リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Phase Behavior of Aqueous Solution of Poly(ethylene oxide)- Poly(propylene oxide) Alternating Multiblock Copolymer」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Phase Behavior of Aqueous Solution of Poly(ethylene oxide)- Poly(propylene oxide) Alternating Multiblock Copolymer

堀内 輔 広島大学

2020.04.27

概要

Block copolymers of poly(ethylene oxide) (PEO) and poly(propylene oxide) (PPO) have received
much attention for many decades because of their potential as nonionic macromolecular surfactants,
which can yield ordered structures with various morphologies, such as micelles, lamellae, and vesicles.
Their ability to greatly enhance the solubility of hydrophobic solutes in solutions has many important
industrial and biomedical applications[1]. Many types of configurations for the block copolymers have
been examined for micellar solubilization: linear PEO–PPO diblock[2], linear and bifunctional PEO–
PPO–PEO triblock (Pluronic or poloxamer)[3], branched four‐arm PEO–PPO counterpart block
(Tetronic)[2], and so on. Use of these block copolymers as vehicles for the administration of drugs is
one of the most desirable outcomes.
The PEO–PPO block copolymers have also been considered as smart materials because the
morphology of aggregates may change by responding to an external stimulus. The common stimuli
used are temperature variations. For example, the aqueous solutions of many kinds of PEO–PPO block
copolymers have the critical micelle temperature[4]. Moreover, some of them show a sol–gel transition
upon heating, which is attractive to the design of injectable matrices for minimally invasive biomedical
applications[5].
The block configuration of the copolymers substantially modifies their solution properties.
Nagarajan and Ganesh have theoretically studied the solubilization of hydrocarbons in micelles
formed by PEO–PPO block copolymers with the same PPO–PEO composition but a different block
configuration[6‒8]. They predict that the diblock EO200PO64 copolymer can dissolve hydrocarbons in
the hydrophobic core of micelles much more than the triblock EO100PO64EO100 copolymer, where EO
is the ethylene oxide (–CH2–CH2–O–) unit, PO is the propylene oxide (–CH(CH3)–CH2–O–) unit, and
the subscripts represent the number of repeating units in each block[7]. ...

この論文で使われている画像

参考文献

[1] Kobayashi, J.; Okano, T. Design of Temperature-Responsive Polymer-Grafted Surfaces for Cell

Sheet Preparation and Manipulation. Bull. Chem. Soc. Jpn. 2019, 92, 817–824.

[2] Rikiyama, K.;Sanada, Y.; Watanabe, K.; Aida, M.; Katsumoto, Y. Unimer Structure and

Micellization of Poly(ethylene oxide)-Stereocontrolled Poly(N-isopropylacrylamide) Alternating

Multiblock Copolymers in Aqueous Solution. Macromolecules. 2019, 52, 7188-7196.

[3] Lutz, J. F. A controlled sequence of events. Nat. Chem. 2010, 2, 84–85.

[4] Keerl, M.; Richtering, W. Synergistic depression of volume phase transition temperature in

copolymer microgels. Colloid Polym. Sci. 2007, 285, 471–474.

[5] Maeda, Y.; Yamabe, M. A unique phase behavior of random copolymer of N-isopropylacrylamide

and N,N-diethylacrylamide in water. Polymer (Guildf). 2009, 50, 519–523.

[6] Engelis, N. G.; Anastasaki, A.; Nurumbetov, G.; Truong, N. P.; Nikolaou, V.; Shegiwal, A.;

Whittaker, M. R.; Davis, T. P.; Haddleton, D. M. Sequence-controlled methacrylic multiblock

copolymers via sulfur-free RAFT emulsion polymerization. Nat. Chem. 2017, 9, 171–178.

[7] Gody, G.; Barbey, R.; Danial, M.; Perrier, S. Ultrafast RAFT polymerization: Multiblock

copolymers within minutes. Polym. Chem. 2015, 6, 1502–1511.

[8] Gody, G.; Maschmeyer, T.; Zetterlund, P. B.; Perrier, S. Rapid and quantitative one-pot synthesis

of sequence-controlled polymers by radical polymerization. Nat. Commun. 2013, 4, 1–9.

[9] Simula, A.; Nikolaou, V.; Anastasaki, A.; Alsubaie, F.; Nurumbetov, G.; Wilson, P.; Kempe, K.;

Haddleton, D. M. Synthesis of well-defined α,ω-telechelic multiblock copolymers in aqueous

medium: In situ generation of α,ω-diols. Polym. Chem. 2015, 6, 2226–2233.

