. Although a giant impact blows off a large fraction of the primordial atmosphere of a terrestrial planet in the late formation stage, the remaining atmosphere can become water-rich via chemical reactions between hydrogen and vaporized core material. We find that a water-rich postimpact atmosphere forms when a basaltic or CI chondrite core is assumed. In contrast, little postimpact water is generated for an enstatite chondrite core. We investigate the X-ray- and UV-driven mass loss from an Earth-mass planet with an impact-induced multicomponent H₂–He–H₂O atmosphere for Gyr. We show that water is left in the atmosphere of an Earth-mass planet when the low flux of escaping hydrogen cannot drag water upward via collisions. For a water-dominated atmosphere to form, the atmospheric mass fraction of an Earth-mass planet with an oxidizing core after a giant impact must be less than a few times 0.1%. We also find that Earth-mass planets with water-dominated atmospheres can exist at semimajor axes ranging from a few times 0.1 au to a few au around a Sun-like star, depending on the mass-loss efficiency. Such planets are important targets for atmospheric characterization in the era of JWST. Our results indicate that efficient mixing between hydrogen and rocky components during giant impacts can play a role in the production of water in an Earth-mass planet.

この論文で使われている画像

参考文献

Abe, Y., & Matsui, T. 1988, JAtS, 45, 3081

Ahrens, T. J. 1993, AREPS, 21, 525

Asplund, M., Amarsi, A. M., & Grevesse, N. 2021, A&A, 653, A141

Atreya, S. K. 1986, Atmospheres and Ionospheres of the Outer Planets and

their Satellites (Berlin: Springer)

Chamberlain, J. W., & Hunten, D. M. 1987, in Theory of Planetary

Atmospheres: An Introduction to Their Physics and Chemistry, ed.

