リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Silicon Electrodeposition in a Water-Soluble KF–KCl Molten Salt: Properties of Si Films on Graphite Substrates」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Silicon Electrodeposition in a Water-Soluble KF–KCl Molten Salt: Properties of Si Films on Graphite Substrates

Yasuda, Kouji Kato, Tomonori Norikawa, Yutaro Nohira, Toshiyuki 京都大学 DOI:10.1149/1945-7111/ac3272

2021.11

概要

The electrodeposition of crystalline Si films on graphite substrates was investigated in KF–KCl molten salts at 1073 K. The optimum K₂SiF₆ concentration and current density to obtain adherent, compact, and smooth films were investigated using surface and cross-sectional scanning electron microscopy. The crystallinity of the deposited Si films was measured by X-ray diffraction and electron backscatter diffraction techniques. By photoelectrochemical measurements in CH₃CN–TBAPF₆–Fc at room temperature, the Si film electrodeposited on the graphite substrate at 100 mA cm−₂ for ₃0 min in molten KF–KCl–K₂SiF₆ (3.5 mol%) was found to be an n-type semiconductor. When SiCl₄ was used as the Si source, the melt with a higher molar ratio of KF deposited smoother Si films on the graphite substrates. The Si films electrodeposited in molten KF–KCl after the introduction of SiCl₄ gas (2.37 mol%) were confirmed to be p-type by photoelectrochemical measurements in CH₃CN–TBAClO₄–EVBr₂. The characteristics of the electrodeposited Si film (p-type or n-type) is determined by the contaminating impurities (B, P, and Al).

この論文で使われている画像

参考文献

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

International Renewable Energy Agency (IRENA), Report “Future of Solar

Photovoltaic”, (2019). https://www.irena.org/publications/2019/Nov/Future-of-SolarPhotovoltaic

U. Cohen and R. A. Huggins, J. Electrochem., 123, 381 (1976).

G. M. Rao, D. Elwell, and R. S. Feigelson, J. Electrochem. Soc., 128, 1708 (1981).

D. Elwell and R. S. Feigelson, Sol. Energy, Mat., 6, 123 (1982).

G. M. Rao, D. Elwell, and R. S. Feigelson, J. Electrochem. Soc., 127, 1940 (1980).

K. S. Osen, A. M. Martinez, S. Rolseth, H. Gudbrandsen, M. Juel, and G. M. Haarberg,

ECS Trans., 33, 429 (2010).

A. L. Bieber, L. Massot, M. Gibilaro, L. Cassayre, P. Taxil, and P. Chamelot,

Electrochim. Acta, 62, 282 (2012).

G. M. Haarberg, L. Famiyeh, A. M. Martinez, and K. S. Osen, Electrochim. Acta, 100,

226 (2013).

Y. Sakanaka and T. Goto, Electrochim. Acta, 164, 139 (2015).

J. Xu and G. M. Haarberg, High Temp. Mater. Processes (De Gruyter), 32, 97 (2013).

R. Boen and J. Bouteillon, J. App. Electrochem., 13, 277 (1983).

T. Matsuda, S. Nakamura, K. Ide, K. Nyudo, S. Yae and Y. Nakato, Chem Lett., 7, 569

(1996).

S. V. Devyatkin, J. Min. Metall. Sect. B., 39, 303 (2003).

J. Zhao, H. Yin, T. Lim, H. Xie, H. Y. Hsu, F. Forouzan, and A. J. Bard, J. Electrochem.

Soc., 163, 506 (2016).

A. A. Andriiko, E. V. Panov, O. I. Boiko, B. V. Yakovlev, and O. Y. Borovik, Russ. J.

Electrochem., 33, 1343 (1997).

S. V. Kuznetsova, V. S. Dolmatov, and S. A. Kuznestov, Russ. J. Electrochem., 45, 797

(2009).

K. Maeda, K. Yasuda, T. Nohira, R. Hagiwara, and T. Homma, J. Electrochem. Soc., 162,

D444 (2015).