[10] Anastasaki, A.; Oschmann, B.; Willenbacher, J.; Melker, A.; Van Son, M. H. C.; Truong, N. P.;

Schulze, M. W.; Discekici, E. H.; McGrath, A. J.; Davis, T. P.; Bates, C. M.; Hawker, C. J. OnePot Synthesis of ABCDE Multiblock Copolymers with Hydrophobic, Hydrophilic, and SemiFluorinated Segments. Angew. Chemie - Int. Ed. 2017, 56, 14483–14487.

[11] Carroll, D. R.; Constantinou, A. P.; Stingelin, N.; Georgiou, T. K. Scalable syntheses of welldefined pentadecablock bipolymer and quintopolymer. Polym. Chem. 2018, 9, 3450–3454.

[12] Zhang, Q.; Anastasaki, A.; Li, G. Z.; Haddleton, A. J.; Wilson, P.; Haddleton, D. M. Sequencecontrolled multi-block glycopolymers to inhibit DC-SIGN-gp120 binding. Angew. Chemie - Int.

Ed. 2013, 52, 4435–4439.

[13] Alsubaie, F.; Anastasaki, A.; Wilson, P.; Haddleton, D. M. Sequence-controlled multi-block

copolymerization of acrylamides via aqueous SET-LRP at 0 °c. Polym. Chem. 2015, 6, 406–417.

[14] Zhang, Q.; Collins, J.; Anastasaki, A.; Wallis, R.; Mitchell, D. A.; Becer, C. R.; Haddleton, D. M.

Multiblock sequence-controlled glycopolymers via Cu(0)-LRP following efficient thiol-halogen,

thiol-epoxy and CuAAC reactions. Polym. Chem. 2014, 5, 3876–3883.

[15] Determan, M. D.; Cox, J. P.; Seifert, S.; Thiyagarajan, P.; Mallapragada, S. K. Synthesis and

42

characterization of temperature and pH-responsive pentablock copolymers. Polymer (Guildf).

2005, 46, 6933–6946.

[16] Determan, M. D.; Guo, L.; Thiyagarajan, P.; Mallapragada, S. K. Supramolecular self-assembly

of multiblock copolymers in aqueous solution. Langmuir 2006, 22, 1469–1473.

[17] Peleshanko, S.; Anderson, K. D.; Goodman, M.; Determan, M. D.; Mallapragada, S. K.; Tsukruk,

V. V. Thermoresponsive reversible behavior of multistimuli pluronic-based pentablock

copolymer at the air-water interface. Langmuir 2007, 23, 25–30.

[18] Lu, Y.; Chen, T.; Mei, A.; Chen, T.; Ding, Y.; Zhang, X.; Xu, J.; Fan, Z.; Du, B. Solution behaviors

and microstructures of PNIPAm-P123-PNIPAm pentablock terpolymers in dilute and

concentrated aqueous solutions. Phys. Chem. Chem. Phys. 2013, 15, 8276–8286.

[19] Zhou, Y.; Jiang, K.; Song, Q.; Liu, S. Thermo-induced formation of unimolecular and

multimolecular micelles from novel double hydrophilic multiblock copolymers of N,Ndimethylacrylamide and N-isopropylacrylamide. Langmuir 2007, 23, 13076–13084.

[20] Rikiyama, K.; Horiuchi, T.; Koga, N.; Sanada, Y.; Watanabe, K.; Aida, M.; Katsumoto, Y.

Micellization of poly(ethylene oxide)-poly(propylene oxide) alternating multiblock copolymers

in water. Polymer (Guildf). 2018, 156, 102–110.

[21] Muraoka, T.; Shima, T.; Hamada, T.; Morita, M.; Takagi, M.; Kinbara, K. Mimicking multipass

transmembrane proteins: Synthesis, assembly and folding of alternating amphiphilic multiblock

molecules in liposomal membranes. Chem. Commun. 2011, 47, 194–196.

[22] Alexandridis, P.; Holzwarth, J. F.; Hatton, T. A. Micellization of Poly(ethylene oxide)Poly(propylene oxide)-Poly(ethylene oxide) Triblock Copolymers in Aqueous Solutions:

Thermodynamics of Copolymer Association. Macromolecules 1994, 27, 2414–2425.