R. Dmowska & J. Holton (Orlando, FL: Academic Press Inc.)

Denman, T. R., Leinhardt, Z. M., & Carter, P. J. 2022, MNRAS, 513, 1680

Dressing, C. D., & Charbonneau, D. 2015, ApJ, 807, 45

Erkaev, N. V., Kulikov, Y. N., Lammer, H., et al. 2007, A&A, 472, 329

Freedman, R. S., Marley, M. S., & Lodders, K. 2008, ApJS, 174, 504

Fulton, B. J., & Petigura, E. A. 2018, AJ, 156, 264

Ge, J., Zhang, H., Zang, W., et al. 2022, arXiv:2206.06693

Genda, H., & Abe, Y. 2003, Icar, 164, 149

Gordon, I. E., Rothman, L. S., Hargreaves, R. J., et al. 2022, JQSRT, 277,

107949

Guillot, T. 2010, A&A, 520, A27

Hamano, K., Abe, Y., & Genda, H. 2013, Natur, 497, 607

Hirano, T., Dai, F., Gandolfi, D., et al. 2018, AJ, 155, 127

Hori, Y., & Ogihara, M. 2020, ApJ, 889, 77

Hunten, D. M., Pepin, R. O., & Walker, J. C. G. 1987, Icar, 69, 532

Ikoma, M., & Genda, H. 2006, ApJ, 648, 696

Ikoma, M., & Hori, Y. 2012, ApJ, 753, 66

Ingersoll, A. P. 1969, JAtS, 26, 1191

Itcovitz, J. P., Rae, A. S. P., Citron, R. I., et al. 2022, PSJ, 3, 115

Javoy, M., Kaminski, E., Guyot, F., et al. 2010, E&PSL, 293, 259

Johnstone, C. P. 2020, ApJ, 890, 79

Kegerreis, J. A., Eke, V. R., Catling, D. C., et al. 2020, ApJL, 901, L31

Kodama, T., Genda, H., O’ishi, R., Abe-Ouchi, A., & Abe, Y. 2019, JGRE,

124, 2306

Kokubo, E., & Genda, H. 2010, ApJL, 714, L21

Kopparapu, R. K., Ramirez, R. M., SchottelKotte, J., et al. 2014, ApJL,

787, L29

Kurosaki, K., & Ikoma, M. 2017, AJ, 153, 260

Kurosaki, K., Ikoma, M., & Hori, Y. 2014, A&A, 562, A80

Kurosaki, K., & Inutsuka, S. 2023, ApJ, 954, 196

Lammer, H., Chassefière, E., Karatekin, Ö., et al. 2013, SSRv, 174, 113

Lange, M. A., & Ahrens, T. J. 1982, Icar, 51, 96

Lee, E. J., Chiang, E., & Ferguson, J. W. 2018, MNRAS, 476, 2199

Lichtenberg, T., Schaefer, L. K., Nakajima, M., & Fischer, R. A. 2022, in ASP

Conf. Ser. 534, Protostars and Planets VII, ed. S. Inutsuka (San Francisco,

CA: ASP), 907

Lodders, K., & Palme, H. 2009, M&PSA, 72, 5154

Lopez, E. D., & Fortney, J. J. 2014, ApJ, 792, 1

Lupu, R. E., Zahnle, K., Marley, M. S., et al. 2014, ApJ, 784, 27

Lustig-Yaeger, J., Meadows, V. S., & Lincowski, A. P. 2019, AJ, 158, 27

Matsui, T., & Abe, Y. 1986, Natur, 319, 303

Maurice, M., Dasgupta, R., & Hassanzadeh, P. 2023, PSJ, 4, 31

Melosh, H. J. 2007, M&PS, 42, 2079

Nakajima, M., & Stevenson, D. J. 2015, E&PSL, 427, 286

Ogihara, M., Kunitomo, M., & Hori, Y. 2020, ApJ, 899, 91

Owen, J. E., & Wu, Y. 2013, ApJ, 775, 105

Penny, M. T., Gaudi, B. S., Kerins, E., et al. 2019, ApJS, 241, 3

Petigura, E. A., Howard, A. W., & Marcy, G. W. 2013, PNAS, 110, 19273

Pierazzo, E., Artemieva, N. A., & Ivanov, B. A. 2005, GSASP, 384, 443

Rauer, H., Catala, C., Aerts, C., et al. 2014, ExA, 38, 249

Ribas, I., Guinan, E. F., Güdel, M., & Audard, M. 2005, ApJ, 622, 680

Rogers, L. A. 2015, ApJ, 801, 41

Rothman, L. S., Rinsland, C. P., Goldman, A., et al. 1998, JQSRT, 60, 665

Saumon, D., Chabrier, G., & van Horn, H. M. 1995, ApJS, 99, 713

Schlichting, H. E., Sari, R., & Yalinewich, A. 2015, Icar, 247, 81

Thompson, S. L., & Lauson, H. S. 1972, Improvements in the Chart D

Radiation-Hydrodynamic Code. III: Revised Analytic Equations of State,

1. The composition of the impact-generated atmosphere is

dominated by H2, He, and H2O when it has cooled below

3000 K.

2. Earth-mass planets can avoid water loss through photoevaporation if the escape flux of hydrogen is too low to

drag oxygen via collisions.

3. The postimpact atmosphere of an Earth-mass planet

evolves into a water-dominated atmosphere if its atmospheric mass fraction is less than a few times 0.1%,

provided that the core is oxidizing material such as basalt

or CI chondrite.

4. If the rocky core is composed of a reducing material such

as EH chondrite, the postimpact atmosphere should not

be water-dominated, even if the impact-induced mixing

between H2–He gas and rocky vapor is efficient.

An Earth-mass planet in a habitable zone can retain the

final

 10-3 after a

initial amount of H2O in its atmosphere if Xatm

giant impact, although part of the remaining water exists as

“oxygen” in the atmosphere due to photodissociation. Note that

the water-rich atmosphere of an Earth-mass planet can be found

on the core composed of basalt and CI chondrite in the giant

impact scenario, while the water-poor atmosphere forms on the

core composed of EH chondrite. The advanced capability of the

James Webb Space Telescope (JWST) allows it to observe the

atmospheres of Earth-sized planets around nearby stars, e.g.,

TRAPPIST-1 planets (Lustig-Yaeger et al. 2019). In the late

2020s, PLATO (Rauer et al. 2014), Earth 2.0 (Ge et al. 2022),

and the Roman space telescope (Penny et al. 2019) are

expected to find hundreds of Earth-sized planets in a habitable

zone around Sun-like stars and M dwarfs. Terrestrial planets

with water-dominated atmospheres, as considered in this study,

should be interesting targets for JWST observations. As shown

in Figure 7, such terrestrial planets can exist in orbits of

semimajor axes ranging from a few 0.1 au to a few au,

depending on the photoevaporation efficiency (ε). This

constraint on the locations of terrestrial planets with waterdominated atmospheres helps elucidate the mass-loss

efficiency.

Acknowledgments

We thank the anonymous referee for improving our manuscript. K.K. is supported by JSPS KAKENHI Grants-in-Aid for

Scientific Research No. 20J01258, 21H00039, 23H01231. Y.

H. is supported in part by a JSPS KAKENHI grant No.

18H05439. M.O. is supported by JSPS KAKENHI grant Nos.

JP18K13608 and JP19H05087. Numerical computations of

SPH simulations were carried out on a Cray XC50 at the Center

for Computational Astrophysics, National Astronomical Observatory of Japan.

Software: GGchem (Woitke et al. 2018).

10

The Astrophysical Journal, 957:67 (11pp), 2023 November 10

Kurosaki et al.

Albuquerque, New Mexico: Sandia National Laboratory. Technical Report

SC-RR-71-0714

Thompson, S. L., Lauson, H. S., Melosh, H. J., Collins, G. S., & Stewart, S. T.

2019, M-ANEOS, v1.0, Zenodo, doi:10.5281/zenodo.3525030

Weiss, L. M., & Marcy, G. W. 2014, ApJL, 783, L6

Woitke, P., Helling, C., Hunter, G. H., et al. 2018, A&A, 614, A1

Yelle, R., Lammer, H., & Ip, W.-H. 2008, SSRv, 139, 437

Yoshida, T., & Kuramoto, K. 2020, Icar, 345, 113740

Yoshida, T., & Kuramoto, K. 2021, MNRAS, 505, 2941

Yoshida, T., Terada, N., Ikoma, M., & Kuramoto, K. 2022, ApJ, 934, 137

Zahnle, K. J., Kasting, J. F., & Pollack, J. B. 1988, Icar, 74, 62

Zeng, L., Jacobsen, S. B., Sasselov, D. D., et al. 2019, PNAS, 116, 9723

11

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る