K. Yasuda, K. Maeda, T. Nohira, R. Hagiwara, and T. Homma, J. Electrochem. Soc., 163,

D95 (2016).

K. Yasuda, K. Maeda, R. Hagiwara, T. Homma, and T. Nohira, J. Electrochem. Soc., 164,

D67 (2017).

K. Yasuda, K. Saeki, T. Kato, R. Hagiwara, and T. Nohira, J. Electrochem. Soc., 165,

D825 (2018).

Y. P. Zaykov, S. I. Zhuk, A. V. Isakov, O. V. Grishenkova, and V. A. Isaev, J. Solid State

Electrochem., 19, 1341 (2015).

S. I. Zhuk, A. V. Isakov, A. P. Apisarov, O. V. Grishenkova, V. A. Isaev, E. G. Vovkotrub,

and Y. P. Zaykov, J. Electrochem. Soc. 164, H5135 (2017).

S. I. Zhuk, V. A. Isaev, O. V. Grishenkova, A. V. Isakov, A. P. Apisarov, and Y. P. Zaykov,

J. Serb. Chem. Soc., 82, 51 (2017).

J. Peng, H. Yin, J. Zhao, X. Yang, A. J. Bard, and D. R. Sadoway, Adv. Funct. Mater.,

1703551 (2017).

X. Yang, L. Ji, X. Zou, T. Lim, J. Zhao, E. T. Yu, and A. J. Bard, Angew. Chem. Int. Ed.

16

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

56, 15078 (2017).

26. X. Zou, L. Ji, X. Yang, T. Lim, E. T. Yu, and A. J. Bard, J. Am. Chem. Soc., 139, 16060

(2017).

27. X. Zou, L Ji, J. Ge, D. R. Sadoway, E. T. Yu, and A. J. Bard, Nat. Commun., 10, 5772

(2019).

28. J. R. Rumble, CRC Handbook of Chemistry and Physics, 99th Edition (2018).

29. L. P. Cook and H. F. McMurdie, Phase Diagrams for Ceramists vol. VII, p. 509, The

American Ceramic Society Inc., Columbus (1989).

30. B. D. Cullity, Agne Shofusha, Tokyo, Elements of X-Ray Diffraction, 2nd edition (2002).

31. Y. Kato, N. Yuge, S. Hisawa, H. Terashima, and F. Aratani, Materia Japan, 41, 54

(2002).

32. M. A. Martorano, J. B. F. Neto, T. S. Oliveira, and T. O. Tsubaki, Mater. Sci. Eng. B, 176,

217 (2011).

33. R. H. Hopkins and A. Rohatgi, J. Crystal Growth, 75, 67 (1986).

34. J. R. Davis, Jr., A. Rohatgi, R. H. Hopkins, P. D. Blais, P. Rai-Choudhury, J. R.

McCormick, and H. C. Mollenkopf, IEEE Trans. Electron Devices, 27, 677 (1980).

17

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

Figure Captions

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

Fig. 7

Fig. 8

Cyclic voltammograms at (a) a Ag flag electrode and (b) a graphite plate electrode in

molten KF–KCl before and after addition of K2SiF6 (0.10 mol%) at 1073 K. Scan

rate: 0.50 V s−1. (c) Current–potential curve calculated from the difference for the

voltammograms obtained at a graphite plate electrode in blank melt and molten KF–

KCl−K2SiF6 (0.10 mol%).

Surface SEM images of the samples obtained by galvanostatic electrolysis of

graphite plate electrodes at various current densities and K2SiF6 concentrations in

molten KF–KCl at 1073 K. The charge density was at 180 C cm−2.

Cross-sectional SEM images of the samples obtained by galvanostatic electrolysis of

graphite plate electrodes at various current densities and K2SiF6 concentrations in

molten KF–KCl at 1073 K. The charge density was 180 C cm−2.

Relationship between electrolysis conditions and morphology of Si deposits on

graphite electrode and the optimum electrolysis conditions for Ag substrate [20].