[23] Horiuchi, T.; Sakai, T.; Sanada, Y.; Watanabe, K.; Aida, M.; Katsumoto, Y. Association Behavior

of Poly(ethylene oxide)-Poly(propylene oxide) alternating multiblock copolymers in water

toward thermally induced phase separation. Langmuir 2017, 33, 14649–14656.

[24] Francuskiewicz, F. Polymer Fractionation. Springer, Berlin (1994).

[25] Saeki, S.; Kuwahara, N.; Nakata, M.; Kaneko, M. Upper and lower critical solution temperatures

in poly (ethylene glycol) solutions. Polymer (Guildf). 1976, 17, 685–689.

[26] Alexandridis, P.; Alan Hatton, T. Poly(ethylene oxide)poly(propylene oxide)poly(ethylene oxide)

block copolymer surfactants in aqueous solutions and at interfaces: thermodynamics, structure,

dynamics, and modeling. Colloids Surfaces A Physicochem. Eng. Asp. 1995, 96, 1–46.

[27] Watanabe, R.; Takaseki, K.; Katsumata, M.; Matsushita, D.; Ida, D.; Osa, M. Characterization of

poly(N,N-diethylacrylamide) and cloud points in its aqueous solutions. Polym. J. 2016, 48, 621–

628.

[28] Tong, Z.; Zeng, F.; Zheng, X.; Sato, T. Inverse molecular weight dependence of cloud points for

aqueous poly(N-isopropylacrylamide) solutions. Macromolecules 1999, 32, 4488–4490.

43

[29] Shultz, A. R.; Flory, P. J. Phase Equilibria in Polymer–Solvent Systems. J. Am. Chem. Soc. 1952,

74, 4760–4767.

[30] Hamada, F.; Fujisawa, K.; Nakajima, A. Lower Critical Solution Temperature in Linear

Polyethylene–n-Alkane Systems. Polym. J. 1973, 4, 316–322.

44

CHAPTER 4

General Conclusion

45

We investigated the properties of the aqueous solution of PEO–PPO AMB copolymer with

various molecular weight and different weight fraction of PEO.

The PEO–PPO AMB copolymers having a different weight fraction of PEO were prepared by a

dehydrated condensation reaction between α,ω‐diamino PPO and α,ω‐disuccinimidyl PEO

prepolymers. The copolymers with various molecular weights were obtained by precipitation

fractionation. The aqueous solution of the copolymer underwent a LCST‐type phase separation with

increasing temperature. The Tc of the aqueous solution of the copolymer decreased as the weight

fraction of PPO and the Mn of copolymer increased. These results suggest following:

(1) Tc of the aqueous solution of the PEO–PPO AMB copolymer is lower than that of PEO–PPO–

PEO triblock copolymer having similar PEO weight fraction. The result is caused by the Mw of

the PEO–PPO AMB copolymer which is much larger than that of the triblock copolymer.

(2) The hydrophobicity of the PEO–PPO AMB copolymer is correlated with the weight fraction of

PEO like as that of triblock copolymers.

(3) Shultz–Flory theory, which is proposed for homopolymer systems, is possibly applicable to the

AMB copolymer system.

These finding imply that the block design of the AMB copolymer has a potential to apply for designing

functional materials such as protein mimics.

46

公表論文

(1) Horiuchi, Tasuku; Sakai, Takamasa; Sanada, Yusuke; Watanabe, Keisuke; Aida, Misako;

Katsumoto, Yukiteru

Association Behavior of Poly(ethylene oxide)–Poly(propylene oxide) Alternating Multiblock

Copolymers in Water toward Thermally Induced Phase Separation.

Langmuir 2017, 33, 14649–14656.

(2) Horiuchi, Tasuku; Rikiyama, Kazuaki; Sakanaya, Kenji; Sanada, Yusuke; Watanabe, Keisuke;

Aida, Misako; Katsumoto, Yukiteru

Effect of Molecular Weight on Cloud Point of Aqueous Solution of Poly(ethylene oxide)–

Poly(propylene oxide) Alternating Multiblock Copolymer.

J. Oleo Sci. (in press)

47

参考論文

(1) Rikiyama, Kazuaki; Horiuchi, Tasuku; Koga, Naoyuki; Sanada, Yusuke; Watanabe, Keisuke;

Aida, Misako; Katsumoto, Yukiteru

Micellization of Poly(Ethylene Oxide)–Poly(Propylene Oxide) Alternating Multiblock

Copolymers in Water.

Polymer 2018, 156, 102–110.

48

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る