(a) XRD pattern, (b) cross-sectional SEM image, and (c) a crystal grain map from

electron backscatter diffraction (EBSD) analysis of the deposits obtained by

galvanostatic electrolysis of a graphite plate electrode at 100 mA cm−2 for 30 min in

molten KF–KCl–K2SiF6 (3.5 mol%) at 1073 K.

(a) Open-circuit potentiogram and (b) linear sweep voltammograms at an

electrodeposited Si in CH3CN–TBAPF6(0.1 M)–Fc(0.05 M) at room temperature.

Scan rate: 0.05 V s−1.

Surface and cross-sectional SEM image of the samples obtained by galvanostatic

electrolysis of graphite plate electrodes. The Si layer was electrodeposited (a-1)(a-2)

at 100 mA cm−2 for 30 min in molten KF–KCl (45:55 mol%) at 1073 K after the

introduction of SiCl4 (2.79mol%) and (b-1)(b-2) at 45.6 mA cm−2 for 60 min in

molten KF–KCl (60:40 mol%) at 1073 K after the introduction of SiCl4 (2.37

mol%).

Linear sweep voltammograms at the electrodeposited Si in CH3CN–TBAClO4 (0.3

M)–EVBr2 (0.05 M) at room temperature. Scan rate: 0.05 V s−1.

18

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

498

499

500

501

Table 1 Acceptable impurity levels for SOG-Si [31–34] and impurity contents determined by GD-MS for the Si film samples. The samples were

obtained by galvanostatic electrolysis of a Ag plate at 100 mA cm−2 for 50 min in molten KF–KCl–K2SiF6 (2.0 mol%) at 923 K [18], a graphite

plate at 100 mA cm−2 for 30 min in molten KF–KCl–K2SiF6 (3.5 mol%) at 1073 K, and a graphite plate at 45.6 mA cm−2 for 60 min in molten KF–

KCl at 1073 K after the introduction of 2.37 mol% SiCl4.

Acceptable levels for SOG-Si

/ ppm

Impurity content in electrodeposited Si film

/ ppm

[31]

[32]

[33, 34]

Ag plate (GC

rod anode)

[18]

K2SiF6

Graphite plate

(Si rod anode)

[This study]

K2SiF6

Graphite plate

(GC plate anode)

[This study]

SiCl4

0.1–0.3

< 0.06

< 0.1

< 4×10−5

< 0.007

0.1–10

0.005–0.05

0.02–2

<2

<1

<1

< 1×10−4

< 4×10−3

< 8×10−3

< 0.02

< 0.3

< 20

< 7×10−5

3.2

0.8

2.7

<2

<1

< 0.1

5.1

1.8

5.0

11

1.8

0.6

76

< 0.5

<1

11

10

<1

<1

<1

<1

<1

<1

<1

<1

23

12

12

78

1.0

0.13

< 0.01

< 0.01

0.04

0.14

0.33

< 0.01

0.82

< 0.01

Element

Al

Ca

Ti

Cr

Mn

Fe

Ni

Cu

Mo

Ag

Pt

502

19

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

(a)

Current density / A cm−2

0.3

0.2

0.1

−0.1

−0.2

−0.3

Blank

0.10 mol% K2SiF6

0.2

0.4

0.6

0.8

1.0

Potential vs. K+/K / V

1.2

1.4

(b)

Current density / A cm−2

0.3

0.2

0.1

−0.1

−0.2

−0.3

Blank

0.10 mol% K2SiF6

0.2

0.4

0.6

0.8

1.0

Potential vs. K /K / V

1.2

1.4

(c)

Current density / A cm−2

0.05

−0.05

−0.10

−0.15

−0.20

0.4

0.6

0.8

1.0

1.2

Potential vs. K+/K / V

Fig. 1 Cyclic voltammograms at (a) a Ag flag electrode and (b) a graphite plate electrode in

molten KF–KCl before and after addition of K2SiF6 (0.10 mol%) at 1073 K. Scan rate: 0.50 V s−1.

(c) Current–potential curve calculated from the difference for the voltammograms obtained at a

graphite plate electrode in blank melt and molten KF–KCl−K2SiF6 (0.10 mol%).

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

0.50 mol%

2.0 mol%

3.5 mol%

5.0 mol%

300

mA cm−2

200

mA cm−2

100

mA cm−2

25

mA cm−2

100 µm

Fig. 2 Surface SEM images of the samples obtained by galvanostatic

electrolysis of graphite plate electrodes at various current densities

and K2SiF6 concentrations in molten KF–KCl at 1073 K. The charge

density was 180 C cm−2.

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Resin Si Graphite

0.50 mol%

2.0 mol%

3.5 mol%

5.0 mol%

300

mA cm−2

200

mA cm−2

100

mA cm−2

25

mA cm−2

100 µm

Fig. 3 Cross-sectional SEM images of the samples obtained by

galvanostatic electrolysis of graphite plate electrodes at various

current densities and K2SiF6 concentrations in molten KF–KCl at

1073 K. The charge density was 180 C cm−2.

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Compact and smooth Si was

obtained on Ag substrate

500

Current density / mA cm−2

Porous & nodular Si

400

300

Peeled

200

100

Nodular ★

Si

Nonuniform

K2SiF6 concentration / mol%

Compact &

smooth Si

Fig. 4 Relationship between electrolysis conditions and morphology

of Si deposits on graphite electrode and the optimum electrolysis

conditions for Ag substrate [20].

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

(a)

(#00-005-0565)

● Si

× Graphite(#00-001-0640)

Intensity / a.u.

20

(b)

30

Resin

40

50

60

70

2θ / deg. (Cu-Kα)

Si

Graphite

× ×

80

90

(c)

100 µm

Fig. 5 (a) XRD pattern, (b) cross-sectional SEM image, and (c) a crystal grain

map from electron backscatter diffraction (EBSD) analysis of the deposits

obtained by galvanostatic electrolysis of a graphite plate electrode at 100 mA

cm−2 for 30 min in molten KF–KCl–K2SiF6 (3.5 mol%) at 1073 K.

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

(a)

Potential vs. Ag+/Ag / V

−0.1

In the dark

−0.2

−0.3

−0.4

Under illumination

−0.5

−0.6

10

20

30

40

Time / s

50

60

70

(b)

Current density / mA cm−2

Photocurrent

Dark current

−1

−0.2

0.2

0.4

0.6

Potential vs. Ag /Ag / V

0.8

Fig. 6 (a) Open-circuit potentiogram and (b) linear sweep voltammograms

at an electrodeposited Si in CH3CN–TBAPF6(0.1 M)–Fc(0.05 M) at room

temperature. Scan rate: 0.05 V s−1.

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

(b-1)

(a-1)

100 µm

100 µm

(b-2)

(a-2)

Resin

Graphite

Si

Resin

Graphite

Si

100 µm

100 µm

Fig. 7 Surface and cross-sectional SEM image of the samples obtained by galvanostatic

electrolysis of graphite plate electrodes. The Si layer was electrodeposited (a-1)(a-2) at 100

mA cm−2 for 30 min in molten KF–KCl (45:55 mol%) at 1073 K after the introduction of

SiCl4 (2.79mol%) and (b-1)(b-2) at 45.6 mA cm−2 for 60 min in molten KF–KCl (60:40

mol%) at 1073 K after the introduction of SiCl4 (2.37 mol%).

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Current density / mA cm−2

0.5

−0.5

−1.0

−1.5

Photocurrent

Dark current

−2.0

−0.8

−0.7

−0.6 −0.5 −0.4 −0.3

Potential vs. Ag+/Ag / V

−0.2

Fig. 8 Linear sweep voltammograms at the electrodeposited Si in

CH3CN–TBAClO4 (0.3 M)–EVBr2 (0.05 M) at room temperature.

Scan rate: 0.05 V s−1.

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る